
How I learned to stop worrying and love learned OS
policies

Divyanshu Saxena
UT Austin

Jiayi Chen
UT Austin

Sujay Yadalam
UW-Madison

Yeonju Ro
UT Austin

Rohit Dwivedula
UT Austin

Eric H. Campbell
UT Austin

Aditya Akella
UT Austin

Christopher J. Rossbach
UT Austin

Michael Swift
UW-Madison

Abstract
While machine learning has been adopted across various
fields, its ability to outperform traditional heuristics in op-
erating systems is often met with justified skepticism. Con-
cerns about unsafe decisions, opaque debugging processes,
and the challenges of integrating ML into the kernel—given
its stringent latency constraints and inherent complexity
— make practitioners understandably cautious. This paper
introduces Guardrails for the OS, a framework that allows
kernel developers to declaratively specify system-level prop-
erties and define corrective actions to address property vio-
lations. The framework facilitates the compilation of these
guardrails into monitors capable of running within the ker-
nel. In this work, we establish the foundation for Guardrails,
detailing its core abstractions, examining the problem space,
and exploring potential solutions.

CCS Concepts
• Computing methodologies → Machine learning; •
Software and its engineering → Operating systems.

Keywords
Operating Systems, Machine Learning for Systems
ACM Reference Format:
Divyanshu Saxena, Jiayi Chen, Sujay Yadalam, Yeonju Ro, Rohit
Dwivedula, Eric H. Campbell, Aditya Akella, Christopher J. Ross-
bach, and Michael Swift. 2025. How I learned to stop worrying and
love learned OS policies. InWorkshop in Hot Topics in Operating Sys-
tems (HOTOS 25), May 14–16, 2025, Banff, AB, Canada. ACM, New
York, NY, USA, 7 pages. https://doi.org/10.1145/3713082.3730384

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
HOTOS 25, May 14–16, 2025, Banff, AB, Canada
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1475-7/25/05
https://doi.org/10.1145/3713082.3730384

1 Introduction
The Operating System (OS) is responsible for managing a
wide variety of resources for a diverse range of applications,
all running together, with each application having unique
and dynamic demands. To add further to the complexity of
OS tasks, the same OS can be deployed in various scenarios
– from datacenter servers to edge devices to end-user equip-
ment. The magic behind this flexibility are the myriad OS
policies (and associated interfaces) that have been designed
and refined over the years to provide good performance for
a general set of applications.
However, simply refining these heuristics through yet

more programmer effort, intuition, and observation is not
enough for modern applications with tight and strict per-
formance needs. Decades of refinement of OS policies still
leaves us with an Operating System that may spend up to
500 ms allocating a huge page [19], that may still starve
bandwidth [4], and may idle cores when ready tasks are still
available in the runqueue [18]!
Learning – in particular, deep learning – has proven to

be a promising tool in dealing with dynamic environments
and out-performing human-designed heuristics for a vari-
ety of systems policies including query optimization [21, 22],
indexing [7, 16], cloud configuration tuning [14, 17], compila-
tion [15], and traffic engineering [23, 28]. OS policies haven’t
remained untouched either – researchers have demonstrated
significant benefits when using learning for OS policies such
as I/O latency prediction [12], file readahead [2], and con-
gestion control [1], among others. This has been largely at-
tributed to the ability of deep learning models to use a wide
variety of features, infer future behaviors accurately, and
tailor decisions to each context better than human-crafted
intuitive heuristics designed with generality in mind.
However, there is a reluctance among OS practitioners

in using learned models inside the OS kernel. In our own
experience and in our engagements with other researchers

*Saxena and Chen contributed equally to this work.

https://doi.org/10.1145/3713082.3730384
https://doi.org/10.1145/3713082.3730384

HOTOS 25, May 14–16, 2025, Banff, AB, Canada D. Saxena et al

and industry practitioners, we identify four main reasons for
this reluctance.

First, there might be misbehaviors where a learned policy
may take unsafe decisions leading to drastically bad system
states. Machine learning algorithms typically optimize a sta-
tistical loss function. The loss function formulation is thus
critical and it may be hard to encode all bad system states in
such a function. Further, deep learning algorithms are seldom
able to compute global optima at all inputs, so there might
still be data points where the learning algorithm does not
ensure optimal behavior. Similarly, unsafe ML behavior may
arise due to updates in the kernel (and associated drivers),
rendering the training data behind the policy stale.
Second, the opaque-box nature of deep learning models

leads to issues in reproducibility and security. It may be
hard to reason about why a learned model took a particular
decision, and debugging via replicating the exact same set
of features in a dynamic system might not be feasible. This
leads to practitioners not trusting learned policies in the OS
kernel, where reliability is critical. Likewise, an adversarial
application could influence the learned model to make bad
decisions harming the performance of benign workloads
Third, running a learned policy will inevitably have per-

formance overheads, e.g., to run the model on the critical
path, store its weights, and perform online training (if neces-
sary). Priors works address overhead by employing simple
models [12] and accelerating in-kernel inference [2, 11, 30]
but provide no way for practitioners to assess if inference
overhead is justified and to bound performance impact, con-
straining the use of ML profitably in the kernel.
Lastly, collecting diverse enough features may require

extensive instrumentation in the kernel, which is difficult
given the complexity and criticality of the kernel. Several
systems policies require interactions with the environment
in order to train learned models [20], but doing the same
within the kernel is challenging.

This paper proposes a framework to alleviate the first
three of the above four issues. Our framework helps OS
practitioners regulate the decision quality of opaque-box
learned models in the kernel and bound their overheads to
achieve overall better performance.

It is built on the key abstraction of guardrails for the OS:
just as highway guardrails provide drivers the flexibility to
navigate safely within a roadway while preventing access to
dangerous areas, OS guardrails are systems constructs to en-
able flexible yet safe machine learning policies for the kernel,
safeguarding against catastrophic outcomes. The concept
of guardrails has been previously proposed in the context
of generative AI models [8, 13, 24], e.g., focusing on the
safety of conversational agents. In this paper, we describe
the unique challenges faced in the OS setting and propose a

general framework for designing efficient guardrails for OS
decision-making tasks.
We argue that an effective OS guardrail must consist of

two components: a specified property the guardrail monitors
and a principled corrective action the system takes when the
property is violated. We develop a taxonomy for properties
and actions reflecting real-world requirements and practical
and effective mitigating actions, respectively. We argue for
and propose a guardrail interface that simplifies specification
and enables automated synthesis.

2 Background
Learned policies have been demonstrated to perform signif-
icantly better than vanilla OS policies on average for tasks
such as prefetch read ahead [2], predicting I/O latencies [12],
congestion control [1], and data placement in tiered memory
systems [5, 9] and hybrid storage systems [25].
However, there may be cases where models may cause

arbitrarily bad system behavior, e.g., a learned congestion
control may lead to a sudden drop in bandwidth utilization
and fail to recover from it [29], or a learning-based data
placement engine may perform poorly if the workload is
write-intensive and has random access pattern [25]. In Sec-
tion 5, we demonstrate how LinnOS [12], a learned model for
predicting SSD I/O latencies, fails to predict slow accesses
accurately leading to performance degradation.
A key step in mitigating bad behavior is to detect it. This

can be applied to specific OS tasks. Examples include the
accuracy property for an I/O latency classifier (that classifies
accesses between ‘fast’ and ‘slow’): ‘Accuracy of the classifier
> 90% over a time window of a given size’; or a performance
property for a learnedmemorymanager: ‘Page fault latencies
must not exceed 50ms’. Likewise, system-level misbehavior
of a particular subsystem or the OS as a whole can also
be detected. For instance, the CPU subsystem may need to
follow a starvation-freedom property, e.g., ‘No ready task
should be starved for more than 100ms’.

In general, violations of the above properties are possible
even for hand-coded heuristics, e.g., even in today’s kernels,
page fault latencies can go to up to hundreds of ms [19]. How-
ever, learned OS policies are typically held to stricter stan-
dards. This is common for most automated systems: driver-
less cars may be safer than human drivers (e.g., they may
not doze off mistakenly), but are held to high standards due
to their autonomy. Similarly, learned OS policies must pro-
vide additional confidence for practitioners to move from
hand-coded heuristics.
Prior works that have tried to regulate such bad behav-

iors for learned models either use ad-hoc mechanisms for
specific models [1, 12] or provide a high-level interface that
still leaves a lot of burden on developers [27]. For instance,
Orca [1] is a learned congestion controller that uses Cubic

How I learned to stop worrying and love learned OS policies HOTOS 25, May 14–16, 2025, Banff, AB, Canada

Property Description Models that need this property

P1. In-distri-
bution inputs

Ensure model output used
only if inputs remain in-
distribution

All models. Prolonged sequences of out-
of-distribution data may indicate
domain shift and require retraining.

P2. Robustness
decisions

Ensure similar inputs yield
similar outputs and
behavior within a time
window.

Congestion control. Check if the model
is sensitive to noisy measurements.

P3. Out-of-
bounds outputs

Ensure outputs are within
legal bounds

Memory allocation. Ensure allocation by
the model is within available memory.

P4. Decision
quality

Ensure decisions yield
good-enough performance

Cache replacement. Decisions of the
model must yield better hit rates than
randomly selecting elements.

P5. Decision
overhead

Ensure inference latency is
less than performance
gains from policy.

All models. Latency and total resource
usage overhead of inference should be
reasonably low.

P6. Fairness and
liveness

Ensure general system
goals are upheld by
decisions.

CPU scheduling. Check scheduling
delay and variance are within bounds.

Action API Description Example use

A1. REPORT(
 function_ptr,
 system_state,
 input
)

Logs relevant system
context when the
property is violated
(e.g., which inputs
triggered violation).

Record out-of-
distribution inputs
(P1) and poor-quality
decisions (P4).

A2. REPLACE(
 old_function_ptr,
 new_function_ptr
)

Swaps out a
misbehaving learned
policy (or function)
with a known-safe
fallback.

After out-of-bound
decisions (P3) or
repeated poor quality
decisions (P4) disable
learned policies.

A3.RETRAIN(
 model_ptr,
 input
)

Retrain model with
new out-of-
distribution data.

After sensitivity to
noisy measurements
(P2) or invalid outputs
(P3) are detected.

A4.DEPRIORITIZE(
 {function_ptrs},
 {priorities}
)

Deprioritize/kill tasks
to free resources or
relax constraints.

Out-of-memory killer
(P6).

In
pu

t
O

ut
pu

ts
Be

ha
vi

or

Figure 1: Guardrail properties and actions. Color codes in the left table distinguish the various types of properties. Color codes
in the right table illustrates the properties on which the actions apply in the examples - note that these are not exhaustive.

for fine time-scale CC and a learned model that makes adjust-
ments to TCP at slow time-scales. By designing the controller
in such a way, Orca is able to capitalize on the benefits of TCP
Cubic such as convergence properties, predictable behavior
and reduced overheads. However, this technique is strongly
coupled with the design of Orca and congestion control; it
cannot be extended to other models or for properties of the
form described above.

SOL [27] offers a unifiedAPI formonitoring and regulating
learned agents. SOL’s API revolves around developer-defined
callbacks for tasks like input validation, output assessment,
performance evaluation, and mitigation actions. However,
SOL has key limitations that hinder its use for regulating
models in the kernel. For example, the properties and actions
in SOL are tightly coupled with the learned agent. This pre-
cludes richer end-to-end system properties (such as ensuring
fairness in the scheduler, or good end-to-end memory access
latencies) that may be affected by multiple learned agents,
and also cannot capture the many rich corrective actions
possible. Further, its high-level callback-based API punts a
lot of work to the developer, e.g., writing performance as-
sessment functions entails significant effort before a model
can be reliably deployed.

An orthogonal approach to detecting bad behavior at run
time is to train models that provably satisfy the desired sys-
tem properties, via techniques such as shielding [3, 31] and
learned integrated with verification [10, 29]. However, such
techniques often need a model of the system to verify against
leading to two challenges. First, developing such models for
the OS is difficult. Second, such models are only an approxi-
mation and actual system behavior at run time may differ,
requiring runtime monitoring of property satisfaction any-
way.

3 Guardrails

We propose Guardrails that enable a systematic, uniform
and declarativeway of specifying and enforcing constraints
on learned models in the OS. Guardrails allow kernel devel-
opers to specify a variety of desired system properties
and actions that can then be automatically compiled
into monitors that run in the kernel. Guardrails serve as an
always-on safety net, preventing the learned policy from
making unbounded errors and giving OS developers confi-
dence in deploying such policies in production environments.

The guardrail abstraction consists of:

(1) Properties:Declarative expressions of desired behaviors
and constraints, such as performance bounds, resource
limits, or safety invariants. They define catastrophic be-
haviors to avoid or expected behaviors to achieve.

(2) Actions: Prescriptions for system responses when a prop-
erty is violated, focusing on regulating the learnedmodel—e.g.,
deciding when to use, retrain, or replace it or adjusting
system parameters to enhance its performance.

We next describe properties and actions for the guardrail
abstraction in detail.

3.1 Properties

Properties describe the criteria under which a learned policy
is considered "safe enough" for the OS. When a property is
violated, it is a signal that something is going wrong with
the learned model, and it has to be steered back into the
middle of the road. While guardrails may be valuable for any
policy (as evidenced by policy failures in current operating
systems), we identify three categories of properties specifi-
cally for learned policies based on what they are expressed
over: (i) the input state of a model (e.g., the distribution of

HOTOS 25, May 14–16, 2025, Banff, AB, Canada D. Saxena et al

requests), (ii) themodel’s output (e.g., predicted values or dis-
crete decisions), and (iii) the resulting system behavior (e.g.,
resource usage, latency, throughput). Specific property types
and examples are summarized in Figure 1.
Input properties. For model inputs, the key thing is to
ensure that inputs fit within the expected distribution upon
which the model was trained (P1). If model inputs change,
such as a new set of workloads are run, the model may no
longer make quality decisions. This can be done by tracking
statistical properties of the input features (range, quartiles,
etc.) and periodically ensuring they match training data.
Output properties. For model decisions (output), one key
property is to ensure that decisions are robust and not subject
to large changes based on small input changes (P2). When
this happens, small differences in features can have outsize
impact on decisions, which leads to unpredictable behavior.
Thus, one property to check would be that a small variance
in inputs should not lead to large variance in model out-
puts. Likewise, suppose a model starts to produce illegal
decisions (P3), such as prefetching chunks from a file beyond
the memory limit for a process, or scheduling a thread on a
non-existent NUMA node. In that case, the guardrail should
detect the model is misbehaving.
Behavioral properties. Behavioral properties do not look
specifically at model inputs or outputs, but instead look at
the system operation for signs that it is working well. As
such, they could also apply to traditional heuristic policies.
Most important, such guardrails should check overall deci-
sion quality to ensure that the learned policy is generally
improving over standard heuristics (P4), or that the inference
cost of using the learned model is offset by the performance
gains (P5). Likewise, they can check general system-level
goals like fairness and liveness (P6), for example by monitor-
ing cumulative resource usage and delay by different threads
or workloads in the system.

Developers can choose to check for a subset of these prop-
erties. Taken as a whole, these three guardrails ensure that
if anything goes wrong with a learned policy, it will be
promptly detected. We next turn to what to do in that case.

3.2 Actions

Actions allow a system to automatically recover when a
learned policy misbehaves, and are key to providing safety.
Figure 1 lists a set of actions a guardrail can take when a prop-
erty has been violated. At the simplest level, one action is to
report the violation for offline analysis, which could involve
logging information about the violated property, increasing
logging levels generally, or recording model inputs and out-
puts (A1). This response does not correct the situation, and
is best used for loose guardrails that are for early warning
of problems, such as drifts in input distribution, rather than
severe problems like out-of-bounds model outputs.

A second action available with learned policies is to fall-
back to existing system policies (A2). Most systems deploying
learned policies supplement but do not replace existing ones,
and as most OS policies rely on limited history and state,
they are often able to start making decisions immediately.
When guardrails detect poor decision quality, high decision
overhead, or other output problems, a guardrail can disable
the learned policy temporarily.

The actions so far described do not address the problem of
poor decisions but rather mitigate the impact. A third action
possible for guardrails is to trigger retraining on newer data,
such as the changed input distribution (A3). We envision
offline training, so this is an asynchronous process that must
be protected to prevent abuse from malicious processes by
intentionally triggering frequent retraining.

While the preceding actions all relate to the model, a final
set of possible actions relate to changing the workload and
environment (A4). For example, if a policy fails to meet per-
formance goals under a given workload, it could de-prioritize
or terminate a low-priority task to release its resources, much
as the Linux out-of-memory killer can kill a task to free mem-
ory. Likewise, cloud systems may terminate workloads that
over-consume a resource [26] to ensure enough resources
are available for the remaining workloads. This decision is
a bit drastic and is thus best used when falling back to ex-
isting policies is not feasible, as it is the only other way to
immediately affect system behavior.

3.3 Overall Framework

Adding guardrails to a system is a non-trivial task that nonethe-
less promises high rewards. To use guardrails, we design an
intuitive interface (described in Section 4) with which system
developers can add call-outs, specifying what properties to
check for andwhat actions to trigger. In the interface, the con-
ditions verified by properties must be specified. For learned
policies, many of these can be determined automatically, e.g.,
the performance metric to track can be extracted from the
reward function. Others, though, require system knowledge
and may depend on specific hardware or deployment charac-
teristics, such as reasonable values for system-wide fairness.
In these cases, OS practitioners may find it better to deploy
guardrails with relaxed properties and automatically tighten
the properties based on system behavior.

The provided guardrails are then automatically compiled
into ‘guardrail monitors’ that run inside the kernel, either
as eBPF programs or as kernel modules. A key feature of
guardrails is that they allow incremental deployment: more
guardrails can be incrementally added to check for more
properties; or check properties on more occasions or more
frequently; or perform additional corrective actions. In what
follows, we provide our Interface, discussing the key design

How I learned to stop worrying and love learned OS policies HOTOS 25, May 14–16, 2025, Banff, AB, Canada

decisions and how the interface simplifies guardrail specifi-
cation and enables automatic synthesis.

4 Interface
We propose a guardrail interface built on a formal founda-
tion that enables rigorous reasoning about properties and
violations while supporting a comprehensive set of correc-
tive actions required to address violations caused by learned
OS policies. Our interface is inspired by Monitor-Oriented
Programming (MOP) [6], a runtime verification framework
that enables developers to specify properties and associate
them with callback handlers for corrective actions. However,
while MOP is primarily designed for writing specifications
for user-level software programs, it does not address the
more intricate requirements of a learning-aided OS which
must carefully manage potential issues from system behav-
iors and diverse learned components.
Listing 1 illustrates the syntax of our guardrail specifi-

cations, which are organized around three core concepts:
triggers, rules, and actions. Below, we will discuss these con-
cepts - explaining how the interface enables the goals of
intuitive, declarative specification that enables automated
compilation.

〈Guardrail〉 ::= 〈Property〉 ((〈Action〉))+
〈Property〉 ::= ((〈Trigger〉))+ ((〈Rule〉))+
〈Trigger〉 ::= TIMER | FUNCTION
〈Rule〉 ::= 〈Expression〉
〈Action〉 ::= REPORT | REPLACE | RETRAIN | DEPRIORITIZE

Listing 1: Syntax of Guardrail specifications

4.1 Triggers and Rules

Triggers determine when to evaluate the rules. We currently
support:

• TIMER(start_time, interval, stop_time): Periodically
checks the rules at fixed intervals. Useful for tracking
performance distributions and model accuracy over
time.

• FUNCTION(function_ptr): Invokes rule checks when-
ever a specific function (e.g., a learned scheduler rou-
tine) is called.

Rules define what property should hold. These may be
simple predicates (e.g., latency <= 20ms) or more sophisti-
cated conditions (e.g., bounding the average error rate of a
learned model).

Crucially, our interface decouples rules from triggers. This
allows greater flexibility in the OS context, where the prop-
erty to check is specified independent of when and how
frequently to check it. For example, our TIMER trigger allows
systematic sampling in order to regulate the overhead of
checking for the property.

4.2 Defining Corrective Actions

While in theory, MOP provides the facility for arbitrary code
to run on either the satisfaction or violation of a property,
we are not aware of significant work that has studied correc-
tive actions. One could argue that this is sensible, as runtime
verification tools are meant to be a kind of lightweight ver-
ification technique. In this view, violations should simply
be reported to the developers. On the contrary, Guardrails
help drive the OS. We expect property violations for learned
policies to be relatively commonplace (e.g. out of distribution
inputs), and as a result, we need to specify how the system
should recover.
Importantly, this means that our guardrails may need to

interface directly with system resources. For instance, replac-
ing a misbehaving learned policy with a fallback. To this end,
we introduce simple API for the actions specified in Table 1
(shown in the leftmost column of the second table).

We expect the library of callbacks to evolve with our ex-
perience of guardrails, but we have found these useful in our
initial experience and reusable in correcting the property vi-
olations described in 3.1. Further, the limited types of actions
allows us to define the semantics for each type that simplifies
compilation into guardrail monitors, and helps reason about
their correctness and crash-free semantics.
4.3 Managing State

A crucial aspect of any runtime monitoring framework is
the management of state used to evaluate properties. As
mentioned previously, guardrails need to interface closely
with system-wide metrics (e.g., average latency, throughput,
or error rates) that must be aggregated over time or across
many function invocations.

We currently provide a lightweight, global feature store ac-
cessed via SAVE(key, value) and LOAD(key) calls. This allows
guardrails to maintain counters, metrics, and other persis-
tent data without introducing ad-hoc kernel data structures.
For instance, to state “the average page fault latency over
every 10 seconds is below 2ms,” guardrails must aggregate
data from multiple locations in the kernel that can cause a
page fault. Relying on local variables, only accessible within
specific kernel functions, would force us to intercept every
function call and replicate logic across many guardrail in-
stances. Instead, using a shared feature store simplifies data
collection and ensures consistent updates.

5 A Guardrail Example
We demonstrate the benefits of guardrails using the example
of LinnOS [12]. LinnOS uses a learned model to predict I/O
latencies based on the history of I/O accesses. LinnOS helps
storage clusters with built-in failover logic such as flash RAID
by revoking slow I/O and re-issuing to a replica. A model
misprediction could cause an I/O to be submitted to a slow

HOTOS 25, May 14–16, 2025, Banff, AB, Canada D. Saxena et al

Time

50

100

150

200

M
ov

in
g

av
er

ag
e

of
 I/

O
 la

te
nc

ie
s

(u
s)

False submit
 guardrail triggered

LinnOS
LinnOS w/ guardrails

Figure 2: I/O latency moving average. False submit guardrail
is triggered mid-way and mitigation is applied. Thereafter,
average latency reduces (orange) compared to LinnOS with-
out guardrails (blue).

disk (false submit). A high rate of false submits can erase the
benefits of a learned model and degrade performance.
To prevent performance regression, we add a guardrail

(Listing 2) to detect high rate of false submits (property).
When the rate exceeds a threshold, we disable the model
and fallback to default behavior (action). As shown in Fig-
ure 2, the moving average of I/O latencies improves after the
guardrail is triggered and the mitigation is applied.

guardrail low-false-submit {
trigger: {
TIMER(start_time, 1e9) // Periodically check every 1s.

},
rule: {

LOAD(false_submit_rate) <= 0.05
},
action: {

SAVE(ml_enabled, false)
}

}

Listing 2: Example guardrail rule enforcing a low false-
submit rate in LinnOS.

6 Summary and Discussion
We introduced a framework for safely integrating and uti-
lizing learned policies for decision-making in the operating
system, while adhering to constraints defined by kernel de-
velopers. These constraints are encapsulated within the ab-
straction of OSGuardrails. We detailed this abstraction, pro-
viding examples to illustrate its use cases, and proposed an
interface that enables the intuitive specification of guardrails.
Our framework represents a significant advancement over
existing state-of-the-art frameworks for safely applying ma-
chine learning in systems, specifically tailored for OS practi-
tioners rather than general ML safety approaches [8, 24].
Our proposal raises several compelling questions, such

as how to support a diverse range of guardrails for learned
kernel policies, how to synthesize efficient guardrail moni-
tors, update guardrails at runtime without requiring a kernel

reboot, and how to extend guardrails to other learned in-
frastructure components. There are also several avenues to
improve the proposed Guardrails framework. For example,
deploying multiple guardrails in the kernel—each monitor-
ing a different property—can create feedback loops, where
preventing one violation triggers another, causing the sys-
tem to oscillate between violation states. Another interesting
area for exploration is the potential to improve over trigger-
based periodic checking by tracking a minimal set of data
dependencies, enabling such properties to be automatically
checked only when relevant system state changes.

Acknowledgements
We thank the anonymous reviewers for their suggestions
that improved this paper. This work is supported by a U.S.
National Science Foundation (NSF) CISE "Expedition" Grant
Number 2326576.

References
[1] Soheil Abbasloo, Chen-Yu Yen, and H. Jonathan Chao. Classic meets

modern: A pragmatic learning-based congestion control for the inter-
net. In Proceedings of the Annual Conference of the ACM Special Interest
Group on Data Communication on the Applications, Technologies, Ar-
chitectures, and Protocols for Computer Communication, SIGCOMM ’20,
page 632–647, 2020. URL https://doi.org/10.1145/3387514.3405892.

[2] Ibrahim Umit Akgun, Ali Selman Aydin, Aadil Shaikh, Lukas Velikov,
and Erez Zadok. A machine learning framework to improve storage
system performance. In Proceedings of the 13th ACM Workshop on
Hot Topics in Storage and File Systems, pages 94–102, 2021. URL https:
//dl.acm.org/doi/10.1145/3465332.3470875.

[3] Greg Anderson, Abhinav Verma, Isil Dillig, and Swarat Chaud-
huri. Neurosymbolic reinforcement learning with formally veri-
fied exploration. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Bal-
can, and H. Lin, editors, Advances in Neural Information Process-
ing Systems, volume 33, pages 6172–6183. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/
448d5eda79895153938a8431919f4c9f-Paper.pdf.

[4] Venkat Arun, Mohammad Alizadeh, and Hari Balakrishnan. Starvation
in end-to-end congestion control. In Proceedings of the ACM SIGCOMM
2022 Conference, SIGCOMM ’22, page 177–192, 2022. URL https://doi.
org/10.1145/3544216.3544223.

[5] Juneseo Chang, Wanju Doh, Yaebin Moon, Eojin Lee, and Jung Ho Ahn.
Idt: Intelligent data placement for multi-tiered main memory with rein-
forcement learning. In Proceedings of the 33rd International Symposium
on High-Performance Parallel and Distributed Computing, pages 69–82,
2024. URL https://dl.acm.org/doi/10.1145/3625549.3658659.

[6] Feng Chen and Grigore Roşu. Mop: an efficient and generic runtime
verification framework. In Proceedings of the 22nd annual ACM SIG-
PLAN conference on Object-oriented programming systems, languages
and applications, pages 569–588, 2007. URL https://doi.org/10.1145/
1297105.1297069.

[7] Yifan Dai, Yien Xu, Aishwarya Ganesan, Ramnatthan Alagappan,
Brian Kroth, Andrea Arpaci-Dusseau, and Remzi Arpaci-Dusseau.
From WiscKey to bourbon: A learned index for Log-Structured merge
trees. In 14th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 20), pages 155–171, November 2020. URL
https://www.usenix.org/conference/osdi20/presentation/dai.

[8] David "davidad" Dalrymple, Joar Skalse, Yoshua Bengio, Stuart Russell,
Max Tegmark, Sanjit Seshia, Steve Omohundro, Christian Szegedy,

https://doi.org/10.1145/3387514.3405892
https://dl.acm.org/doi/10.1145/3465332.3470875
https://dl.acm.org/doi/10.1145/3465332.3470875
https://proceedings.neurips.cc/paper_files/paper/2020/file/448d5eda79895153938a8431919f4c9f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/448d5eda79895153938a8431919f4c9f-Paper.pdf
https://doi.org/10.1145/3544216.3544223
https://doi.org/10.1145/3544216.3544223
https://dl.acm.org/doi/10.1145/3625549.3658659
https://doi.org/10.1145/1297105.1297069
https://doi.org/10.1145/1297105.1297069
https://www.usenix.org/conference/osdi20/presentation/dai

How I learned to stop worrying and love learned OS policies HOTOS 25, May 14–16, 2025, Banff, AB, Canada

Ben Goldhaber, Nora Ammann, Alessandro Abate, Joe Halpern, Clark
Barrett, Ding Zhao, Tan Zhi-Xuan, Jeannette Wing, and Joshua Tenen-
baum. Towards guaranteed safe ai: A framework for ensuring robust
and reliable ai systems, 2024. URL https://arxiv.org/abs/2405.06624.

[9] Thaleia Dimitra Doudali, Sergey Blagodurov, Abhinav Vishnu, Sud-
hanva Gurumurthi, and Ada Gavrilovska. Kleio: A hybrid memory
page scheduler with machine intelligence. In Proceedings of the 28th
International Symposium on High-Performance Parallel and Distributed
Computing, pages 37–48, 2019. URL https://dl.acm.org/doi/10.1145/
3307681.3325398.

[10] Tomer Eliyahu, Yafim Kazak, Guy Katz, and Michael Schapira. Veri-
fying learning-augmented systems. In Proceedings of the 2021 ACM
SIGCOMM 2021 Conference, SIGCOMM ’21, page 305–318, 2021. URL
https://doi.org/10.1145/3452296.3472936.

[11] Henrique Fingler, Isha Tarte, Hangchen Yu, Ariel Szekely, Bodun Hu,
Aditya Akella, and Christopher J. Rossbach. Towards a machine
learning-assisted kernel with lake. In Proceedings of the 28th ACM
International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, Volume 2, ASPLOS 2023, page 846–861,
2023. URL https://doi.org/10.1145/3575693.3575697.

[12] Mingzhe Hao, Levent Toksoz, Nanqinqin Li, Edward Edberg Halim,
Henry Hoffmann, and Haryadi S Gunawi. LinnOS: Predictability on
unpredictable flash storagewith a light neural network. In 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
20), pages 173–190, 2020. URL https://www.usenix.org/conference/
osdi20/presentation/hao.

[13] Hakan Inan, Kartikeya Upasani, Jianfeng Chi, Rashi Rungta, Krithika
Iyer, Yuning Mao, Michael Tontchev, Qing Hu, Brian Fuller, Davide
Testuggine, and Madian Khabsa. Llama guard: Llm-based input-output
safeguard for human-ai conversations, 2023. URL https://arxiv.org/
abs/2312.06674.

[14] Ajaykrishna Karthikeyan, Nagarajan Natarajan, Gagan Somashekar,
Lei Zhao, Ranjita Bhagwan, Rodrigo Fonseca, Tatiana Racheva, and
Yogesh Bansal. SelfTune: Tuning cluster managers. In 20th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 23),
pages 1097–1114, April 2023. URL https://www.usenix.org/conference/
nsdi23/presentation/karthikeyan.

[15] Samuel J. Kaufman, Phitchaya Mangpo Phothilimthana, Yanqi Zhou,
Charith Mendis, Sudip Roy, Amit Sabne, and Mike Burrows. A learned
performance model for tensor processing units, 2021. URL https:
//arxiv.org/abs/2008.01040.

[16] Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzo-
tis. The case for learned index structures. In Proceedings of the 2018
International Conference on Management of Data, SIGMOD ’18, page
489–504, 2018. URL https://doi.org/10.1145/3183713.3196909.

[17] Brian Kroth, Sergiy Matusevych, Rana Alotaibi, Yiwen Zhu, Anja
Gruenheid, and Yuanyuan Tian. Mlos in action: Bridging the gap
between experimentation and auto-tuning in the cloud. Proc. VLDB
Endow., 17(12):4269–4272, November 2024. ISSN 2150-8097. URL
https://doi.org/10.14778/3685800.3685852.

[18] Jean-Pierre Lozi, Baptiste Lepers, Justin Funston, Fabien Gaud, Vivien
Quéma, and Alexandra Fedorova. The linux scheduler: a decade of
wasted cores. In Proceedings of the Eleventh European Conference on
Computer Systems, EuroSys ’16, 2016. URL https://doi.org/10.1145/
2901318.2901326.

[19] Mark Mansi, Bijan Tabatabai, and Michael M. Swift. CBMM: Financial
advice for kernel memory managers. In 2022 USENIX Annual Technical
Conference (USENIX ATC 22), pages 593–608, July 2022. URL https:
//www.usenix.org/conference/atc22/presentation/mansi.

[20] Hongzi Mao, Parimarjan Negi, Akshay Narayan, Hanrui Wang,
Jiacheng Yang, Haonan Wang, Ryan Marcus, ravichandra ad-
danki, Mehrdad Khani Shirkoohi, Songtao He, Vikram Nathan,

Frank Cangialosi, Shaileshh Venkatakrishnan, Wei-Hung Weng,
Song Han, Tim Kraska, and Dr.Mohammad Alizadeh. Park: An
open platform for learning-augmented computer systems. In
Advances in Neural Information Processing Systems, volume 32,
2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/file/
f69e505b08403ad2298b9f262659929a-Paper.pdf.

[21] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad
Alizadeh, Tim Kraska, Olga Papaemmanouil, and Nesime Tatbul. Neo:
a learned query optimizer. Proc. VLDB Endow., 12(11):1705–1718, July
2019. ISSN 2150-8097. URL https://doi.org/10.14778/3342263.3342644.

[22] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime Tatbul, Moham-
mad Alizadeh, and Tim Kraska. Bao: Making learned query optimiza-
tion practical. SIGMOD Rec., 51(1):6–13, June 2022. ISSN 0163-5808.
URL https://doi.org/10.1145/3542700.3542703.

[23] Yarin Perry, Felipe Vieira Frujeri, Chaim Hoch, Srikanth Kandula,
Ishai Menache, Michael Schapira, and Aviv Tamar. DOTE: Rethinking
(predictive) WAN traffic engineering. In 20th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 23), pages 1557–
1581, April 2023. URL https://www.usenix.org/conference/nsdi23/
presentation/perry.

[24] Traian Rebedea, Razvan Dinu, Makesh Sreedhar, Christopher Parisien,
and Jonathan Cohen. Nemo guardrails: A toolkit for controllable
and safe llm applications with programmable rails, 2023. URL https:
//arxiv.org/abs/2310.10501.

[25] Gagandeep Singh, Rakesh Nadig, Jisung Park, Rahul Bera, Nastaran
Hajinazar, David Novo, Juan Gómez-Luna, Sander Stuijk, Henk Corpo-
raal, and Onur Mutlu. Sibyl: Adaptive and extensible data placement
in hybrid storage systems using online reinforcement learning. In
Proceedings of the 49th Annual International Symposium on Computer
Architecture, pages 320–336, 2022. URL https://doi.org/10.1145/3470496.
3527442.

[26] Abhishek Verma, Luis Pedrosa, Madhukar R. Korupolu, David Op-
penheimer, Eric Tune, and John Wilkes. Large-scale cluster manage-
ment at Google with Borg. In Proceedings of the European Confer-
ence on Computer Systems (EuroSys), Bordeaux, France, 2015. URL
https://dl.acm.org/doi/10.1145/2741948.2741964.

[27] Yawen Wang, Daniel Crankshaw, Neeraja J. Yadwadkar, Daniel Berger,
Christos Kozyrakis, and Ricardo Bianchini. Sol: Safe on-node learn-
ing in cloud platforms. In Proceedings of the 27th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, pages 622–634, 2022. URL https://doi.org/10.1145/
3503222.3507704.

[28] Zhiying Xu, Francis Y. Yan, Rachee Singh, Justin T. Chiu, Alexander M.
Rush, and Minlan Yu. Teal: Learning-accelerated optimization of
wan traffic engineering. In Proceedings of the ACM SIGCOMM 2023
Conference, ACM SIGCOMM ’23, page 378–393, 2023. URL https:
//doi.org/10.1145/3603269.3604857.

[29] Chenxi Yang, Divyanshu Saxena, Rohit Dwivedula, Kshiteej Mahajan,
Swarat Chaudhuri, and Aditya Akella. C3: Learning congestion con-
trollers with formal certificates. 2024. URL https://arxiv.org/abs/2412.
10915.

[30] Junxue Zhang, Chaoliang Zeng, Hong Zhang, Shuihai Hu, and Kai
Chen. Liteflow: towards high-performance adaptive neural networks
for kernel datapath. In Proceedings of the ACM SIGCOMM 2022 Con-
ference, pages 414–427, 2022. URL https://dl.acm.org/doi/abs/10.1145/
3544216.3544229.

[31] He Zhu, Zikang Xiong, Stephen Magill, and Suresh Jagannathan. An
inductive synthesis framework for verifiable reinforcement learning.
In Proceedings of the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2019, page 686–701, 2019.
URL https://doi.org/10.1145/3314221.3314638.

https://arxiv.org/abs/2405.06624
https://dl.acm.org/doi/10.1145/3307681.3325398
https://dl.acm.org/doi/10.1145/3307681.3325398
https://doi.org/10.1145/3452296.3472936
https://doi.org/10.1145/3575693.3575697
https://www.usenix.org/conference/osdi20/presentation/hao
https://www.usenix.org/conference/osdi20/presentation/hao
https://arxiv.org/abs/2312.06674
https://arxiv.org/abs/2312.06674
https://www.usenix.org/conference/nsdi23/presentation/karthikeyan
https://www.usenix.org/conference/nsdi23/presentation/karthikeyan
https://arxiv.org/abs/2008.01040
https://arxiv.org/abs/2008.01040
https://doi.org/10.1145/3183713.3196909
https://doi.org/10.14778/3685800.3685852
https://doi.org/10.1145/2901318.2901326
https://doi.org/10.1145/2901318.2901326
https://www.usenix.org/conference/atc22/presentation/mansi
https://www.usenix.org/conference/atc22/presentation/mansi
https://proceedings.neurips.cc/paper_files/paper/2019/file/f69e505b08403ad2298b9f262659929a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/f69e505b08403ad2298b9f262659929a-Paper.pdf
https://doi.org/10.14778/3342263.3342644
https://doi.org/10.1145/3542700.3542703
https://www.usenix.org/conference/nsdi23/presentation/perry
https://www.usenix.org/conference/nsdi23/presentation/perry
https://arxiv.org/abs/2310.10501
https://arxiv.org/abs/2310.10501
https://doi.org/10.1145/3470496.3527442
https://doi.org/10.1145/3470496.3527442
https://dl.acm.org/doi/10.1145/2741948.2741964
https://doi.org/10.1145/3503222.3507704
https://doi.org/10.1145/3503222.3507704
https://doi.org/10.1145/3603269.3604857
https://doi.org/10.1145/3603269.3604857
https://arxiv.org/abs/2412.10915
https://arxiv.org/abs/2412.10915
https://dl.acm.org/doi/abs/10.1145/3544216.3544229
https://dl.acm.org/doi/abs/10.1145/3544216.3544229
https://doi.org/10.1145/3314221.3314638

	Abstract
	1 Introduction
	2 Background
	3 Guardrails
	3.1 Properties
	3.2 Actions
	3.3 Overall Framework

	4 Interface
	4.1 Triggers and Rules
	4.2 Defining Corrective Actions
	4.3 Managing State

	5 A Guardrail Example
	6 Summary and Discussion
	References

