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Abstract

In cellular networks, there is a growing adoption of vir-
tualized radio access networks (vVRANSs), where operators
are replacing the traditional specialized hardware for RAN
processing with software running on commodity servers.
Today’s VRAN deployments lack resilience, since there is
no support for vRAN failover or upgrades without long
service interruptions. Enabling these features for vRANs
is challenging because of their strict real-time latency re-
quirements and black-box nature. Slingshot is a new system
that transparently provides resilience for the vVRAN’s most
performance-critical layer: the physical layer (PHY). We de-
sign new techniques for realtime workload migration with
fast RAN protocol middleboxes, and realtime RAN failure
detection. A key insight in our design is to view the transient
disruptions from resilience events to RAN computation state
and I/O similarly to regular wireless signal impairments, and
leverage the inherent resilience of cellular networks to these
events. Experiments with a state-of-the-art 5G vRAN testbed
show that Slingshot handles PHY failover with no disruption
to video conferencing, and under 110 ms disruption to a TCP
connection, and it also enables zero-downtime upgrades.

1 Introduction

Radio access networks (RANS) are a part of the cellular net-
work infrastructure (e.g., LTE and 5G) that converts wireless
signals between the user devices (called UEs, for “user equip-
ment”) and radio cell towers into data packets and vice versa.
Today, the RAN industry is seeking to replace specialized
RAN hardware with software systems running on commod-
ity servers deployed in edge datacenters located close to the
radio cell towers. This approach, called virtualized RAN
(VRAN), has the benefits of reducing vendor lock-in, rapid
feature development and upgrades, easier maintenance, and
possibly lower costs [14, 49]. Cellular service providers, such
as Verizon and Rakuten Mobile, have already virtualized their
RANS [2, 20], and others, such as Vodafone [22], are currently
in the process of adopting them. Figure 1 shows a typical
vRAN deployment that statically provisions vVRAN servers
to handle specific RUs.

Today’s VRAN lacks resilience, with no support for fast
failover or zero-downtime upgrades. These features are re-
quired to provide high availability for the cellular network
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which is a critical infrastructure for emergency services, pub-
lic safety, and other mission-critical applications. Any given
VRAN server is likely to crash every few months [28, 33],
resulting in severe user downtime lasting over five sec-
onds even if the radio is immediately reconnected to a
backup vRAN using our fronthaul migration techniques
(§8.1). Planned RAN upgrades happen as often as every
day, and today they require manually pre-planned mainte-
nance windows in which parts of the network are taken
offline [61, 73]. A resilient vRAN system should migrate
processing during failovers and upgrades to another server
without significant user downtime or network disruption.

Two characteristics of the VRAN software make it challeng-
ing to provide resilience: its realtime latency requirements,
and its black-box nature. First, the VRAN must complete
tasks in strict transmission time intervals (TTIs), measuring
500 ps in 5G’s common deployment configurations. In com-
parison, existing resilience approaches based on virtual ma-
chine or container migration/replication techniques impose
blackouts lasting several 100 ms [37, 59, 65, 67, 69, 71, 78].
Second, production-grade vRANs use extremely complex
and often proprietary software written by domain experts.
This makes it infeasible to modify the software to implement
custom logic required by existing state replication-based
network function resilience techniques [50, 62, 66]. This
challenge is exacerbated by the vRAN consisting of modules
developed independently by different vendors, such as the
layer-1 (Physical Layer, or PHY) and layer-2 (or L2, including
Media Access Control and Radio Link Control) modules.

In this paper, we present Slingshot, a new system that
takes the first step towards building the required systems
support for vRAN resilience. Since the vRAN stack is modu-
lar, a practical way towards a resilient vRAN is to make each
module independently resilient, exploiting the specific prop-
erties of the module. This paper focuses on the vVRAN’s PHY
layer, which has the highest CPU cost and software com-
plexity, and the tightest realtime latency deadlines among
all vRAN layers. Slingshot requires no changes to existing
VRAN software or hardware components, so it is incremen-
tally deployable. Since we target the vVRAN’s lowest layer, the
techniques we present can be fundamental building blocks
for future resilience work on other vRAN layers.

Slingshot’s design is based on our observation that the
short-term vRAN computation or I/O impairments that can
occur during resilience events—such as losing soft PHY state
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Figure 1: High-level view of a typical vVRAN deployment today.
Here, each server is statically provisioned to serve a certain subset
of connected RUs.

computed in a previous TTI, or dropping some fronthaul
packets—are similar to routine wireless signal quality degra-
dation; Slingshot leverages the cellular network’s inherent
resilience to bad signal quality to preserve connectivity de-
spite short-term impairments. This allows us to design a
clean and lightweight migration technique called PHY mi-
gration that moves the PHY processing to another server by
properly managing the two types of traffic processed by the
PHY: the PHY-RU fronthaul and the L2-PHY traffic. This
technique enables zero-downtime planned upgrades, and,
in combination with our novel RAN failure detector, also
provides fast failover without significant user disruption.

To provide PHY migration in a transparent and inter-
operable way, we design new middleboxes that act as shim
layers between different vRAN layers. First, we design a
programmable switch—-based middlebox between the RU and
PHY to manage the high-bandwidth fronthaul traffic without
adding latency and CPU overhead of a software-based alter-
native. Slingshot introduces two novel realtime in-switch
components: one to migrate fronthaul to/from the primary
or secondary PHY, and another to detect PHY failures within
a TTL Our failure detection technique is based on the in-
sight that all realtime vRAN layers send realtime packet
streams that can be used as natural heartbeats. Second, we
design a software middlebox called Orion between the L2
and PHY layers. Orion maintains low-overhead hot standby
secondary PHYs and initiates PHY migration by properly
managing L2-PHY protocol messages.

We implement the fronthaul middlebox in P4-16 [15] and
Python, and Orion in C++, and show that they work with
an unmodified commercial vRAN stack consisting of Intel
FlexRAN (PHY) [8] and CapGemini 5G (L2+) [4].

We evaluate Slingshot on a state-of-the-art vRAN testbed
with end-to-end applications and microbenchmarks. We run
a video conferencing application with Slingshot and show
zero downtime during PHY failover, compared to 6.2 seconds
without Slingshot. We also show that Slingshot moves PHY
processing between servers orders of magnitude faster than
pre-copy VM migration, and drops no TTIs during planned
migrations. Using iperf [24], we demonstrate the end-to-end
performance recovery after PHY failure with Slingshot is
near-immediate for UDP, and takes 110 ms in the worst case
for TCP connections. Finally, we show that Slingshot enables
zero-downtime PHY upgrades.
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Figure 2: A simplified structural view of a standard vRAN stack
with split option-7.2x and 6.

2 Motivation and background

2.1 Motivation for RAN resilience

The cellular network is a critical infrastructure that must
support high availability. Telecom deployments typically
require five nines of uptime [56], which permits at most six
minutes of downtime per year, and means that vRAN failover
and upgrades must be handled with little user downtime. We
find that in today’s vRANS, these events can have a drastic
impact on users’ connectivity: without Slingshot, a 5G UE
disconnects for 6.2 seconds on average when the vRAN fails,
even if the RU is immediately reconnected to a standby vRAN
using our in-switch middlebox (§8.1).

Resilience to faults. A resilient PHY must tolerate hard-
ware or software faults. The limited public analyses of server
hardware failures suggest mean-time-between-failure values
including 10 days [28] to 60 days [33, Table 3]; repairs take
several hours [28], violating the five-nines target. vVRANs
are particularly vulnerable to software crashes: similar to
Turlapati and Bhat [70], our experience in operating a vVRAN
testbed (§8) finds crashes due to imperfect support for real-
time applications in Linux (e.g., kernel thread starvation, and
co-existence with non-realtime processes).

Resilience to planned upgrades. A key promise of vir-
tualized RANSs is the ease of rolling out new RAN fea-
tures and updates, OS/security patches, and hardware up-
grades. AT&T reports upgrading sub-sets of their RANs
as often as every day, with pre-planned downtime win-
dows for maintenance [61, 73]. Experience from large dis-
tributed system deployments shows that mechanisms for
zero-downtime upgrades and maintenance are of paramount
importance [32, 39]. Upgrades in today’s vRANs involve
significant user downtime, lasting several seconds.

2.2 A primer on VRAN deployments

Figure 2 shows a simplified view of the main components
of the vRAN stack. Most of today’s VRAN deployments,
such as Rakuten Mobile [18], Vodafone [21] and Deutsche
Telekom [6] are based on CPUs running Intel’s FlexRAN
PHY software. We target these architectures, although our
design also applies to others (e.g., DSPs, FPGAs, or GPUs).

Hardware. A vRAN deployment consists of several radio
units (RUs) connected to a nearby edge datacenter via fiber-
optic fronthaul links. A switch in the edge datacenter con-



nects an RU to a vVRAN server; today, this mapping can only
be changed rarely (e.g., when new RUs or servers are added).
Dedicated commodity servers in the edge datacenter run
the RAN’s different layers as bare-metal or containerized
Linux applications. Of these layers, the layer-1 (PHY) and
layer-2 (Media Access Control and Radio Link Control) have
strict real-time latency requirements. Higher layers of the
VRAN stack as well as the core network do not have real-
time latency requirements, and may therefore run in a larger
datacenter farther away from the RUs and DUs.

Software. The vRAN consists of large and complex (e.g.,
several hundred thousand source lines of code) highly-
optimized, multi-threaded software applications written by
specialized vendors. The PHY performs highly compute-
intensive signal processing tasks, including channel estima-
tion, modulation/demodulation, and forward error correc-
tion. We use Intel’s FlexRAN PHY [8], which is a production-
grade 5G PHY implementation widely used in vVRAN de-
ployments. Our proposed techniques are also applicable to
other software PHY implementations, such as those from
OpenAirInterface [57] and srsRAN [19]. The L2 is primarily
responsible for scheduling the frequency and time resources
among users (UEs). This layer also connects to higher non-
real-time VRAN layers, which in turn connect to the cellular
core network. Several vendors provide L2 implementations,
including CapGemini [4] and RadiSys [17]. Each process
(e.g., PHY or L2) supports handling multiple RUs.

Functional splits and interfaces. To modularize complex
RAN systems, the standards define “splits” specifying differ-
ent ways of distributing RAN components across software
and hardware boundaries. A key tenet of vVRANSs is the use
of open specifications that have broad adoption, allowing
these components to interoperate. For the fronthaul interface
between the PHY and RU, today’s vRANSs use the “O-RAN
split option-7.2x” standard from the O-RAN consortium [11].
The fronthaul carries Ethernet packets containing IQ sam-
ples, which the PHY handles with low-latency userspace
packet I/O. The PHY/L2 interface uses the FAPI (“Functional
APT”) specification from the Small Cell Forum [7]. In tightly-
coupled systems that co-locate the PHY and L2 on the same
server, FAPI messages are carried over shared memory. In
decoupled systems, which we believe are crucial for vVRAN
resiliency, the PHY and L2 exchange FAPI messages over an
Ethernet network with the “network FAPI” (nFAPI) proto-
col [10], which implements O-RAN’s split option-6 [13].

2.3 Availability target

We target a cellular network downtime of under 10 ms dur-
ing resilience events, which can be considered negligible for
cellular deployments. For example, during frequent mobility
events called “handovers” where a moving UE transfers from
one cell to another, UEs typically experience larger down-
time. Some measurements show that handovers happen as
frequently as once every 70 seconds while walking, resulting
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Figure 3: Distribution of VM pause time while migrating FlexRAN
in a VM via TCP or RDMA. FlexRAN crashes in all runs.

in suspension of service for 24.7 ms on average [52]; today’s
5G networks exhibit somewhat higher handover delays [52].

By targeting a smaller downtime than handovers, we en-
sure that UEs do not experience unusual disruption during
PHY resilience events. Note that resilience events are far
rarer than handovers, and degraded performance (e.g., packet
losses) for similar ~10 ms timescales during them is also ac-
ceptable, similar to handovers [43, Fig 4].

2.4 PHY downtime with VM migration

While one can consider using general-purpose workload
migration techniques such as virtual machine (VM) or con-
tainer migration for PHY resilience, the PHY’s real-time la-
tency requirements preclude using these approaches. These
approaches impose blackout periods of up to hundreds of
milliseconds [37, 77], which causes UEs to de-synchronize
and completely disconnect from the network [29].

Figure 3 shows our measurements of pause time while
migrating a VM running FlexRAN; we describe the 5G cell’s
configuration in Section 8. These experiments use a simpli-
fied version of FlexRAN that does not use any PCle devices
(e.g., for fronthaul packet I/O or for FEC acceleration), which
under-represents the actual migration time. We use QE-
MU/KVM [9, 16] as the hypervisor, which optimizes VM
pause time during migration by using pre-copy techniques
that iteratively transfer dirty memory pages. We perform 80
live migration experiments, using RDMA over 100 GbE to
speed up migration [1]. Even with these optimizations, the
median VM pause time is 244 ms, which is large enough for
UEs to fully disconnect from the network after their Radio
Link Failure timer (50 ms in our setup) expires [29]. This
downtime happens because FlexRAN’s signal processing
continuously generates dirty memory pages, causing the
hypervisor to pause the VM to ensure their consistency after
a transfer. We also observe that FlexRAN crashes during
all migration runs, which is expected since the designers of
VRAN’s real-time layers optimize the software assuming a
low jitter environment. For example, VRAN operators require
the server platform to provide sub-10 ps thread interruption
times under all circumstances [23], which is several orders
of magnitude lower than the pause time with today’s VM
migration techniques.

3 Overview of Slingshot

Our goal is to design a resilience solution for the PHY layer
of vRANs that provides the following three properties:



e Minimal disruption to cellular connectivity: During
failover or upgrade events, user downtime must be less
than 10 ms to keep the downtime comparable to routine
handovers.

e Transparency to existing VRAN components: Since
the vRAN stack is highly complex and different layers are
usually provided by different vendors, Slingshot should
not depend on one particular implementation, which re-
duces the design’s applicability.

e Low resource and performance overheads: Given the
limited compute resources available in edge datacenters
and the need to keep costs low, the design must incur little
compute overhead. Also, it must not violate the PHY’s
realtime latency requirements.

Slingshot meets these goals without any modifications to
existing VRAN software. We build Slingshot on our observa-
tion that short-term vRAN computation or I/O impairments
during resilience events, such as losing soft PHY state from
a previous TTI or dropping some fronthaul packets, are sim-
ilar to routine wireless signal quality degradation (§4). By
leveraging the cellular network’s inherent resilience to bad
signal quality, Slingshot can maintain connectivity despite
short-term impairments.

Based on this observation, we design a lightweight state-
less migration mechanism for the PHY layer, called PHY mi-
gration, that moves the PHY processing to a hot-standby sec-
ondary PHY process by properly managing the two types of
traffic processed by the PHY when a resilience event happens:
the PHY-RU fronthaul traffic and the L2-PHY traffic. To
achieve PHY migration transparently to the existing VRAN
stack while handling the two classes of traffic in protocol-
compliant ways, Slingshot uses two types of middleboxes
that act as shim layers: one between the RU and PHY (§5),
and one between the L2 and PHY (§6).

Scope: This paper focuses on 5G’s Enhanced Mobile Broad-
band (eMBB) service that operates in the sub-10 GHz fre-
quency range with 30 KHz subcarrier spacing, which is the
primary use case for 5G vRANs today. However, the ideas
presented here apply generally to cellular PHY layers, such
as mmWave, which operate at higher frequencies and use
larger subcarrier spacing.

3.1 Challenges

While the idea of PHY migration with the new middleboxes
sounds simple, realizing this idea in practice presents some
challenges:

C-1. Minimizing overhead of middleboxes and hot-s-
tandby secondary PHY processes: Since Slingshot mid-
dleboxes and the hot-standby secondary PHY process are
additional components in the VRAN deployment, they may
add compute overhead and latency. We find that handling
the high volume of fronthaul traffic with a conventional
software-based middlebox reduces the edge datacenter’s cov-
erage radius by over 10%, while requiring additional CPU

cores and NIC bandwidth. Also, naively maintaining the
compute-intensive secondary PHY by duplicating the pri-
mary PHY’s processing results in a 100% compute overhead
for resilience.

C-2. Transparent traffic management and failure de-
tection: Managing the two classes of PHY traffic could be
straightforward if modifying the RU’s firmware or the L2
software to add support for a secondary PHY was possible,
but it would violate our transparency requirement. Similarly,
using existing low-latency failure detection mechanisms (e.g.,
[27, 38, 46]) requires modifying the PHY to send periodic
heartbeat messages to a failure detector.

C-3. Correct processing of RAN protocols: vRANs
are built using diverse components from different vendors,
which are often closed-source black boxes. Coupled with the
notorious complexity of RAN protocols—described by Chen
et al. [35] as “characterized by convoluted descriptions in
thousands of documents, on millions of pages”—this presents
a significant challenge in designing and implementing re-
silience in an interoperable way.

3.2 Key ideas

We tackle these challenges with three key ideas:

I-1. In-switch fronthaul middlebox (§5): To manage the
fronthaul traffic while minimizing overheads, we design the
fronthaul middlebox using a programmable switch. We ob-
serve that the edge datacenter’s switch located between the
RU and vRAN servers can naturally handle fronthaul packets
without additional resources and latency. Today’s commod-
ity programmable switches can handle several Tbps of traf-
fic with negligible added latency (e.g., 3.2 Tbps for Arista’s
32-port 100 GbE switches [3]), sufficient for processing the
fronthaul traffic for hundreds of RUs.

I-2. In-switch fast failure detection (§5.2): To detect PHY
failures rapidly, we design a fast failure detection mechanism
running on the in-switch fronthaul middlebox. Our key in-
sight is that a healthy PHY is a strict real-time application
that sends downlink fronthaul packets to the RU in every slot
(synonymous with TTI) duration. We use these packets as a
natural liveness indicator to detect PHY failure by monitor-
ing their inter-packet gap, without requiring modifications
to VRAN software or additional components.

I-3. Software-based L2-PHY FAPI middlebox (§6): We
observe that interposing on the common FAPI interface—
shared between various PHY and L2 implementations—
provides a narrow waist that can be used to transparently
provide PHY resilience. We realize this in a software middle-
box called Orion that properly handles FAPI messages to (1)
keep the secondary PHY alive with low overhead by sending
null FAPI APIs and (2) hide the existence of the secondary
PHY or PHY migration from both the L2 and PHY.
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Figure 4: Logically, Slingshot provides a resilient L1 to higher

VvRAN layers and the RU. To do this, Slingshot employs an in-switch
fronthaul middlebox and software FAPI middlebox called Orion.

3.3 Slingshot architecture

Figure 4 illustrates a simplified logical view of the “resilient
PHY” abstraction provided by Slingshot. The actual place-
ment of the primary and secondary PHYs (L1 and L1’, re-
spectively), and L2 processes on servers can be configured in
different ways. Note that this paper primarily focuses on the
most challenging fully-decoupled use case, where all three
processes run on different servers. The other extreme case
is where all three processes run on the same server, where
Slingshot can be used to transparently upgrade the PHY.

PHY migration with Slingshot: During normal operation,
the in-switch fronthaul middlebox (FH-mbox) forwards fron-
thaul packets to/from the primary. Similarly, the L2-PHY
software middlebox (Orion) at the L2 sends unmodified FAPI
messages to the primary PHY, and sends null FAPI messages
with no signal processing work to the secondary. This keeps
the secondary PHY alive and hot, while avoiding the high
CPU overhead of keeping a duplicate PHY that receives real
work. When the primary PHY fails, the FH-mbox detects the
failure in realtime by noticing the gap in downlink fronthaul
packets from the primary PHY and notifying the L2-side
Orion. The L2-side Orion reconfigures the FH-mbox in re-
altime to steer the fronthaul traffic to the secondary PHY.
It also steers the FAPI traffic to the secondary PHY, which
completes PHY migration. Importantly, during the PHY mi-
gration, Slingshot does not carry over any state from the
primary PHY to the secondary.

4 PHY processing impairments =
wireless signal impairments

In Slingshot, we use our observation that the effect of short-
term PHY processing impairments, i.e., the loss of PHY com-
putational state and fronthaul packets, resembles the effects
of bad signal quality. Slingshot uses cellular networks’ inbuilt
ability to handle bad signal quality to mitigate the effects of
PHY migration. UEs naturally experience performance varia-
tions due to the unreliable and shared nature of wireless net-
works: For example, even stationary 5G UEs with a clear line
of sight to the cell tower can experience up to 4X variation in
throughput [55]. Importantly, the rate of resilience-related
PHY impairments is minuscule when compared to wireless

signal impairments, and can therefore be ignored: Assuming
a migration per week (e.g., for upgrades), only around 10~°
TTIs are effected, whereas even “ultra-reliable“ RANs allow
signal decoding failures in 0.1% TTIs [58].

This observation allows Slingshot to migrate PHY pro-
cessing between two PHY processes without transferring
any state while meeting our 10 ms availability target (§2.3).
This contrasts with the strong consistency-based approaches
taken for higher layers of the cellular stack such as the
core network, that preserve all state and I/O during migra-
tion [47, 56]. Such approaches are not feasible for the PHY
because of the much larger amount of state and I/O, realtime
latency deadlines, and the lack of source code.

Intuitively, we view the PHY as a task executor responsible
for only performing signal processing tasks against radio
data. Across TTIs, the PHY maintains only a short-term soft
state that spans only a few TTIs; a long-term hard state for
the RU, PHY, and UEs is maintained in the higher vRAN
layers. As we discuss below, the PHY-level uplink/downlink
transmission failures caused the discarding of this state last
for only a few milliseconds.

While our discussion focuses on PHY state for brevity,
the same arguments apply for the ~three TTIs of fronthaul
packets lost by Slingshot during PHY failure (§8.2). Missing
fronthaul packets cause the PHY to process garbage-valued
I/Q samples, which is indistinguishable from the PHY per-
forming signal processing on a noisy wireless channel.

4.1 Migrating at TTI boundaries

The PHY performs work at the granularity of TTIs (500 ps
in our setup): The L2 issues requests to the PHY in every
TTI describing the TTTI’s signal processing tasks, with infor-
mation such as the set of UEs active in that TTI, and per-UE
modulation and coding scheme. The PHY returns per-TTI
responses with the data decoded on the uplink, and transmits
encoded IQ samples to the radio on the downlink.

We design Slingshot to migrate PHY processing only at
TTIboundaries. Concretely, the primary PHY processes TTIs
0 — i, and the secondary PHY processes subsequent TTIs.
This frees Slingshot from the need to transfer any intra-TTI
(e.g., intermediate computation results like the demodulated
data before decoding) state across the migration.

We next discuss in detail the state that the PHY retains
across TTIs, and why Slingshot can safely discard them. We
focus our discussion on uplink processing; similar arguments
apply to the downlink (§8.4).

4.2 Inter-TTI state in uplink processing

Average signal-to-noise ratio (SNR). The PHY maintains
amoving average for the SNR for every connected UE, which
it uses to detect when a UE disconnects from the cell. In Sling-
shot, we ignore the state of the moving average filter during
migration, causing the destination PHY to use a stale or de-
fault SNR value before the filter reconverges (for ~25 ms).
We argue that this is acceptable because the changed SNR



could have also happened due to impairments in the UE’s
wireless channel, which the RAN is designed to handle.

Retransmission buffers. Modern RANs use “soft-
combining” retransmission schemes [36]. In all such
schemes, such as 5G’s Hybrid Automatic Repeat reQuest
(HARQ) scheme, the PHY retains recent bad UE trans-
missions that the PHY fails to decode. When the UE
subsequently retransmits, the PHY later combines the
retransmission with prior transmissions from the UE
to improve the likelihood of successful decoding. 5G’s
HARQ procedure lasts several TTI as it includes an original
transmission and up to three retransmissions.

Similarly to the SNR filter, Slingshot ignores HARQ buffers
during migration, causing the destination PHY to use a
stale or default HARQ buffer. This causes the PHY’s CRC-
protected forward error correction decoding to fail, resulting
in retransmissions at the RAN’s higher layers (e.g., RLC and
the L3). Importantly, this is no different from a normal PHY
operation. Commercial networks aim for PHY decoding fail-
ure rates far higher than the ~ 10~ fraction of TTIs affected
by once-a-week PHY migrations, even after all four HARQ
retransmissions (called the “residual block error rate”): 0.5—
2% in mobile broadband [72, 76], and 0.1% in ultra-reliable
use cases [58]. We present experiments for PHY migration
during HARQ retransmissions in §8.4.

In summary, cellular networks’ built-in ability to handle
bad signal quality enables migrating PHY processing be-
tween two PHY processes without transferring any state.
Building on this, we design our lightweight PHY migration
mechanism by introducing two types of middleboxes that
sit between the RU and PHY and L2 and PHY, and properly
migrate traffic between two PHYs. In the following sections,
we present our design of RU-to-PHY fronthaul middlebox
(§5) and L2-to-PHY middlebox (§6).

5 In-switch fronthaul middlebox

To support migration for the high-bandwidth and low-
latency fronthaul traffic with low overhead, we chose to
design a fronthaul middlebox on a programmable switch.
We observe that the edge datacenter’s switch can naturally
inspect all fronthaul packets since it is located at the data-
center’s vantage point. Today’s commodity programmable
switches can handle several Tbps of traffic with negligible
added latency (e.g., 3.2 Tbps for Arista’s 32-port 100 GbE
switches [3]), which is sufficient for hundreds of RUs.
Slingshot’s fronthaul middlebox must support (1) steer-
ing uplink packets from the RU to the current primary PHY,
and (2) blocking downlink control-plane packets from a hot-
standby secondary PHY from reaching the RU. In addition,
the middlebox should allow changing the active PHY at ex-
actly a TTI boundary, i.e., the RU communicates with the
primary PHY for all TTIs < t, and the secondary PHY for
all TTIs > t. This is needed to ensure that the RU and PHYs
receive only protocol-compliant fronthaul packet sequences,
which is needed for interoperability. Without TTI bound-
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Figure 5: A simplified view of uplink fronthaul traffic processing
logic in the fronthaul middlebox data plane.

ary alignment, the RU can receive packets for the same TTI
from two PHYs, which can cause the RU to malfunction.
To support these features, we develop new ideas including
(1) virtual PHY addresses, (2) using fronthaul packet header
fields to detect TTI boundaries, and (3) an indirect data struc-
ture for storing the RU-to-PHY mapping.

Drawbacks of software-based approaches. While a
software-based middlebox can provide these features, it in-
troduces three overheads that our switch-based approach
avoids. First, by increasing fronthaul latency, it reduces the
radius of the geographical area that a vRAN datacenter can
serve. The fronthaul link in 5G vRAN deployments has a
strict sub-100 ps maximum one-way delay requirement; our
DPDK-based version of Slingshot’s fronthaul middlebox in-
creases the 99.999th percentile one-way fronthaul latency by
around 10 ps, reducing the maximum radius by 10%. Second,
it increases the operational cost by doubling the required
per-server NIC bandwidth by adding an extra hop to each
fronthaul packet [40]. Third, it requires additional CPU cores
(around 10% of total PHY cores with FlexRAN as the PHY)
to be dedicated to the software middlebox.

Note that as we describe in §6, we can afford to use a
software middlebox for L2-PHY traffic since its volume is far
less than fronthaul traffic. The L2 and PHY exchange user
bits, whereas our fronthaul middlebox handles raw floating-
point IQ samples. For example, in our testbed, the downlink
fronthaul traffic from the RU uses 4.5 Gbps, whereas the
downlink L2-PHY traffic uses only around 100 Mbps.

5.1 RU-to-PHY mapping in the data plane

In a conventional RAN deployment, the switch forwards
fronthaul packets from the RU to the PHY using a static RU-
to-PHY mapping. However, for PHY migration, this static
mapping does not work since the RU must communicate with
the current primary PHY. To allow dynamically changing the
RU-to-PHY mapping, Slingshot lets each RU send fronthaul
packets using a virtual PHY address, which our in-switch
middlebox translates into a physical PHY address.

How can we change this mapping (1) in realtime and (2)
at exactly TTI boundaries? The switch control plane can
update the mapping, but it has high latency (e.g., 29 ms 99.9th
percentile for a rule update in our testbed), and it cannot
guarantee that the update will take effect at a TTI boundary.
The switch data plane has nanosecond-scale latency, but it
is not time-synchronized with the RU and PHY which are
synchronized using a Precision Time Protocol (PTP) clock.



Using packet header fields for timing. To address the
time synchronization issue, we observe that fronthaul pack-
ets have header fields—the PHY-level frame, subframe, and
slot number—that identify the TTI at which the packet was
generated. Our in-switch middlebox parses these headers
and uses them as triggers to update the RU-to-PHY mapping.

Indirect data structure for RU-to-PHY map. The next
challenge is to design a data structure that can be updated in
the switch data plane upon receiving a fronthaul packet
matching the migration TTI. An intuitive data structure
for this purpose is a hash table. However, implementing a
general-purpose data plane-updatable 48-bit MAC-to-MAC
address mapping (or 32-bit IP-based fronthauls [31]) is com-
plex, since it requires a full-fledged hash table that han-
dles hash collisions, which is not supported by today’s pro-
grammable switches. Instead, we introduce an indirection
layer to create a collision-free keyspace: We observe that
typical vRAN datacenters handle at most a few hundred RUs
and PHYs, so we can rely on logical RU and PHY IDs assigned
by vRAN operators at installation time. For a datacenter with
256 RUs and PHY processes, eight-bit IDs suffice.

Taking uplink as the example, the switch forwards fron-
thaul packets as follows: When the switch receives a packet
from an RU, it first retrieves the RU’s ID by looking up the
ID directory (Key: RU’s MAC address, Value: RU ID). Next,
it looks up the RU-to-PHY mapping with the retrieved RU
ID to get a PHY ID, and forwards the packet to the PHY’s
MAC address retrieved from the address directory (Key: PHY
ID, Value: PHY’s MAC address). For downlink packets, the
switch additionally drops packets that are not addressed
from the currently active PHY for the destination RU.

Controlling fronthaul migration. Our software FAPI
middlebox (§6) controls PHY migration by sending a
migrate_on_slot command packet to the switch. This
packet contains a future slot number to migrate the PHY
processing at, the RU ID, and the PHY server ID to remap
this RU to. On receiving this command, the switch stores
the command in its migration request store (Figure 5).

On receiving a fronthaul packet, the switch retrieves the
packet’s RU ID, and compares the packet’s slot number with
any stored migration requests for this RU. If they match, the
switch data reads the PHY’s server ID from the migration
request and re-maps the RU to this server ID in the RU-to-
PHY mapping. This establishes the new mapping and starts
routing fronthaul packets to/from the new PHY process.

5.2 In-switch RAN failure detection

Until now, we have assumed that resilience events are in-
stantly detected and trigger PHY migration. While this is
straightforward for planned migrations, it is challening to
detect PHY failures in a way that satisfies our requirements.
Doing so requires a failure detector that (1) works transpar-
ently without RAN modifications, (2) detects failures rapidly
to minimize dropped TTIs, and (3) has low CPU overhead.

Recent sub-ms failure detection approaches fail to meet
these requirements. These approaches, such as those used by
FARM [38], Mu [27], and X-Lane [46], use periodic heartbeat
messages between a failure detector and the target service.
Such approaches require modifying the PHY to add heart-
beats, as well as dedicating overhead CPU cores for real-
time lease message processing. We design a novel technique
to transparently detect PHY failures (assuming a fail-stop
model), running on our in-switch fronthaul middlebox. Ad-
ditionally, the technique works generally for detecting the
failure of any networked realtime vRAN layer.

5.2.1 Using realtime packets streams as heartbeats

Our key observation is that a healthy realtime vVRAN layer
sends packets in every TTI to the layer above or below it.
These can be used as a natural heartbeat to detect failure for
this layer. A healthy PHY—which we target in Slingshot—
sends a downlink control plane fronthaul packet to the RU
in every TTI, which the in-switch fronthaul middlebox can
observe. All realtime vRAN layers emit such TTI-spaced
packet streams: the RU emits fronthaul packets, the MAC
emits FAPI packets, and the RLC emits RLC Protocol Data
Units (PDUs). In our testbed, we measure the maximum inter-
packet gap between downlink packets to be 393 ps (§8.6).

5.2.2 In-switch inter-packet gap monitoring

We design our PHY failure detection engine as part of our
switch data plane, which monitors the inter-packet gap be-
tween PHY’s downlink packets. Since today’s programmable
switches lack timers, we emulate timer ticks by using the pro-
grammable switch’s packet generator to generate a packet
once every T /n microseconds. The parameter n governs how
precisely the switch matches the timeout value T; we set n to
50, which gives us 9 us precision and negligible switch over-
head (50K packets per second). To emulate timeout events,
we maintain per-PHY counters. Each downlink packet from
a PHY sets its counter to 0, and each timer packet reads and
increments the counter by 1. When a PHY fails, its counter
reaches n after n timer ticks. The next timer packet detects
this PHY’s failure by observing the saturated counter.

The switch then re-formats the timer packet into a fail-
ure notification packet and forwards it to our software FAPI
middlebox (§6) for this PHY. On receiving the failure notifi-
cation, the FAPI middlebox initiates the migration process
and sends a migrate_on_slot command to the switch to
trigger fronthaul migration.

6 Orion: L2-to-PHY middlebox

While it may seem sufficient to achieve PHY migration by
managing only the fronthaul traffic between the RUs and
primary/secondary PHYs using our fronthaul middlebox, this
approach is not viable in practice for two main reasons. First,
the L2 and higher layers are not designed to allow secondary
PHYs, and therefore require software modification to realize
the above approach. Second, even if these layers could deal



with secondary PHYs, naively maintaining a secondary PHY
causes high CPU overhead for resilience.

To address these challenges, we design Orion, a new mid-
dlebox process that acts as a shim layer between the L2 and
PHY and enables efficient and transparent PHY migration.
For efficiency, it maintains a hot standby secondary PHY
with low CPU overhead during normal operation, and con-
nects it to the L2 on PHY migration. For transparency, it
interposes on FAPI protocol (§2.2) messages between the L2
and PHY. Since FAPI constitutes a “narrow waist” interface
between different implementations of both the L2 and PHY,
our design can support a variety of L2 and PHY implementa-
tions (e.g., GPUs [25] and DSPs [26]).

We term the Orion process pairing with a PHY or L2 as a
“PHY-side” or “L2-side” Orion, respectively. Orion handles
multiple RUs that map to the L2 or PHY processes that it
peers with. It supports scenarios where the RU’s primary
PHY processing runs on the same server as the L2 to mini-
mize overhead, though we focus only on the case where L2
and PHY are fully decoupled in this paper.

In the following, we describe how Orion decouples L2 and
PHY over Ethernet (§6.1), how it maintains a hot standby
secondary PHY with low CPU overhead (§6.2), and how it
manages PHY migration (§6.3).

6.1 Stateless inter-Orion transport

Although there are established protocols such as nFAPI (i.e.,
networked FAPI) that decouple the PHY and L2 over a wired
network, we found them mismatched for Orion’s use case.
Originally designed for small cells, nFAPI targets L2-PHY
communication over a unreliable and slow city-area network.
Therefore, it supports features such as reliable transmission
using a complex stateful communication protocol (SCTP)
and synchronization adjustments, which we do not need.
In contrast with nFAPI’s target use case, the PHY and
L2 layers in our target VRAN deployments run in the same
edge datacenter with a reliable, low-latency network (e.g.,
100 GbE). This allows Orion processes to use a lean net-
work protocol with no inter-slot state to communicate with
each other, making it possible to migrate PHY processing
at TTI boundaries to a different server without migrating
Orion’s state. Packet losses in our target edge datacenters
are extremely rare since VRAN datacenter operators stat-
ically provision the required bandwidth, and there are no
congestion-inducing incast-like situations. When rare packet
losses occur, Orion discards the FAPI messages for the slot
and injects an “null” FAPI message to its L2/PHY peer (§6.2).
Orion transparently decouples SHM-coupled L2 and PHY
over as follows. When an L2 (or PHY) process attempts to
connect to the PHY (or L2) over SHM, it connects to Orion
instead. When the L2 sends a FAPI message to the PHY, the
“L2-side Orion” receives the message over SHM, and forwards
it to the Orion process at the server running the PHY. The
“PHY-side Orion” receives the FAPI message over the data-
center network and forwards it to its peer PHY process over
SHM. The PHY-to-L2 path works similarly in the reverse

Initialize primary PHY

Requests for primary PHY

Null requests for secondary PHY

Responses from primary PHY

Slot 85

Responses from secondary PHY

Requests for secondary PHY

Null requests for primary PHY

Slot 86

Response from secondary PHY

Response from primary PHY

Figure 6: Simplified example of Orion’s middlebox actions, show-
ing migration of an RU from primary to secondary PHY at the TTI
boundary between slots 85 and 86. The dashed lines show FAPI
messages generated or filtered by Orion.

direction. Orion’s design is agnostic to the physical FAPI
channel (e.g., SHM, nFAPI, or even PCle-based channels).

6.2 Null FAPIs for efficient secondary PHY

What are the challenges in maintaining a hot standby sec-
ondary PHY with low overhead, i.e., without scheduling real
signal processing work to it? A naive approach is to simply
duplicate all FAPI messages sent by the L2 to the primary
PHY. This however results in a large CPU overhead for the
secondary PHY, since it now repeats the primary’s signal
processing work. An intutive approach of simply not send-
ing FAPI messages to the secondary PHY does not work,
because the FAPI specification requires that a PHY must
receive valid FAPI work requests in every slot. For exam-
ple, our PHY (FlexRAN) crashes if it does not receive these
requests, which is valid PHY behavior.

We solve this challenge by introducing the concept of
“null” FAPI messages. Per the FAPI specification, a PHY must
receive uplink and downlink configuration FAPI requests
(UL_CONFIG and DL_CONFIG) in every slot, specifying the
uplink and downlink signal processing work for that slot,
respectively. These requests include information such as the
set of active UEs, the frequency resources and modulation
scheme used by each UE, etc.

Our insight is that “null” versions of UL_CONFIG and
DL_CONFIG requests are valid inputs to the PHY; Slingshot
uses such requests to keep the secondary PHY alive. A null
request has no UE entries, indicating that the PHY needs to
do no uplink or downlink signal processing for this slot. The
PHY generates no significant computational work for null
requests; we quantify this in §8.7.

Figure 6 shows how Orion uses null requests for an exam-
ple slot 85. When the L2 sends requests to the primary PHY,
Orion intercepts them and sends unmodified and null re-
quests to the primary and the secondary PHYs, respectively.
Both PHYs subsequently send responses to the L2. The L2-
side Orion forwards only the primary PHY’s responses to
the L2, dropping the secondary’s responses.



6.3 Managing PHY migration

Orion provides the initialization, management and control
needed for PHY migration:

Initializing the secondary PHY. Orion needs a way to
spawn a secondary PHY without understanding the complex
details of PHY initialization. When the L2 onboards a new
RU, it tries to initialize PHY processing for this RU in an ex-
isting PHY process by sending it a FAPI initialization request.
The L2-side Orion intercepts this initialization request and
stores a duplicate copy of the request. It chooses two servers
for the primary and secondary PHY, based on cluster con-
figuration information from Orion’s management thread. It
then sends one initialization message to the PHY-side Orion
processes running on the two chosen remote servers. At this
time, the two servers may already be handling primary or
secondary PHY processing for other RUs. Each PHY pro-
cess receives initialization messages from its Orion peer (the
“PHY-side Orion”), and initializes PHY processing for the
new RU. The stored initialization messages can be used to
initialize additional secondary PHYs after the primary fails.

Migration to the secondary PHY. The L2-side Orion initi-
ates migration for the RUs that map to its peer L2; this can be
controlled by an external controller or by a manual operator.
It does so by (1) switching the PHY with which it exchanges
original and null FAPI requests and responses (slot 86 in Fig-
ure 6), and (2) triggering the fronthaul migration by sending
amigrate_on_slot command to the fronthaul middlebox
(§5.1). For simplicity, we designate Orion as an exclusive ini-
tiator of PHY migration, i.e., the fronthaul middlebox simply
executes migration at the slot requested by Orion.

7 Implementation

In-switch fronthaul middlebox. The data plane compo-
nents written in P4-16 consist of the RU ID and PHY address
directory implemented using match-action tables and the
migration request store and the RU-to-PHY mapping imple-
mented using P4 registers. We implement the switch control
plane in Python using the Barefoot Runtime APIs, which
initializes the above data structures.

In-switch PHY failure detector. The PHY failure detec-
tor is implemented as part of our fronthaul middlebox. To
emulate timer ticks, we configure Tofino’s built-in packet
generator to periodically inject packets into the switch data
plane using the Barefoot Runtime APIs. We implement the
per-PHY timeout counters using P4 registers.

Orion middlebox. We implement Orion and all correspond-
ing FAPI transformations in 8850 lines of C++. For low la-
tency, we use a UDP-based userspace transport implemented
using DPDK [5] with busy-polling.

Pipelined slot processing in Orion. Section 6 presents a
simplified view where all the processing for a slot happens
within the slot duration. Real PHY implementations, such
as FlexRAN and srsRAN [19] are more complex: they use

Radio unit Foxconn 4x4 RU; 100 MHz at 3.5 GHz
UEs Raspberry Pi; OnePlus N10 and Samsung A52s
PTP grandmaster  Qulsar QG2 multi-sync gateway

HPE Telco DL110; Xeon 6338N CPU
Intel ACC100 for LDPC coding
Intel E810 100 GbE NIC
Tofino-based Arista 7170 P4 switch

Servers (3x)
Accelerator
Ethernet NIC
Ethernet switch

Operating system  Realtime Linux kernel 5.15

PHY software Intel FlexRAN v20.11, v21.03, v21.11
L2+ software CapGemini 5G Solution, Intel testmac
5G core Metaswitch’s Fusion Core

Table 1: Testbed hardware and software configuration.

a pipeline of tasks to process a slot. For example, FlexRAN
uses a pipeline of three slots to process uplink data. As a
result, during live upgrades, the primary PHY keeps produc-
ing uplink data for the L2 for two slots even after migration.
Orion continues to accept this data to minimize the num-
ber of dropped TTIs (Figure 12 in Appendix A). This helps
Slingshot provide lower UE downtime for the more frequent
planned migrations compared to failovers (§8.2).

8 Evaluation

We evaluate Slingshot on a state-of-the-art 5G vRAN testbed
with hardware and software that closely resembles the ma-
jority of real vVRAN deployments [6, 18, 21] (Table 1). We
use a four-antenna RU with 100 MHz bandwidth and 30 KHz
subcarrier spacing (i.e., 500 pus TTIs). The cell operates in
time-division duplexing (TDD) mode with a “DDDSU” slot
format, i.e., three DL slots followed by one UL slot, with a
shared/guard slot in between. We use three commercial UEs.
Our testbed has three servers in a rack, connected via a
100 GbE programmable switch. We use two servers to run
the primary PHY and the hot secondary PHY, and a different
server to run the vRAN’s L2+ layers. In real deployments,
Slingshot will co-locate primary and secondary PHYs for
different RUs within PHY processes, i.e., our design does
not require dedicated servers to run just secondary PHYs.
We use unmodified commercial RAN and 5G core software,
showing our design’s transparency and interoperability.
We first present our end-to-end evaluations, and then
present microbenchmarks for our two middleboxes.

8.1 Reliable videoconferencing

Experiment setup. We first show how Slingshot PHY’s fail-
ure recovery retains the user’s quality of experience (QoE)
for live video conferencing, which is a latency-critical appli-
cation where the QoE is critical. Our video sender streams
a compressed talking-head video to the UE at a target bi-
trate of 500 Kbps. We measure the average video bitrate on
the receiver since it correlates with QoE and time to recov-
ery [45, 53, 74]. We compare changes in the video bitrate
in three scenarios: (1) no failure, (2) PHY failure without
Slingshot (baseline), and (3) PHY failure with Slingshot.

Baseline. Our failover baseline that demonstrates the lack
of resilience in today’s vVRANSs works as follows: We run an
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Figure 8: Ping latency with primary PHY failure t =53.546 ms.
The Y-axis starts at 40 ms. The transient disruption from failover
resembles natural wireless fluctuations.

entire vVRAN stack (i.e., the PHY layer through the Packet
Data Convergence Protocol layer) as a hot backup vRAN on
a separate server, with the same configuration as the primary
vRAN. Since today’s vRANs lack fast failure detection and
fronthaul management, when the primary vRAN’s PHY fails,
we use our fronthaul middlebox to detect it and re-route the
fronthaul to the secondary vRAN’s PHY.

Results. Figure 7 shows the video bitrate on the downlink.
The uplink results are similar and thus omitted. Without
Slingshot, the UE fully disconnects from the network and
takes 6.2 seconds to reattach; the video bitrate is zero during
this time, incurring significant QoE loss. The 6.2 seconds are
spent in re-establishing a broken connection with the core
network, and match prior measurements (e.g., 5 seconds in a
field report by Qualcomm [60]). By contrast, Slingshot keeps
the bitrate steady by transparently resolving the PHY failure.

8.2 End-to-end benchmarks

We next present end-to-end benchmarks to show that Sling-
shot meets our availability target of sub-10 ms connectivity
disruption during PHY failures (§2.3). Our experiments focus
on PHY failover where the secondary PHY acts as a backup,
since these are more challenging than planned migrations.

Comparison with VM migration. Compared to VM
migration-based PHY resilience approaches that can drop
several hundred milliseconds of TTIs (Figure 3), Slingshot
reduces the number of dropped TTIs by two orders of mag-
nitude to at most three TTIs: If a PHY fails towards the end
of over-the-air slot N, our switch middlebox will trigger a
timeout after 450 ps (§5.2), i.e., towards the end of slot N+1.
It then takes tens of microseconds for the L2-side Orion to
receive and react to the switch’s failure notification packet,
possibly impairing the processing of slot N+2.

10

TcP ——UDP
-\ u I‘ l.\ 9 Ay

LN WA

n

L] »
A

Throughput (Mbps)

80 Lig
40
0
0 50 100 150 200 250 300
Milliseconds
(a) Downlink throughput
& 50 1 1 |
§ 40 F TCP, failover ——
< TCP, planned migration - = -
5 30 UDP, failover —=—
£ 50 te. Aoy e Poten ,, ]
[e)] \J
3 10f v R}
= 0 ! ! . 1 J
'_
0 100 200 300 400 500
Milliseconds

(b) Uplink throughput

Figure 9: TCP and UDP throughput changes during resilience
events, at t =150 ms and 250 ms, respectively.

Latency impact of PHY failure. We use three UEs simul-
taneously, and measure the ping latency from the UEs to
the application server at 10 ms intervals. We trigger failover
by manually terminating the primary PHY with a SIGKILL
signal. We record the PHY failure time at which the L2-side
Orion receives a notification about the PHY’s failure from
the switch middlebox.

Figure 8 shows the latency for each UE. To illustrate how
the UE performance degradation during PHY migration re-
sembles natural wireless signal impairments, we plot the
ping latency for a =2 s period centered at the failure time,
with 10 ms between pings. (We show results for shorter
timescales in other experiments.) While the latency of two
UEs (the OnePlus N10 and the Raspberry Pi) remains unaf-
fected during migration, the latency of the Samsung A52s
suffers a 15 ms spike. However, this resembles routine per-
formance fluctuations, seen in the plot’s far left and right.

Downlink throughput during failover. To measure the
effect of Slingshot’s PHY failover on downlink throughput,
we use iperf to send downlink traffic from an application
server to the UE. We use a single UE in this experiment to
measure the throughput in an isolated setting. Figure 9a
shows the throughput measured at the UE, reported every
10 ms, zoomed and centered at the failure time. We per-
form two separate measurements with TCP and UDP traffic.
We find that Slingshot preserves the downlink connection
without noticeable degradation in UE throughput.

Uplink throughput during failover. Figure 9b shows re-
sults from a similar experiment as above, but for uplink
throughput measured at the application server. We observe
that after the failure, UDP throughput drops from around
15.8 Mbps to 7.4 Mbps, but recovers to 15.8 Mbps within
20 ms. Importantly, the UE retains connectivity for all 10 ms
intervals, meeting our availability target. TCP’s in-order
delivery requirement makes its throughput more sensitive
to the packets lost during PHY failure: throughput drops to
zero for 80 ms and recovers fully 110 ms after PHY failure.



Throughput (Mbps)

J
o 1 2 8 4 5 6 7 8 9 10
Seconds

Figure 10: Uplink UDP bandwidth achieved by three UEs before
(white) and after (gray) a PHY upgrade.

Metric  1/s 10/s 20/s  50/s
#10 ms blackout intervals 0 0 0 11
Min tput (Mbps) per 10ms 4.2 3.2 2.1 0
Max tput (Mbps) per 10ms 18 18 18 18
Max pkt loss rate per 10ms ~ 50%  62% 67% 100%
Interrupted HARQ seqs over 60s 0 67 118 315
Avg. UDP pkt loss rate over 60 s~ 0.1%  0.46% 1.6% 3.9%

Table 2: Metrics for an uplink UDP flow during a stress test for
discarding PHY state, with PHY migration rates between 1 migra-
tion/s (“1/s”) and 50 migrations/s. Slingshot maintains sub-10 ms
network downtime with even 20 migrations/second, which includes
118 broken HARQ sequences.

However, the application server keeps receiving TCP pack-
ets for much of the 80 ms of period: its throughput jumps to
157 Mbps (cut off from Figure 9) when it finally receives the
lost packets retransmitted by the UE’s TCP stack. Note that
we observe the drop only during failover; in case of planned
migrations (dashed line in Figure 9b), there is no drop.

8.3 Live PHY upgrade

To demonstrate Slingshot’s usefulness for live upgrades, we
emulate a scenario where the upgraded PHY has better For-
ward Error Correction (FEC), which improves its signal de-
coding success rate. Such performance upgrades are common
in practice and today they require pre-planned maintenance
windows, which Slingshot can eliminate. We emulate the up-
grade by configuring the secondary (new) PHY to use more
FEC iterations for decoding the signal. Figure 10 shows that
before the upgrade, the two phones get low throughput,
with the Raspberry Pi getting an unfairly high share. After
the upgrade, the phones’ throughput improves and the UEs
share the available bandwidth more evenly. The upgrade
completes without network downtime.

8.4 Stress test for discarding PHY state

We run the following stress test to validate our claim that
discarding inter-TTI PHY state such as HARQ buffers (§4)
during resilience events does not result in network down-
time longer than our 10 ms target. We perform multiple PHY
migrations between the two PHY servers at extreme rates
of tens of migrations/second, for a measurement period of
60 seconds. Table 2 shows several metrics for an uplink
UDP flow from the UE to the application server during the
experiment. Even with a migration every 50 ms (i.e., 20 mi-
grations/s), Slingshot keeps the network downtime below
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10 ms by providing at least 2 Mbps uplink throughput for
any 10 ms duration. In the 20 migrations/second case, we
observe 118 HARQ sequences that coincide with the slot that
Slingshot chooses for PHY migration, yet we find no pro-
longed network downtime. This experiment convincingly
shows how discarding inter-slot PHY state is safe, and that
Slingshot co-exists with multi-TTI operations such as HARQ.
For downlink transmissions, the vRAN’s PHY does not
maintain HARQ buffers, but PHY migration may cause
dropped HARQ acknowledgments sent by the UE’s MAC af-
ter the UE receives downlink data. Our experiment with
a 100 Mbps downlink UDP transfer with even 20 migra-
tions/second showed a worst-case reduction of under 20% in
downlink throughput measured by the UE at 10 ms intervals.

8.5 Overhead of secondary PHYs

What are the overheads of maintaining a hot inactive sec-
ondary PHY (§6.2)? To estimate the CPU cost for a secondary
PHY, we measure the marginal cost of adding the PHY to
a server that is already running one primary PHY. We find
that our use of null FAPI requests makes the PHY compute
overhead of secondary PHYs negligible: FlexRAN reports
no significant increase in its CPU or FEC accelerator usage.
There is no L2 overhead, since Slingshot does not expose the
secondary PHY to the L2. The datacenter network overhead
is also negligible, e.g., Orion’s null FAPI messages use under
1 MBps on our 100 GbE inter-server links.

8.6 Switch microbenchmarks

We measure the amount of switch ASIC resources used by
Slingshot’s dataplane for a large edge datacenter configu-
ration that serves 256 RUs with 256 VRAN servers (most
VRAN deployments are smaller, e.g., the O-RAN’s cloud ar-
chitecture paper targets 64 RUs [12]). The fraction of each
switch resource used is small, including crossbar (5.2%), ALU
(10.4%), gateway (14.1%), SRAM (5.3%), and hash bits (9.5%).
Supporting more RUs/PHYs increases only SRAM usage.

Inter-packet gap. To choose a timeout value for Slingshot’s
switch-based failure detector, we measure the maximum
inter-packet gap between a healthy PHY’s downlink packets
(§5.2). We collect switch’s ingress timestamps for downlink
packets with a P4 program that prepends a nanosecond-
precision timestamp to each downlink packet, and then
mirrors the packet to a server for analysis. The analyzer
computes the inter-packet gap statistics using the collected
timestamps. We measure the maximum inter-packet gap
across all idle and busy cases to be 393 ps, so we choose a
conservative switch timeout of 450 ps for the failure detector.

8.7 Orion microbenchmarks

Orion’s FAPI transformations and SHM-to-UDP translation
does not noticeably increase latency for UEs. This is be-
cause the latency of Orion’s intra-datacenter UDP transport
(microseconds) is far smaller than cellular network latency
(milliseconds). We measure the ping latency from our appli-
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Figure 11: One-way latency added by Orion for different DL tputs.

cation server to the UE every 10 ms. This experiment runs
the PHY on a single server (i.e., no migration); the L2 runs on
a different server for the L2-PHY decoupled configuration.
The median latency both with and without Orion is 22.8 ms,
with a standard deviation of 0.8 ms in both cases.

Figure 11 shows the one-way L2-to-PHY latency added by
Orion for different downlink throughputs, which typically
exceed uplink throughput by around 10x. The first two
clusters show real testbed measurements. To generate a
higher load not currently possible in our testbed, we use
FlexRAN’s testing MAC to send traffic at up to 3.4 Gbps. We
find that the latency added by Orion remains under 200 ps.
FlexRAN budgets one TTI (slot N — 3) for FAPI message
transfers for downlink slot N, and the latency added by Orion
is well under the 500 ps TTI budget.

9 Related work

Systems support for vRANs. There is a growing body of
work that aims to improve vVRAN robustness. Concordia [41]
presents a deadline scheduling framework that improves the
vRAN’s ability to co-exist with other workloads. The Nuberu
project is the closest in spirit to our work [42]: they propose a
vRAN design that works well in non-ideal settings on servers
with high CPU interference. These single-server resilience
techniques can be combined with Slingshot’s cross-server
distributed techniques for better resilience.

FSA [34] focuses on network slicing to better isolate dif-
ferent virtual networks with different traffic patterns. It uses
a programmable switch to identify and route slices of fron-
thaul traffic at line rate. FSA is complementary to our work,
and Slingshot’s switch-based fronthaul middlebox can be
extended to support network slicing based on FSA.

RU frontend-based techniques. Projects such as Pi-
casso [44] and Mendes et al. [54] provide a way to run
multiple VRAN stacks atop the same physical RU. These
approaches can theoretically serve similar goals as Slingshot.
For example, the vRAN may broadcast two cells—a primary
and a backup—from the same RU, with the UEs attaching
preferentially to the primary cell. Upon failure of the pri-
mary’s VRAN, the UEs migrate to the backup cell. These
approaches are orthogonal to Slingshot, and further work
is needed to realize these ideas in real vRANSs. For example,
they require special logic in the RUs, which is not possible
with today’s commercial radios that we target.

A cellular deployment can also mask the impact of PHY
failures from UEs by deploying cells with overlapping cov-
erage, allowing the UE to connect to a different RU in the
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vRAN backend. Such approaches have cost and applicability
constraints, and are orthogonal to our work.

Theoretical work on using dynamic RU-to-PHY map-
ping. There is a large body of theoretical work on us-
ing dynamic RU-to-PHY mappings to improve vRAN en-
ergy efficiency or QoS. Sigwele et al. [68] present an ap-
proach to bin-pack RUs to the fewest servers during low
load to improve LTE’s energy efficiency. Other approaches
optimize the mappings to improve metrics such as calls
dropped [30, 51, 63]; Rodoshi et al. [64] present a comprehen-
sive review. Due to the lack of systems support for dynamic
RU-to-PHY mapping, these projects evaluate their benefits
only in simulation; PHY migration addresses this gap.

10 Future work

Higher vRAN layers. Our north star goal is to design re-
silience approaches for all types of vRAN components; PHY
migration is a first step towards this goal. The different
vRAN layers have varied amounts of hard state, compute
resource usage, and real-time latency requirements. The
PHY layer is at one extreme, with no hard state, very high
compute usage, and strict latency requirements. The other
extreme is VRAN layers above the L2, which lack real-time
latency requirements, and may be handled by VM migra-
tion or state snapshotting approaches used successfully for
the core network [47, 56]. The L2 layers offer an interest-
ing challenge, since they have both hard state and real-time
latency requirements. We believe that we can build L2 migra-
tion by combining Slingshot’s approach of discarding some
state during migration, with recent high-performance state
preservation techniques like Zeus [48].

Massive MIMO. Our work focuses on small antenna con-
figurations that are currently the target for vVRAN operators.
VRAN operators are beginning to adopt massive MIMO con-
figurations, though software and RU support are currently
nascent. Massive MIMO PHYs use inter-slot state lasting
tens to hundreds of slots for their downlink precoding (i.e.,
beamforming) and uplink equalization (e.g., zero-forcing)
matrices [75]. We note that this is still soft state that can
be discarded without affecting correct PHY operation, albeit
with a possibly larger impact on UE performance than our
experiments observe.

11 Conclusion

Resilience support for failovers and live upgrades is a key
missing part in today’s vVRAN deployments. Slingshot takes
the first step towards resilient vRANs by building the re-
quired systems support for migrating the vRAN’s most
compute-intensive and latency-sensitive PHY layer. The key
insight that makes this work possible is that imperfect migra-
tion matches the inherent imperfection of cellular networks.
We build upon this insight with a shim-layer approach for
a transparent and lightweight PHY migration mechanism
with a novel in-switch fronthaul and software FAPI middle-



boxes, as well as an in-switch RAN failure detector. Our
evaluations show how Slingshot provides a resilient PHY in
a state-of-the-art vVRAN testbed with unmodified commercial
vRAN software and hardware, migrating PHY processing
between servers with only milliseconds of UE service disrup-
tion. We believe that our insights and middlebox designs will
be fundamental building blocks for future resilient vRANSs.

Ethics: This work does not raise any ethical issues.
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Appendix A. Pipelined slot processing in Orion
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Figure 12: Visualization of pipelined slot processing in Orion.

Figure 12 shows an example of TTI pipelining for uplink
processing in FlexRAN for over-the-air slots #2 and #3, where
PHY migration happens at the slot #2-#3 boundary. FlexRAN
uses three slots for uplink processing. During live upgrades,
Orion accounts for PHY pipelining by accepting UL results
from the primary PHY even after migration: the primary
PHY produces UL results for slot #2 even after migration at
the slot #2—-#3 boundary. Orion accepts these to minimize
the number of dropped TTIs.
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