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ABSTRACT
High-speed data ingestion is critical in time-series workloads that
are driven by the growth of Internet of Things (IoT) applications.
We observe that traditional tree-based indexes encounter severe
scalability bottlenecks for time-series workloads that insert mono-
tonically increasing timestamp keys into an index; all insertions go
to a small memory region that sees extremely high contention.

In this work, we present a new index design, 𝐵link-hash, that
enhances a tree-based index with hash leaf nodes to mitigate the
contention of monotonic insertions — insertions go to random
locations within a hash node (which is much larger than a B+-tree
node) to reduce conflicts. We develop further optimizations (median
approximation and lazy split) to accelerate hash node splits. We
also develop structure adaptation optimizations to dynamically
convert a hash node to B+-tree nodes for good scan performance.
Our evaluation shows that 𝐵link-hash achieves up to 91.3× higher
throughput than conventional indexes in a time-series workload
that monotonically inserts timestamps into an index, while showing
comparable scan performance to a well-optimized B+-tree.
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1 INTRODUCTION
High-speed data ingestion and query processing are gaining im-
portance driven by the proliferation of Internet of Things (IoT)
devices such as sensors, RFID readers, health care devices, etc. In
these application scenarios, timestamped data are constantly and
rapidly generated at a rate of millions of events per second [21].
This large volume of data requires not only an efficient data storage
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solution but also linearly scaling performance so that the speed of
data processing can keep up with that of data generation [6, 27].

While many aspects of traditional database systems have been
redesigned to meet the requirements of high-speed data ingestion
and efficient query processing [1, 2, 5, 21, 44, 49], indexes have not
received sufficient attention. Although various techniques have
been proposed to improve index performance regarding cache effi-
ciency [7, 45, 46], space efficiency [9, 11, 12, 32, 55], and concurrency
control [15, 23, 31, 33, 34, 39], existing solutions do not target the
new challenges that appear in time-series workloads.

The characteristics of time-series workloads are different from
those of generic OLTP workloads. In particular, keys are typic-
ally monotonically increasing timestamps. This property makes
existing tree-based indexes sub-optimal in time-series workloads.
When using the timestamps as the index keys, insertions will be
highly skewed towards the rightmost leaf nodes in a tree, creating
extremely high contention and severe scalability bottleneck.

While monotonic insertions do not scale in a tree-based index,
they can scale perfectly in a hash index, which distributes insertions
randomly to different memory regions. However, a hash index does
not support range scans, and thus cannot be used in many practical
workloads. Our key insight is to combine a tree-based index with a
hash index to achieve the best of both worlds while addressing their
limitations. In particular, we replace leaf nodes of a B+-tree index
with hash nodes if those leaf nodes experience high monotonic
insertion traffic to mitigate the insertion hotspot.

We present a new in-memory index design, 𝐵link-hash, that in-
corporates the above insights. 𝐵link-hash enhances a 𝐵link-tree [31]
with hash leaf nodes to achieve scalability for monotonic insertions
while maintaining good performance on conventional workloads.
A hash node is considerably larger than a B+-tree node to distrib-
ute the insertions to different memory regions. Data is randomly
distributed within a hash node, but is sorted between consecutive
hash nodes like in a B+-tree.

Replacing B+-tree nodes with hash nodes introduces several key
challenges. Since a hash node is larger than a B+-tree node, splitting
a hash node leads to a longer critical section which can become
a new performance bottleneck. We develop two optimizations to
address this issue. The first optimization is median approximation
which calculates an approximate, instead of a precise, median key
for a split operation based on a sampled subset of keys; it signific-
antly reduces the number of accessed keys for median selection
with minimal imbalance in the trees. The second optimization is
lazy split which reduces the critical section of splitting a hash node
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by deferring the actual data movement to subsequent threads ac-
cessing the corresponding buckets; this breaks down the expensive
per-node critical section into multiple cheaper per-bucket critical
sections, thus mitigating the scalability bottleneck.

Another challenge in 𝐵link-hash is to support efficient scans
that are inherently difficult with a hash index. We develop a third
optimization called structure adaptation to dynamically convert a
hash node to B+-tree nodes when a hash node is no longer insertion-
intensive and becomes scan-intensive. Eventually after a workload
runs for sufficiently long, a 𝐵link-hash tree will converge into a
traditional 𝐵link-tree to fully leverage its features.

We evaluate the performance of different tree-based indexes in a
time-series workload with monotonic insertions and observed that
𝐵link-hash is the only design that scales linearly, achieving 91.3×
speedup over other indexes at 32 threads. We also evaluate indexes
using a YCSB workload (without monotonic insertions) with string
keys, and observed that 𝐵link-hash either outperforms the other
indexes or has very close performance to the best one.

The contributions of this paper are as follows:

• We identify a fundamental limitation of existing tree-based in-
dexes under time-series workloads.

• We introduce 𝐵link-hash, a new index design that overcomes the
limitation and achieves high performance for both monotonically
increasing and scan workloads.

• We comprehensively evaluate 𝐵link-hash against representative
index designs, and show that 𝐵link-hash outperforms those struc-
tures in both time-series and generic OLTP workloads.

The rest of this paper is organized as follows. Section 2 presents
the background and motivation of the research. We discuss the
design of 𝐵link-hash and its optimizations in Sections 3 and 4, re-
spectively. Section 5 presents our empirical evaluation results of
𝐵link-hash against representative index designs. Section 6 reviews
related work, and Section 7 concludes this paper.

2 BACKGROUND AND MOTIVATION
Time-series workloads have become one of the core workloads in
database systems. These workloads typically generate a massive
volume of real-time data from geographically-dispersed devices [53].
This requires high-speed data ingestion and efficient query pro-
cessing where traditional indexes deliver sub-optimal performance.

2.1 Limitation of Conventional Indexes
Today, most time-series systems still use conventional B+-trees
or skip-lists as their indexes [1, 3, 5, 22, 49]. In this section, we
investigate the scalability of representative indexes on a multicore
processor using a workload that inserts new data with monotonic-
ally increasing keys (i.e., timestamps).

Figure 1 compares the throughput of tree indexes and a hash
index in two different workloads (random and monotonic inser-
tion) with a varying number of threads. Random insertion inserts
uniformly random keys while monotonic insertion inserts mono-
tonically increasing keys. Each workload consists of 100 million
insert operations. We choose four representative tree indexes; Ad-
aptive Radix Tree (ART) [32] for tries, Masstree [38] for hybrid
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Figure 1: Throughput of tree-based indexes and Libcuckoo
under random (a) and monotonic (b) insert operations.
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Figure 2: Breakdown of index operations for monotonic in-
sertion with (a) 1 thread and (b) 16 threads.

structures, OpenBw-tree [52] for latch-free structures, and an in-
memory version of 𝐵link-tree [31] for B+-trees. We use an efficient
implementation of concurrent cuckoo hashing (libcuckoo) [35] for
a hash index evaluation. While both hash index and tree indexes
scale with random insertions (Figure 1(a)), tree indexes do not
scale at all when the insertion keys are monotonically increasing
(Figure 1(b)). This is because insertions are highly skewed to the
rightmost nodes — every thread writes into the same memory re-
gion, creating extremely high contention. As a result, concurrent
operations are serialized, and the system fails to exploit parallelism
in hardware [17].

In contrast, such behavior is not observed in libcuckoo, as shown
in Figure 1(b). It is because accesses are distributed to different hash
buckets, allowing high scalability regardless of key patterns. A hash
index, however, cannot support range scans and is, thus, insufficient
in many scenarios including time-series applications.

To better understand the behavior of tree indexes in monotonic
insertion, we break down their runtime into six categories.
• Traversal denotes tree traversal time.
• Retry is the time spent on retried tree traversal due to conflicts.
• Latch includes the overhead to acquire an exclusive latch. For
OpenBw-tree, we include the time spent on executing compare-
and-swap instructions.

• Leaf covers the time spent in leaf nodes (inserting new records).
• SMO includes time spent on splitting nodes for B+-trees, and
adding intermediate nodes and node adaptation for tries.

• Consolidation measures the time spent on consolidating delta
chains in OpenBw-tree.
Figures 2(a) and (b) show the runtime breakdown with 1 thread

and 16 threads, respectively. Most of the time is spent in tree tra-
versal and leaf node accesses with 1 thread. As the number of
threads increases to 16, all of them suffer from high contention.
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Figure 3: Architecture of 𝐵link-hash.

ART and 𝐵link-tree show huge amount of retries, and Masstree
spends the most time in latching due to local retries. OpenBw-tree
spends the most time in consolidation since all the threads try to
consolidate delta chains in rightmost nodes at the same time.

There are two main reasons for this behavior that correlate to
each other. First, the high contention itself with skewed accesses
results in excessive aborts caused by consecutive splits. Threads
try to insert in newly allocated nodes which are filled up shortly,
causing another splits. These splits invalidate traversals by forcing
them to abort, which causes multiple retries even for a single op-
eration. Second, stressing a single memory location with atomic
operations introduces performance bottleneck [17]. To insert a key,
all the threads atomically load and try to update the shared memory
whether it is a latch-based or latch-free structure. This incurs high
cache coherence latency since each update needs to be propagated
to the cache in all the accessed cores.

Tree-based indexes do not scale in time-series workloads, but
are crucial as they support range scans. We make a key observation
that the dilemma can be resolved by combining B+-tree and hashing
into a single index structure to get the best of both worlds. To avoid
certain B+-tree leaf nodes becoming a hotspot, we can replace them
with hash indexes that are sufficiently large to support concurrent
insertions frommultiple threads. Those hash indexes can be conver-
ted back to B+-tree nodes later, when they are no longer a hotspot.
In Section 3, we present the insights, challenges, and design of
𝐵link-hash that achieves the goal based on these intuitions.

2.2 𝐵link-tree
𝐵link-tree [31] is a classic variant of B+-tree that achieves high
concurrency in disk-based systems. It adds a link pointer and a
high key to each node, and resolves the limitation of latch crabbing.
Latch crabbing releases latch on its parent node if its child node
latch is acquired, and thus, frequently touches multiple latches to
traverse a tree. The bottom-up latching in 𝐵link-tree may affect
tree traversal as concurrent split can cause a thread to access an
incorrect node. Such an issue is resolved by checking the high key,
and the correct node can be found by chasing the link pointers.

We build 𝐵link-hash on top of 𝐵link-tree due to its simplicity
and efficiency in synchronization. 𝐵link-tree has been thoroughly
studied and noted for its superiority in concurrency in previous
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keylatchlevelHash 

Node

KV entry 32…KV entry 2KV entry 1fp 32…fp 2fp 1link
statelatchBucket
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Figure 4: Layout of a hash node — New structures are high-
lighted in red color.

work [50, 51], and it has been demonstrated that 𝐵link-tree has light-
weight concurrency support; for example, an operation requires at
most three latches at a time [31]. However, we note that the general
idea of 𝐵link-hash also applies to other B+-tree variants.

3 BASIC DESIGN OF 𝐵link-HASH
𝐵link-hash combines hashing and B+-tree into a single index. A
key challenge is to combine them smoothly such that neither cor-
rectness nor performance is sacrificed while keeping the design
simple. For 𝐵link-hash, we decide to keep the 𝐵link-tree structure as
much as possible and only replace the leaf nodes that experience
high insertion traffic with hash nodes to reduce conflicts caused by
monotonic insertions. When a hash node is no longer under high
insertion traffic and starts to be queried with scans, 𝐵link-hash con-
verts the hash nodes back to B+-tree nodes. This makes 𝐵link-hash
completely compatible with traditional 𝐵link-tree — 𝐵link-hash will
eventually be converted to 𝐵link-tree after the monotonic insertion
pattern disappears for certain parts of the tree.

Next, we will present the data structure of a 𝐵link-hash (Sec-
tion 3.1) and the operations in a basic (i.e., unoptimized) 𝐵link-hash
(Section 3.2) and their limitations (Section 3.3). We will discuss the
performance optimizations of the basic 𝐵link-hash in Section 4.

3.1 Data Structure
Figure 3 describes the overall structure of 𝐵link-hash. A leaf node
in 𝐵link-hash is either a B+-tree node or a hash node. A B+-tree
node contains a pointer to its right sibling node (as in 𝐵link-tree),
while a hash node has pointers to both its left and right sibling
nodes. Initially, a leaf node starts as a hash node and will later
be converted to B+-tree nodes when it encounters scan queries,
following a policy that we will discuss in Section 4.3. A split creates

1237



a new leaf node that has the same layout as the original node, e.g.,
a new hash node is created when splitting a hash node.

Figure 4 illustrates the layout of a hash node. It shares the com-
mon metadata with a B+-tree node such as level, latch, high key,
and right sibling pointer. The level specifies the level of a node in
the tree. The latch occupies 8 bytes, consisting of a latch bit and
a version number. Note that the latch bit protects only structural
changes in a node (e.g., split) but does not implicitly latch buckets in
the node. The high key is a fence key that represents the largest key
in a node. A hash node additionally contains a left sibling pointer to
facilitate node adaptation and to reduce synchronization overhead
(its detailed purpose is discussed in Sections 4.2 and 4.3).

A hash node has multiple buckets to store data, each of which
consists of 32 key-value entries. Each bucket also contains metadata
including a latch and link state. The bucket latch controls the con-
currency at a bucket granularity. The link state is used to parallelize
node splits, which will be explained in Section 4.2.

Fingerprints in each bucket are hashed keys [41]. Each finger-
print is 1B and all fingerprints in a bucket combined are 32B. The
least-significant bit of a fingerprint indicates the occupancy of the
corresponding key-value entry, and the rest of the bits determine if
the hashed search key matches the hashed key stored in the bucket.
The fingerprint allows search to avoid unnecessary accesses to ac-
tual key space by filtering out many accesses that do not match any
hash keys. Since false positives may still exist, after a fingerprint hit,
a search reads the full key to determine whether the keys indeed
match. For high performance, we use SIMD instructions to compare
multiple fingerprints in a bucket with a single instruction call.

Various optimization techniques have been studied to maintain
good utilization of a hash index such as stashing, distance prob-
ing [43], cuckoo displacement [42], and chaining [28]. Among the
above, we apply distance probing [43] and double hashing to hash
nodes to improve memory efficiency. That is, upon a hash collision,
a writer first probes up to a specific distance of adjacent buckets to
find an empty entry. If an empty entry is still not found, it picks
another bucket using a different hash function, and repeats the
probing. Although these optimizations degrade search perform-
ance by potentially increasing the amount of key comparisons and
accessed buckets, this overhead is mitigated using fingerprints by
filtering out unnecessary accesses to actual key space.

3.2 Basic Operations in 𝐵link-hash
In this section, we discuss the basics of concurrent operations in
𝐵link-hash. 𝐵link-hash uses optimistic latch coupling [30] for its con-
currency, validating a node version change after reading contents
to verify any updates. We focus on leaf operations and internal
nodes have similar behavior [31]. We first describe the operations
in a hash node followed by the operations in a B+-tree node.

3.2.1 Hash Node Operations. Each data operation in a hash node
is processed at a bucket granularity. In the following, we discuss
how read, insert, update, delete, and scan operations work. We omit
fingerprints, distance probing, and double hashing for clarity.
Read. A reader first finds a bucket index using a hash function, and
reads the version number of the bucket. The read aborts and retries
if the bucket latch has already been acquired by another thread.
Then, it reads the value of the matching key and validates the

version number of the bucket. If the version numbers do not match,
another thread must have updated the bucket, so the current reader
aborts and retries from the root. Finally, it validates the version
number of the node by comparing its current version with the
version number obtained during tree traversal. Note that no shared
data is modified in a read operation as it simply reads the content.
Insert. A writer does not need to latch the entire hash node for an
insert. Instead, only the bucket that is inserted into is latched. The
node cannot be updated while the thread is holding a bucket latch
since each structural modification operation (SMO) requires the
node latch and all the bucket latches. Then, the writer validates the
version number of the current node obtained during tree traversal
to check if the node has been updated by a concurrent thread. This
prevents writers from updating new records in an incorrect location.
For example, suppose two threads access the same leaf node. One
of them tries to insert a record in a bucket, while the other tries
to split the node. If the second thread completes the split before
the first thread latches the bucket, the first thread does not know if
the node has been updated, and it may insert in an incorrect node.
To prevent this, we validate the version number of a node after
latching a bucket. Then, new data is written in the bucket. If the
insertion fails due to a hash collision, it splits the node.
Update. An update works in a similar way as an insert. The only
difference is that a thread changes an old value to a new value for
the matching key in the target bucket.
Delete. A delete works in a similar way as an update. Instead
of changing a value, it marks the value for a matching key as
deleted. Note that any under-utilized hash nodes are notmerged, but
reclaimed and converted back to B+-tree nodes later by subsequent
scanners following a simple heuristic that we discuss in Section 4.3.
Scan. A range scan follows the steps below to ensure reading a
consistent snapshot. First, the scanner reads the version number
of each bucket, sequentially scans its contents to collect key-value
pairs that satisfy the requested key range, and validates the version.
Then, it returns the values after sorting the collected pairs. Finally,
the node’s version number is validated to guarantee the node has
not been updated by a concurrent thread.

Scans may span more than one leaf node when the requested
range is large. The qualified nodes can be a mixture of B+-tree and
hash nodes. In such cases, a scanner traverses to its right sibling
node via the link pointer after the version validation of the current
node. Similar to 𝐵link-tree, in 𝐵link-hash, keys in the right sibling
node are always larger than keys in the current node. The result
records from each leaf node are combined and returned.
Split.When an insert fails due to the lack of empty space, a split is
triggered. A new node is pre-allocated before any synchronization
to minimize the length of the critical section. Then, the thread tries
to acquire a node latch. It succeeds only if the current version of
the node matches the version that is obtained during tree traversal.
Furthermore, it acquires all the bucket latches. After finding a me-
dian key by scanning all the buckets and sorting the collected keys,
key-values are migrated to the new node by scanning the buckets
again. Then, it checks the existence of the right sibling node. If the
sibling is a hash node, it updates its left sibling pointer to point to
the new node. Finally, the right sibling pointer in the current node
is updated, and the pointer for the new node is returned.
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3.2.2 B+-tree Node Operations. Data operations in B+-tree nodes
work the same way in the legacy OLC-based B+-tree [15]. Syn-
chronization is done at a node granularity, and the only difference
lies in how SMOs are done. The placement of hash nodes adds one
extra update for the left sibling pointer in its right sibling node.

3.3 Limitations of the Basic 𝐵link-hash Design
While hash nodes improve scalability for monotonic insertions,
they also introduce the following new challenges.

First, splitting a hash node can potentially become a new scalab-
ility bottleneck. A split requires to obtain a median key to provide
a key range to parent nodes, which further requires to scan all the
keys and sort. Then, half of the key-value pairs need to be migrated
to a new node, and this involves comparing every key in the current
node to the median. Both median calculation and data movement
happen on the critical path of a split in the basic design of 𝐵link-
hash. They are expensive computations that can block subsequent
threads from accessing the splitting node for a long time.

Second, range scan may become a scalability bottleneck. The
unsorted data in hash nodes requires a scanner to read every bucket
to collect key-value pairs and sort to find values in the correct order.
Such a large scan may even access irrelevant keys that do not satisfy
the requested key range. This expensive process may be repeated
many times due to conflicts if the accessed node is a hotspot.

4 OPTIMIZATIONS
In this section, we present three optimization techniques to over-
come the challenges of basic 𝐵link-hash described in Section 3.3.

4.1 Median Approximation
In a hash node split, a median key is found by scanning all the buck-
ets and sorting the collected keys. This incurs significant memory
accesses and sorting overhead on the critical path, which excludes
other thread accesses for a long time.

We make the key insight that a precise median is not required for
the correctness of a split. Instead, a key that is close to the median
is enough to achieve acceptable performance. We identify such
an approximate key through sampling a subset of keys, instead of
reading all the keys.

Specifically, a split thread sequentially scans buckets until it
collects a sufficient number of keys, and calculates a median with
the sampled collection. Sampling guarantees the upper bound error
rate for an approximate median with a sufficient sample size [37, 47].

Random sampling ensures that the results obtained from a sample
approximate what would have been obtained if the entire popula-
tion had been measured [48]. The randomness of selecting a sample
in 𝐵link-hash comes from hashing. Every key is randomly distrib-
uted across buckets based on a hash function, and collecting the
keys with sequential scan guarantees random selection.

4.2 Lazy Split
Migrating key-value entries to a new node is another scalability
bottleneck in a hash node split. Since each bucket is similar to a
B+-tree node in size, a large amount of data needs to be moved.
In the meantime, every entry needs to compare to the median to
determine whether it should be migrated.
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Figure 5: Steps for lazy split.

We present lazy split to minimize the migration cost by breaking
down the node-level critical section into multiple smaller bucket-
level critical sections. It avoids expensive data movement on the
critical path, and the data are migrated in a lazy manner at a bucket
granularity. Specifically, we place a link state variable per bucket
to capture the state of lazy migration. A bucket holds one of the
three states; STABLE, LINKED_LEFT, or LINKED_RIGHT, and each
state informs the following:
• STABLE indicates that all the key-value entries inside the bucket
are in the correct position.

• LINKED_LEFT denotes that some key-value entries may have not
been migrated from the bucket in its left sibling node.

• LINKED_RIGHT implies that some key-value entries in the current
bucket may belong to the bucket in its right sibling node but have
not been migrated yet.
Figure 5 shows an example of splitting a hash node in a lazy

manner. First, all the buckets in L0 are STABLE (Figure 5(a)). An
approximate median, 15, is found in this phase. Then, a new node
L1 is allocated with the states initialized to LINKED_LEFT in all its
buckets (Figure 5(b)). This indicates that those buckets in L1 are not
stable, and some key-value entries in L0’s buckets may belong to
L1’s buckets. Note that L0 and L1 are connected via doubly-linked
pointers. Next, all the buckets in L0 are updated to LINKED_RIGHT
(Figure 5(c)). This implies that those buckets in L0 are not stable,
and some key-value entries in L0’s buckets may belong to L1’s
buckets. Note that none of the key-value entries has physically
moved to L1. Finally, the split completes by creating its parent node
with the median 15 found in the first phase (Figure 5(d)).

Lazy split modifies the basic operations in a hash node. That
is, subsequent threads help along stabilizing unstable buckets by
physically migrating key-value entries at a bucket granularity. The
unstable buckets always come in pairs, and they are stabilized
before the chain can possibly grow in length. For example, a bucket
that is LIKNED_RIGHT is connected to the same-indexed bucket that
is LINKED_LEFT in its right sibling node, and they are stabilized
before an SMO at latest. We discuss how it changes each hash node
operation by revisiting the operations in Section 3.2.
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Bucket stabilization. Buckets become unstable after lazy split,
and those buckets are stabilized outside the critical section, i.e.,
split operation. A writer starts with holding a latch for a bucket
in basic 𝐵link-hash operations (e.g., insert, update and delete). The
bucket link state is always first examined before accessing contents
in a bucket. If the bucket is not STABLE, it stabilizes the logically
connected two buckets by acquiring a latch in the same-indexed
bucket in its left or right sibling node according to the link direction.

First, a writer reads the link direction of an unstable bucket in
the current node. If it is LINKED_LEFT, the same-indexed bucket
in the left sibling node becomes the left bucket, and the current
bucket becomes the right bucket. The writer then tries to latch the
left bucket. In case of any failures of acquiring a latch, it aborts
and retries. If the bucket in the current node is LINKED_RIGHT, it
becomes the left bucket, and the same-indexed bucket in the right
sibling node becomes the right bucket. Then, the right bucket is
latched. Next, all the keys in the left bucket are examined if any of
them are larger than the high key in the left node. Those keys are
migrated to the right bucket. Then, it updates the states of left and
right buckets to STABLE, and releases the acquired bucket latch.
Read. After obtaining the version number of a bucket, a reader
first examines the state of the bucket to determine if it needs to be
stabilized. If stable, it works the same way as the basic operation,
returning the value after reading the content of the bucket for a
matching key. Otherwise, the reader is promoted to a writer to
help along stabilizing the unstable bucket. The promotion is always
done by upgrading the bucket latch with the obtained version
number. After the latch acquisition, it stabilizes the bucket in the
way discussed above. In case of any failures of latch acquisition
or bucket stabilization, it aborts and retries from the root. After
the work, it releases the bucket latch and reads the newest version
number of the bucket. Then, it proceeds to the next steps in the
basic operation, finding a value for the matching key.
Insert, Update, and Delete. The insert, update, and delete oper-
ations for lazy split work in a similar way to the read. After the
version number validation of the node, a writer reads the state of a
bucket to stabilize it on demand as done in read operation. If the
bucket is stable, it follows the same logic as the basic operations,
trying to insert a key-value pair into the bucket or update/delete a
value for thematching key in the bucket. Otherwise, it also proceeds
to the same step after the stabilization.
Scan. A range scan also helps along stabilizing unstable buckets.
Each bucket state is investigated before reading the contents to
make sure it is stable. In case of finding an unstable bucket, a
scanner is promoted to a writer by upgrading the bucket latch with
the version number obtained at the very first access of the bucket.
Then, the thread follows the same logic in Section 3.2, proceeding
to scanning the rest of the buckets, after releasing the latch.
Split. Unlike the work in the basic operation, a split thread first
scans all the bucket states in the current node to make sure they are
stable. It tries to stabilize unstable buckets if any of them are seen
during the scan. This reduces the length of the critical section, and
guarantees a logical link between the buckets in adjacent nodes to
be always pairwise. To minimize the works done inside the critical
section, the new node allocation initializes all of its bucket states to
LINKED_LEFT. After obtaining an approximate median, key-value

pairs are logically migrated. This only sets all the bucket states in
the current node to LINKED_RIGHT, while the basic split physically
migrates half of the records via key comparison with the median.
The bucket state updates connect pairwise logical links between
the buckets in the current and the new node. Note that no data are
moved to the new node, but the bucket state update delegates the
work for data movements to subsequent threads. Proceeding to the
steps of updating the sibling pointers completes the lazy split.

While lazy split modifies the data operations in a hash node, it
does not affect any operations in a B+-tree node as all the buckets
are required to be stable prior to a structure modification. That is,
every structure modification in hash nodes is executed with the
guarantee of data stability in buckets, which creates logical links
only between two hash nodes.

As each data operation helps along stabilizing unstable buckets,
it may affect the latency performance. We mitigate this overhead
by stabilizing them before the chain can possibly grow in length so
that each operation stabilizes a pair of buckets at most.

4.3 Structure Adaptation
While hash nodes provide scalable performance in monotonic inser-
tion, it hurts range scan performance. Unsorted keys force threads
to scan every bucket to collect all the key-value pairs and to sort
them to find values in the correct order. This is both inefficient and
vulnerable to conflicts. If another thread updates a bucket while
the scan is happening, the whole process may need to abort and
retry for data consistency.

We develop the structure adaptation technique to efficiently sup-
port range scans in 𝐵link-hash. That is, a hash node is dynamically
converted to B+-tree nodes upon a scan access. A scanning thread
first collects and sorts all the key-value pairs in a hash node, and re-
places the hash node with B+-tree nodes via copy-on-write (CoW).
Introducing a set of new nodes propagates to the upper levels of
the tree, and such updates may cause multiple updates in a parent
node. To minimize the cost of adding new records, every parent is
updated in a batch fashion.

Structure adaptation benefits range scans as it enables sorted
sequential reads in B+-tree nodes. In 𝐵link-hash, we use a simple
heuristic to trigger conversion for high performance for both mono-
tonic insertion and scanning at the same time. Specifically, the
rightmost node is always a hash node; this is because time-series
workloads typically have monotonically increasing keys that all
go to the rightmost leaf node. Then, a hash node is converted to
B+-tree nodes upon the first scan request to it. We observe such a
simple heuristic works well for the workloads we tested.
Node Type Conversion.Hash node conversion works in a similar
way to lazy split. Once a scanner finds a hash node that is not the
rightmost node, it converts the node into B+-tree nodes in the
following steps: First, it visits every bucket as done in lazy split,
stabilizing unstable buckets to make sure no data is lost. Then, the
thread additionally latches the left sibling node to safely introduce
new B+-tree nodes in a CoW manner, after acquiring the node
and all the bucket latches. New B+-tree nodes are allocated after
collecting and sorting all the key-value pairs. We maintain an 80%
utilization for the new B+-tree nodes for space efficiency. Then, the
thread updates the right sibling pointer in the left sibling node to
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point to the first new B+-tree node, and releases its latch. Likewise,
if the right sibling node is a hash node, it updates the left sibling
pointer in the right sibling node to point to the last B+-tree node.
The updates are propagated to the upper levels of the tree in a
batch fashion, and the replaced hash node is reclaimed with an
epoch-based reclamation protocol [24].

𝐵link-hash follows the lock guarantee of 𝐵link-tree [31]. A hash
node conversion holds at most three node latches at a time, i.e.,
a hash node that is to be converted, its parent node, and its left
sibling node if it exists, as done in 𝐵link-tree.

5 EVALUATION
In the following, we evaluate 𝐵link-hash against representative in-
memory indexes and provide performance analyses.

5.1 Experimental Setup
Hardware. We conduct all experiments on a CloudLab [19] ma-
chine with c6420 instance type, which contains two Intel Xeon Gold
6142 CPUs. Each CPU has 16 cores (32 hyper-threads) with 22 MB
L3 cache, and each core has 32 KB of L1 instruction cache, 32 KB L1
data cache, and 1 MB L2 cache. The server is equipped with 512 GB
of DDR4 DRAM.
Software. We pin each thread to a specific core to avoid unne-
cessary CPU migration and remote memory access. Threads are
assigned to local regions first before using a remote NUMA socket.
We use tcmalloc [4], a parallel memory allocator, for scalable
memory allocation. All the indexes are compiled with gcc 7.5 with
the -O3 optimization flag. Wemeasure multiple runs of experiments
and report the average of three stable runs.

We implemented 𝐵link-hash1 on top of 𝐵link-tree [31]. It is writ-
ten in C++ with 3800 lines of code (LoC), which includes 1640 LoC
of 𝐵link-tree implementation. We use Intel Advanced Vector Exten-
sions (AVX2) [25] to accelerate fingerprint operations, e.g., when
comparing a hash key with fingerprints in a hash node.

5.2 Workloads
For each experiment, we first populate an index with 100 million
records, before executing 100 million benchmark operations. We
use two different types of workloads to evaluate 𝐵link-hash against
other representative indexes: (1) Time-seriesworkload that performs
insertions with monotonically increasing keys (i.e., timestamps),
and (2) YCSB-Email that runs YCSB with email keys. We use YCSB
workload to evaluate 𝐵link-hash in OLTP workload scenarios since
its design goal is not limited to efficiently supporting time-series
workloads, but is to extend the capabilities of 𝐵link-tree on the new
pattern of monotonic keys while keeping its benefits.
Time-Series. We use a synthetic dataset for time-series workload
from previous work [56], which models data arrival from distrib-
uted sensors with timestamp keys. It simulates 1K sensors to record
events. The key for each event consists of 6-byte timestamp fol-
lowed by 2-byte sensor ID, and the value for each event is an 8-byte
integer. We implement the workload by having each thread read the
synchronized local clock through RDTSC (read timestamp counter)
instruction. We first evaluate individual index operations (insert,

1Implementation available at https://github.com/chahk0129/Blink-hash.

Table 1: YCSB workload configurations.

Workload Operations
Load Insert (100%)
A Read (50%), Update (50%)
B Read (95%), Update (5%)
C Read (100%)
E Scan (95%), Insert (5%)

read, scan), and then evaluate a mixture of the operations (50%
insert, 30% long scan, 10% short scan, 10% of read). Inserts are mono-
tonic, while reads and scans are uniformly random. Scan workload
queries 50 records at average, while mixed workload queries 5–10
and 10–100 records for short and long scans, respectively.
YCSB-Email. The Yahoo! Cloud Serving Benchmark (YCSB) [16]
is a widely-used key-value store benchmark. In this workload, we
use publicly available email addresses to evaluate indexes in string
keys [20], instead of using the dataset generated by the YCSB work-
load generator. The average length of email addresses is 19 bytes,
and the length of each record varies from 12 bytes to 32 bytes. The
value for each record is an 8-byte integer. The details of evaluated
workload configurations are summarized in Table 1. Note that we
do not include workloads D and F in our experiments. Workload D
consists of 5% of inserts and 95% of reads, which read recently inser-
ted items. We believe workload B serves the same purpose in terms
of index behavior as it has similar characteristics to workload D.
Workload F consists of 50% of reads and 50% of read-modify-writes
(i.e., read an item, modify it, and write it back). As each modification
is reflected after a write-back which updates an old value to a new
value, it can be implemented with read and update operations in
indexes, and we believe workload A covers the scenario.

5.3 Indexes under Comparison
Modern indexes generally fall into three categories: B+-tree-based,
trie-based, and hybrid structures. We carefully choose five repres-
entative in-memory indexes in these categories to compare with
𝐵link-hash experimentally. For B+-tree-based indexes we choose
𝐵link-tree [31] and Bw-tree [34]. For trie-based indexes we choose
Adaptive Radix Tree (ART) [32] andHeight Optimized Trie (HOT) [11].
We choose Masstree [38] as a representative hybrid index.
𝐵link-tree. 𝐵link-tree [31] is a disk-based B+-tree designed to over-
come the limitation of latch crabbing as discussed in Section 2. We
implement the in-memory version of 𝐵link-tree from scratch based
on previous studies [15, 31]. For fair comparison, we apply perform-
ance optimization to deliver good performance in a main-memory
system. We tune the node size in the main-memory setting, instead
of using the default page access granularity. We also employ linear
search instead of binary search inside each index node as sequential
access can take advantage of hardware prefetching.
OpenBw-Tree. Bw-tree [34] is a latch-free B+-tree designed to
overcome the scalability limitation of latch-based B+-trees with
mapping table and delta records. In our experiments, we useOpenBw-
tree, an open-source in-memory Bw-tree implementation [52].
ART. ART [32] is a trie-based in-memory index that effectively
addresses the shortcomings of large spans in tries. Instead of using
a fixed node size, it employs adaptive nodes to dynamically increase

1241

https://github.com/chahk0129/Blink-hash


A
R

T

H
O

T

M
as

st
re

e

O
pe

nB
w

-tr
ee

B
lin

k
-tr

ee

B
lin

k
-h

as
h

Index Type

0

5

Th
ro

ug
hp

ut
(M

op
s/

se
c)

(a) Insertion

A
R

T

H
O

T

M
as

st
re

e

O
pe

nB
w

-tr
ee

B
lin

k
-tr

ee

B
lin

k
-h

as
h

Index Type

0

1

2
(b) Read

A
R

T

H
O

T

M
as

st
re

e

O
pe

nB
w

-tr
ee

B
lin

k
-tr

ee

B
lin

k
-h

as
h

Index Type

0.0

0.5

1.0

(c) Scan

Figure 6: Single-thread throughput of indexes in time-series
workload.

and decrease the fanout of a node on demand. We use the open-
source implementation for ART by the original authors.
HOT.HOT [11] is another trie-based index that improves search ef-
ficiency byminimizing the overall tree height. It dynamically adapts
its structure to maintain a balanced tree by comparing the heights
between subtrees. We use unmodified open-source implementation
for HOT by the original authors.
Masstree. Masstree [38] is a hybrid of B+-tree and trie designed
to support efficient queries for variable-length keys. Each 8-byte
key slice is treated as a key for each subtree which is a B+-tree,
and the subtrees form a trie. We also use unmodified open-source
implementation for Masstree by the original authors.

5.4 Single-threaded Performance in
Time-Series Workload

We first evaluate single-threaded performance of indexes in time-
series workload. Figure 6 shows the throughput of indexes with
different operations.
Insertion. Figure 6(a) shows the throughput for monotonic in-
sertion. ART achieves the highest throughput because of its node
adaptation technique that gradually increases the fanout based on
the utilization of each node. HOT, on the other hand, shows one of
the lowest throughput. This is because it frequently modifies the
tree structure to balance the height of subtrees, and each record is
written via CoW. Among the B+-tree variants, OpenBw-tree shows
the lowest throughput, because it prepends a delta record for each
write to avoid in-place updates, which leads to occasional delta
chain consolidation by subsequent operations. 𝐵link-hash shows
slightly better performance than 𝐵link-tree, since the large hash
node size setting reduces the height of the tree.
Read. Figure 6(b) reports the throughput for read operations. While
most of the indexes show similar performance, OpenBw-tree shows
low throughput. It suffers from completing partial SMOs which
leads to delta chain consolidation. If a reader encounters a split
delta record on top of a delta chain, it helps along to complete the
partially applied split, which consolidates the delta chain. Different
from insertion performance in Figure 6(a), HOT especially shows
increased throughput, because it benefits from a balanced tree
height which reduces the distance from a root node to leaf nodes.
Scan. Figure 6(c) shows the throughput for scan operations. B+-
tree variants generally perform better than trie variants for range
accesses with linked leaf node traversal. 𝐵link-hash shows compar-
able performance to 𝐵link-tree because of the structure adaptation,
which dynamically converts hash nodes to B+-tree nodes and thus,

slightly slows down the scan performance. Masstree shows lower
throughput than 𝐵link-tree and 𝐵link-hash, although it acts as a
B+-tree for 8-byte keys. Keys in its border nodes are not physically
sorted, and it causes random accesses to collect keys in the correct
order which is not cache-friendly. Tries, in contrast, need to traverse
up and down the nodes to access the next keys. HOT shows higher
throughput than ART, because it takes advantage of its balanced
tree height which reduces the distance to the next keys, while ART
suffers from a substantial amount of pointer dereferences.

5.5 Scalability in Time-Series Workload
We now go beyond a single thread and evaluate the scalability of
indexes in time-series workload. Figure 7 shows the throughput of
the indexes with varying number of threads.

Figure 7(a) shows the performance of insert workload. 𝐵link-hash
is the only index that scales in monotonic insertion, outperforming
the others by up to 91.3× at 32 threads. The hash node in 𝐵link-hash
evenly distributes insertions to different buckets, while all the other
trees suffer from extremely high contention on the rightmost leaf
node as discussed in Section 2.1.

Figure 7(b) shows the performance of read workload. While
most indexes scale linearly, 𝐵link-hash outperforms the others as it
provides constant lookup time in leaf nodes. Moreover, the larger
node size in the leaf layer allows 𝐵link-hash to shorten the tree
height which reduces the number of memory accesses. The height
of 𝐵link-hash is 4, while that of the others is 6 (for 𝐵link-tree), 7
(for ART, HOT, and Masstree), 5 (for OpenBw-tree without delta
records), and 8 (for OpenBw-tree with delta records).

Figure 7(c) reports the performance of scan workload. 𝐵link-tree
shows the highest scalability as it sequentially scans leaf nodes with
linked node traversal. 𝐵link-hash shows comparable performance
to 𝐵link-tree because it takes advantage of the structure adaptation.
Trie-variants generally show poor performance, because they need
to traverse up and down the nodes to access the next keys. Masstree
causes random accesses in border nodes as discussed in Section 5.4.

Figure 7(d) shows the performance of mixed workload, which
consists of a mixture of insert, read, and scan operations. 𝐵link-
hash outperforms all the other indexes up to 74.2× at 64 threads.
It achieves scalable performance with the optimizations in hash
nodes and dynamic structure adaptation for in-flight range scans.
The other indexes fail to scale due to the monotonic insertions.

5.6 Insertions with Delays
In practice, timestamps may not arrive in a strict monotonic order.
Instead, many insertions may be delayed and the timestamps may
slightly lag behind due to sensor malfunction, network delay, or
scheduling overhead. This delay creates out-of-order keys in data
arrival time. We model the effect by injecting random delays to
timestamp keys that follow a Poisson distribution.

In this experiment, we additionally evaluate a simple straw-
man solution to the high contention problem in existing indexes.
Monotonic keys can be inserted into an intermediate hash buffer
in parallel, and those buffered data can later be flushed down to
an index in batch to mitigate the contention. The approach can
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Figure 7: Throughput of the time-series workload with varying number of threads.

efficiently support monotonic insertion by distributing thread ac-
cesses to different hash buckets in the buffer, while maintaining
the benefits of tree indexes in range scans.

We design two buffer management approaches that differ in
handling out-of-order keys (i.e., keys that are smaller than the
highest key of a tree index). The first approach flushes a buffer
when an out-of-order key arrives (Flush on out-of-order). The other
approach flushes a buffer when it becomes full, and inserts an out-
of-order key directly into an index (Insert on out-of-order). A buffer
flush creates a subtree by collecting and sorting the data in the
buffer, and the subtree is inserted into a B+-tree. Each approach
is implemented on top of 𝐵link-tree, and uses two buffers which
are switched upon a flush operation. We use the same layout of
the hash node in 𝐵link-hash for the buffer implementation for fair
comparison, and we tune the buffer size to its best performance
setting, 512 KB. We vary the expected random delays to evaluate
their performance under a varying amount of out-of-order keys.

Figure 8(a) shows the performance of insert workload with
delays. While 𝐵link-hash dominates, all the trees maintain constant
performance up to 1 msec delay, and their performance starts to
increase at 10 msec delay. It is because skewed accesses to rightmost
nodes are distributed to different leaf nodes as the amount of out-of-
order keys increases. However, HOT and OpenBw-tree still suffer
from high contention at 10 msec delay. HOT causes higher conflicts
as it writes a new record via CoW due to height balancing. OpenBw-
tree also results in higher contention consolidating delta chains.
This performance trend implies that conventional indexes cannot
provide high-speed data ingestion for time-series workload. The
buffer approaches show higher performance than the conventional
indexes when the expected delay is small, but their performance is
lower than 𝐵link-hash. It is because data collection and sorting in a
buffer flush are executed sequentially, while 𝐵link-hash leverages
high parallelism by breaking down a node-level critical section into
bucket-level critical sections with lazy split.

Figure 8(b) shows the performance of mixed workload. 𝐵link-
hash shows constantly increasing performance across the random
delays, while the performance of the other trees stays the same until
the delay of 10 msec. It is because the amount of stress in rightmost
nodes has decreased as insertion only accounts for 50% in this
workload, and such mitigated stress allows 𝐵link-hash to achieve
better parallelism as more keys become out-of-order. However,
the contention is still high enough to destroy the performance of
the other indexes. When the expected delay gets large enough,
𝐵link-tree dominates due to its optimized link pointer-based split
and superiority in scans. Buffer approaches follow the similar
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Figure 8: Throughput of time-series workload under vary-
ing random delays with 64 threads.

performance trend in insert workload but at a higher rate. When
keys become highly out-of-order, they show bigger performance
gaps to 𝐵link-tree. It is because long range scan accesses additionally
trigger buffer flushes which are not fully utilized.

5.7 YCSB-Email Workload
In this section, we evaluate the indexes on YCSB-Email workload
to investigate their performance under the generic OLTP workload
scenarios where keys may have variable lengths. This experiment
shows the competitiveness of 𝐵link-hash when there are no mono-
tonic insertions.

Column (a) of Figures 9 and 10 show the throughput and CDF
of latency (at 64 threads), respectively, of the indexes for differ-
ent workload configurations under YCSB-Email workloads. Trie
variants generally show better throughput and lower latency than
B+-tree variants. It is because they only store partial keys, which
reduces the cost of data reads and writes, while B+-trees store
the entire keys. ART shows linearly scaling performance within a
local socket, but the improvement rate decreases at the maximum
number of threads due to the increased amount of remote memory
access in CoW node adaptation. 𝐵link-hash, however, shows linear
scalability even across a remote socket at 64 threads. In addition to
its hash optimization, it takes advantage of short critical sections
benefiting from median approximation and lazy split.
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Figure 10: CDF of latency in YCSB-Email with 64 threads.

Columns (b), (c), and (d) of Figures 9 and 10 report the through-
put and latency of workload A, B, and C, respectively. While all the
indexes show scaling performance, 𝐵link-hash and HOT outperform
the other trees. 𝐵link-hash benefits from fingerprints that filter out
unnecessary string key accesses. HOT takes advantage of sparse
partial key layout which enables further key compaction, allow-
ing more descendants to share a common prefix. B+-tree variants,
however, suffer from expensive string key comparisons.

As Column(e) of Figures 9 and 10 show, under workload E, 𝐵link-
tree outperforms the others as it leverages linked-leaf traversals.
𝐵link-hash follows the same trend and shows comparable through-
put as it dynamically adapts its structures. However, it shows high
tail latency as thread accesses to hash nodes are blocked until
their conversions complete. Among trie variants, HOT shows high
throughput and low latency by leveraging its balanced tree struc-
ture which reduces the distance to next keys.

5.8 Memory Footprint
We now compare the memory footprint of indexes with different
key types. For a deeper analysis, we break down the total amount
of memory consumption into five categories.

• Metadata includes the information inside a node other than keys,
child pointers, and values (e.g., latch, counter, and link pointer).

• Structure data consists of child pointers and separator keys (e.g.,
keys in non-leaf nodes) that are needed to form a tree structure.

• Key data represents unique keys and values.
• Occupied and unoccupied represents populated and empty entries
in a node, respectively.

Unlike conventional tries, Masstree stores suffix keys in a separ-
ate data structure called string bag. For a fair comparison, we show
the footprint of Masstree with and without suffixes. As OpenBw-
tree supports explicit delta chain consolidation, we also report the
memory consumption with and without it.

Figure 11(a) describes the memory footprint of indexes for 8B
integer keys. HOT shows the lowest memory consumption due to
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Figure 11: Memory footprint of indexes on different key
types.

its dynamic adaptive nodes. ART, however, wastes a large amount
of space on the structure data, because there is a large space gap
between static adaptive nodes. Masstree spends much memory on
metadata since its node structure contains more information than
conventional B+-trees. In addition to a parent pointer, a border node
includes permutation for key indirection, doubly-linked pointers,
and additional metadata for suffixes. The difference of OpenBw-tree
and consolidated OpenBw-tree shows the memory consumption
on delta chains. A larger amount of key data is unoccupied in
𝐵link-tree and 𝐵link-hash because of their static node structures.
𝐵link-hash shows slightly higher memory consumption due to large
hash nodes. Note that HOT does not have unoccupied data as it
adapts its node size via CoW. OpenBw-tree also uses elastic nodes,
but it has unoccupied structure data in its mapping table.

As the key size increases to 32 bytes, trie variants gain more be-
nefits as shown in Figure 11(b), because of the characteristics of key
types. Bit representations in each byte slice of integer keys are more
uniformly distributed, while those in email keys are skewed. There-
fore, more keys can share a common prefix in email keys. Masstree,
however, shows increased memory consumption although it inher-
its the characteristics of tries. It creates new layers to store next
slices of keys, each of which is equivalent to a B+-tree, introducing
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Figure 12: Factor analysis under time-series workload.

more interior nodes and border nodes that are not fully utilized.
𝐵link-hash consumes similar amount of memory space as 𝐵link-tree.

5.9 Analysis of Design Chocies
In this section, we analyze the performance impact of design choices
and performance optimizations in 𝐵link-hash. We first break down
the performance gap between 𝐵link-tree and 𝐵link-hash, and incre-
mentally add features to 𝐵link-tree. Figure 12 shows the scalability
of each increment using time-series workload. Each feature is added
in horizontal order in the legend. Note that hash node optimizations
(i.e., +Hash node, +Approximate median, and +Lazy split) do not
have any performance improvements in the workloads that include
scan operations, until the structure adaptation is applied.
+Hash node. Replacing a B+-tree node with a hash node mitigates
extremely high contention by distributing highly skewed thread
accesses to different buckets. It improves the performance in insert
workload by up to 17.2× compared to the baseline, 𝐵link-tree. How-
ever, the throughput does not further scale as it introduces a new
scalability bottleneck, splitting a hash node.
+Approximate median. Median approximation eliminates the
need to collect all the keys in a node to calculate the median during
a split. As the split operation becomes the scalability bottleneck in
insert workload, sampling keys improves the performance by up
to 1.8×. This substantially reduces the amount of expensive bucket
scans and sorting overhead inside the critical section.
+Lazy split. Lazy split breaks down a node-level critical section
into much smaller bucket-level critical sections. It improves insert
performance by up to 1.5× compared to the previous increment,
+Approximate median. Lazy split leverages high parallelism by
delegating expensive key comparisons and data migrations to sub-
sequent threads accessing the corresponding buckets.
+Adaptation. Structure adaptation resolves another scalability bot-
tleneck, scan operations. It improves the performance in scan and
mixed workloads by up to 140.1× and 87.4×, respectively, compared
to the previous increment, +Lazy split. Dynamic conversion of a
hash node into B+-tree nodes allows 𝐵link-hash to achieve com-
parable performance to 𝐵link-tree in scan workload. It also allows
𝐵link-hash to achieve linear scalability in mixed workload, while
𝐵link-tree and all the other previous increments fail to scale.

5.10 Analysis of Splitting Points
In this section, we analyze the performance impact of different
splitting points in 𝐵link-hash. Table 2 shows the throughput with
50th, 60th, 70th, 80th, and 90th percentile of splitting points. That is,
90th percentile uses 90th percentile key as a median in the sampled
subset of keys.

Table 2: Throughput under monotonic and random inser-
tion with different splitting points at 64 threads.

Workload Type 50𝑡ℎ (Percentile) 60𝑡ℎ 70𝑡ℎ 80𝑡ℎ 90𝑡ℎ
Monotonic Insertion 48.9 (Mops/sec) 55.5 59.6 63.2 67.8
Random Insertion 110.4 (Mops/sec) 109.9 107.8 104.2 93.5

Table 3: Throughput with varying hash node sizes for time-
series workload at 64 threads.

Workload Type 64 KB 128 KB 256 KB 512 KB
Insert 21.9 (Mops/sec) 34.8 48.9 16.5
Mixed 24.7 (Mops/sec) 36.7 44.4 17.2

The second row of Table 2 shows the performance under mono-
tonic insertion. The performance increases as the splitting point
gets larger because of reduced amount of node splits due to larger
free space in new nodes.

The third row of Table 2 shows the performance under random
insertion. There is no huge difference in performance among the
criteria, but the performance slightly degrades as it increases. The
unbalanced hash nodes may easily lead to consecutive splits, espe-
cially in keys that follow an uniformly random distribution.

Although larger splitting points provide better performance in
monotonic insertion, we use 50th percentile as our default splitting
criterion. Keys in practice are not strictly monotonic as discussed
in Section 5.6, and such out-of-orderness may lead to unnecessary
splits, causing memory inefficiency. Therefore, we provide the split-
ting point as a tuning parameter based on application requirements.

5.11 Analysis of Different Hash Node Sizes
In this section, we analyze the performance effects of different
hash node size settings. The node size plays a significant role in its
performance as it should be not too small to reduce the amount of
hash collisions and not too large to maintain the length of its critical
section short, i.e., updating all bucket states in a split operation.

Table 3 shows the performance of 𝐵link-hash with 64, 128, 256
and 512 KB hash node sizes for insert and mixed workloads in
time-series workload at 64 threads. Among the different node sizes,
256 KB shows the highest throughput. 64 and 128 KB settings suffer
from a large amount of hash collisions, and 512 KB setting spends
increased amount of time scanning all buckets in a node which
blocks other thread accesses. By default, 𝐵link-hash uses 256 KB for
its hash node size.

5.12 Data Skew for Approximate Median
Although approximating a median brings a huge performance gain,
it may create data skew between the original node and the new
node in split operations. For example, if the approximate median is
highly left-skewed, it migrates the majority of data to the new node,
resulting in resource inefficiency in the original node. To identify
the potential data skew problem, we vary the sampling ratio, and
compare the index of each approximate median with that of the
true median by sorting all keys in a node.

Figure 13 shows the CDF of data skew rates of different sampling
ratios for 1K split operations. The value of each skew rate denotes
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the difference in node utilization between the original and new
node. For example, if the original node is 90% utilized, and the skew
rate is 10%, one of the nodes will be utilized 35% and the other
will be utilized 55% right after the split. The result reports that
approximate medians do not create a data imbalance problem in
most cases even with a small sampling ratio. The average skew
rates are 3.73%, 1.95%, 1.47%, and 0.97% for 1%, 3%, 5%, and 10%
sampling ratios, respectively, and their 95th percentile rates are
8.81%, 4.55%, 3.81%, and 2.32%. By default, 𝐵link-hash employs 3%
for its sampling ratio to reduce both occasional popping skew and
bucket scanning overhead in median approximation.

5.13 Utlization of Hash Node
Maintaining good node utilization is critical to memory efficiency.
In this section, we investigate the utilization of hash nodes with a
varying number of bucket probing distances.

Figure 14 shows the utilization of the rightmost hash node with
2, 4, and 8 bucket probing distances under monotonic insertion.
The load factor increases as the probing distance increases. Each
setting shows around 5-6% performance difference in throughput
(i.e., the smaller probe setting, the higher performance). For efficient
memory usage, we use 4 bucket probe setting by default.

6 RELATEDWORK
Synchronization. The scalability of an index highly depends on
its underlying synchronization mechanism [13, 17, 18]. Latch coup-
ling [8] has been widely adopted in traditional B+-trees to safely
execute transactions. Optimistic latch coupling [30] has been pro-
posed to overcome the disadvantage of frequent updates to shared
data by avoiding unnecessary writes incurred by acquiring and
releasing latches in latch coupling. Various index designs have ad-
opted optimistic latch coupling, and presented further techniques
to reduce synchronization cost. Masstree [38] divides a version-
based latch into different operation latches. It atomically updates
a value via read-copy-update [40] to allow readers access a node
while it is being updated. Hydralist [39] decouples its structure
into data layer and search layer, and new updates in data layer
are propagated to search layer asynchronously. 𝐵link-hash uses op-
timistic synchronization and further reduces the cost by breaking
down a long node-level critical section into multiple bucket-level
critical sections.
Hybrid data structures. Hybrid data structures gain perform-
ance improvement by combining two indexes into a single struc-
ture. Wormhole [54] combines a hash index on top of tries for

better search performance in prefix match. Bounded-disorder ac-
cess method [36] uses multiple hash buckets for its data node in a
tree to reduce disk accesses. 𝐵link-hash also integrates a hash index
into a B+-tree, but focuses on resolving the limitation of existing in-
dexes in monotonic insertion while maintaining efficient sequential
scans by converting hash nodes back to B+-tree nodes.
Indexes in time-series database systems Time-series database
systems have gained dramatic popularity with the advent of IoT
devices and smart sensors. While they are designed to rapidly
handle data ingestion and efficiently store time-series data, conven-
tional indexes are still used which hurt the scalability in timestamp
insertions. InfluxDB [1] and TimescaleDB [5] use B+-tree for their
index. Log-structured merge (LSM) tree-based systems are also pre-
ferred in such workloads, e.g., OpenTSDB [49], RocksDB [3], and
LevelDB [22]. Yet they use skip-list for the in-memory component
which also suffers from highly skewed thread accesses to rightmost
entries. 𝐵𝜖 -tree [14] is often compared with LSM-trees as a write-
optimized index [10, 26]. However, it also faces the same issue in
timestamp insertions, as the data in internal nodes are gradually
flushed down to rightmost leaf nodes. 𝐵link-hash overcomes the
scalability bottleneck by replacing its leaf nodes with hash nodes,
and further achieves fast write performance by minimizing the
critical section with median approximation and lazy split.
Index studies under monotonic insertion. Monotonic inser-
tion workload has often been used to evaluate indexes for the
worst-case insertion scenario in multi-core environments. Kow-
alski et al. used static monotonic workloads to evaluate modern
indexes [29]. However, a pre-generated chunk of keys is static-
ally assigned to each thread before the execution, which no longer
becomes monotonic over time. Wang et al. used dynamic mono-
tonic keys, but focused on the evaluation with a fixed number of
threads [52]. We use dynamic monotonic keys to exercise the ap-
plication scenario of time-series workloads that timestamped data
are generated in real-time, and identify the limitation of existing
indexes.

7 CONCLUSION
In this paper, we identify the fundamental limitation of today’s
indexes under monotonic insertion, and introduce a new scalable
index, 𝐵link-hash, that overcomes the limitation. It efficiently distrib-
utes highly skewed thread accesses to rightmost nodes into different
memory regions by integrating a hash index into a B+-tree. We
further present optimization techniques, median approximation
and lazy split, to resolve the scalability bottleneck in 𝐵link-hash,
splitting a hash node, by breaking down a per-node critical section
into per-bucket critical sections. 𝐵link-hash also dynamically adapts
to workload variations by converting its structural layout on de-
mand. It achieves the best of both worlds by efficiently supporting
the new pattern of monotonic keys, while maintaining the bene-
fits of B+-trees in range scans. Our evaluation study shows that
𝐵link-hash outperforms today’s representative indexes not only in
time-series workloads, but also in generic OLTP workloads.
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