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Abstract

Microservice architectures have emerged as a pre-
dominant framework for building distributed sys-
tems in large-scale enterprises due to their mod-
ular nature and scalability advantages. While
characterizing microservice traces can help op-
timize and manage distributed systems with mi-
croservice architecture, using public microservice
traces has limits such as their time-specific nature
and incomplete data. As a result, generating syn-
thetic traces using machine learning techniques is
a promising alternative.

This paper presents a novel approach to gener-
ating microservice traces using Large Language
Models (LLMs). Leveraging the power of LLMs
to learn multiple tasks and to align with prompt
instructions, we create multiple fine-tuning tasks
from the trace dataset and fine-tune pre-trained
LLMs. During trace generation, we introduce
Coarse-to-fine generation scheme, which first pro-
duces high-level trace information and then uses
this to generate more detailed, fine-grained traces.
Trace Oracle component is employed to validate
the LLM-generated traces, ensuring their accu-
racy and relevance. Our results with OpenLLaMA
7B model demonstrate the effectiveness of this
method, with the fine-tuned model generating
valid microservice traces with an accuracy of up
to 88.7% and successfully adhering to the fine-
tuning task instructions with a compliance rate of
up to 93.2%.

1. Introduction

Microservice architectures have become the standard ap-
proach for constructing distributed systems within large-
scale enterprises (Ferdman et al., 2012; Gan et al., 2019).
This architectural style breaks down monolithic applications
into smaller, intercommunicating software services. Such
decomposition enhances the autonomy of various develop-
ment teams, accelerates deployment rates, and allows for
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more precise scaling (Newman, 2021). However, the ben-
efits of microservice architecture come at a cost; due to
its complex dependencies within each other, characterizing
applications requires an understanding of intricate interac-
tions between microservices, which is crucial for optimizing
and managing the system (Qiu et al., 2020; Bhardwaj et al.,
2023).

Hence, microservice traces are key in simplifying this com-
plexity, facilitating more efficient system maintenance and
problem-solving. For instance, traces are pivotal in resource
management tasks like autoscaling (Luo et al., 2022), where
analyzing trace data aids in forecasting request patterns.
This predictive ability is essential for timely resource alloca-
tion and deallocation, ensuring both efficiency and optimal
performance. Additionally, microservice traces become in-
dispensable to analyze the root cause of bottlenecks and
errors (Ikram et al., 2022).

Accessing comprehensive microservice traces, however,
poses significant challenges. While there are some pub-
lic traces available, they often come with notable downsides.
Firstly, they are typically obtained from a specific time
range, which limits their applicability to different scenar-
ios. Furthermore, these publicly available traces frequently
suffer from missing or incomplete data, making them less
reliable for thorough analysis. Another approach to obtain-
ing microservice traces involves deploying applications of
microservices independently. However, the sheer number
of nodes necessary to deploy all applications can be pro-
hibitively large (Luo et al., 2022; Huye et al., 2023), posing
a significant barrier to the detailed study of microservice
behaviors. These difficulties underscore the need for more
accessible and versatile methods of obtaining microservice
trace data.

The utility of synthetic traces (Yin et al., 2022; Bergsma
et al., 2021) in this ecosystem cannot be overstated. Un-
like natural trace data, synthetic traces offer an unlimited
size, which is a significant advantage for extensive testing
and analysis. They also enable the simulation of various
conditions, such as stress-testing environments, that might
be challenging to replicate in real-world scenarios. Fur-
thermore, the deployment of applications in a microservice
architecture often necessitates a substantial number of nodes.
In contrast, generating synthetic traces requires consider-
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ably fewer resources, presenting a more efficient alternative.
A notable application of synthetic traces lies in infilling
missing data, a common issue even in public datasets. By
leveraging synthetic traces, gaps in collected data can be ef-
fectively addressed, enhancing the robustness of the dataset.

In this paper, we propose a method to fine-tune pre-trained
Large Language Models (LLMs) (Touvron et al., 2023;
Brown et al., 2020) to generate synthetic microservice traces.
Leveraging the power of LLMs to learn multiple tasks (Sanh
et al., 2021; Chung et al., 2022), we create multiple fine-
tuning tasks from the trace dataset by augmenting traces
with instructions. In addition, we suggest Coarse-to-fine
generation scheme that generates traces in multiple stages
using the tasks learned during fine-tuning. Furthermore,
Trace Oracle component complements the probabilistic na-
ture of LLM inference by validating generated traces. We
fine-tune OpenLLaMA-7B v2 model (Geng & Liu, 2023)
with Alibaba microservice traces (Luo et al., 2022) and show
the fine-tuned model can generate valid microservice traces
by up to 88.7% and satisfy instructions of fine-tuning tasks
well by up to 93.2%.

2. Background
2.1. Microservice Traces

In modern software architecture, an application is typi-
cally constructed as a constellation of multiple microser-
vices (Gan et al., 2019; Luo et al., 2022; Huye et al., 2023),
each with specific functionalities and dependencies on one
another. When users interact with these applications, for
instance by sending HTTP requests to web servers, it trig-
gers a complex sequence of communications among these
microservices. Each user request forms a Directed Acyclic
Graph (DAG), aptly termed a microservice dependency
graph, which maps the flow and dependencies of the mi-
croservices involved in fulfilling the user’s request.

Figure 1 is an example of a microservice dependency graph
with three microservices involved to process the user’s re-
quest. The vertices of each graph correspond to microser-
vices, while the edges correspond to API calls invoking
the microservices. Each edge originates at the requesting
service and terminates at the target service. Each graph is
represented as a log trace with a textual description of the
features of each API call (i.e. edges), including the source
and destination of the request, type of request (e.g. database
lookup), and relative start time.

Microservice traces, therefore, can be understood as a
chronological series of such microservice dependency
graphs. These traces encapsulate the interaction dynamics of
all applications running on a given cluster over a period, of-
fering a comprehensive view of the microservice landscape
and their interdependencies. The analysis of microservice
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Figure 1. An example of microservice dependency graphs and at-
tributes of communications between microservices.

traces plays a pivotal role in understanding complex applica-
tion architectures (Ikram et al., 2022) and optimizing cluster
management (Qiu et al., 2020; Meng et al., 2023).

2.2. Microservice Trace Generation Problem Definition

Our goal is to train a generative model for microservice
traces using a dataset of directed microservice dependency
graphs. We want that the model (1) generates outputs with
correct structure, e.g. only valid DAGs; (2) takes optional
conditioning information to simulate varying system envi-
ronments in a controllable manner; and (3) generalizes to
out-of-distribution graph structures and service conditions.

‘We turn to transformer-based architectures, as these show
excellent performance in various domains including natural
language (Brown et al., 2020; Touvron et al., 2023), time se-
ries data (Nie et al., 2023), climate modeling (Nguyen et al.,
2023), and vision (Dosovitskiy et al., 2021; Caron et al.,
2021; Oquab et al., 2023; He et al., 2022), as well as demon-
strating the ability to model many domains at once (Reed
et al., 2022). Since our dataset represents graphs using nat-
ural language descriptors, we can pose our problem as a
sequence modeling task and leverage pre-trained, publicly
available large language models (LLMs) as foundation mod-
els that we can fine-tune for our problem. It has been shown
that LLMs can be adapted to generate structured data in new
domains (Borisov et al., 2023), satisfying requirement (1).
LLM outputs can be conditioned in a variety of arbitrary
ways, including via natural language prompting (Ouyang
et al., 2022) and structured input sequences (Borisov et al.,
2023), meeting requirement (2). Finally, large transformer-
based models pre-trained in a self-supervised manner (as
with autoregressive generative LLMs) on extensive datasets
demonstrate superior generalization to out-of-distribution
tasks, satisfying requirement (3).

We now formalize our problem. Given a dataset of mi-
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Figure 2. Our proposed fine-tuning method overview. We create fine-tuning tasks that consist of instruction and sample pairs from the
trace dataset. Then, we fine-tune pre-trained large language models with the tasks extracted from the trace dataset.

croservice traces {x1,a,...,Z,}, we wish to learn the
data distribution, p(z). We approach the problem by de-
composing each trace into a sequence of symbols, or tokens,
x = (s1, S2,...,Sm), where sequence length m varies de-
pending on the trace x. We factorize the data distribution
as the product of conditional probabilities over the decom-
posed sequence:

m

p(x):Hp(8m|sl7827~-~73m71)- (1)

=1

Using this representation of the distribution,
we parameterize a generative model pgp(z) =
t . .
[T, po(st|si,s2,...,8:-1) (with weights 6) over
sequences representing microservice traces. We propose
to train our model in an autoregressive, self-supervised
manner to predict the next token in the sequence given the
previous tokens.

3. Methodology
3.1. Trace Data into Multiple Fine-tuning Tasks

In our method, we dissect the challenge of microservice
trace generation into a series of detailed fine-tuning tasks.
This process involves extracting precise instructions from
the training data traces, thereby enriching them with supple-
mental context. These enriched traces, articulated in natural
language, serve as the foundation for fine-tuning pre-trained
Large Language Models (LLMs). The integration of these
instruction-augmented tasks ensures comprehensive learn-
ing of both the distribution and the structural intricacies of
microservice traces.

Specifically, we generate several sets C; = {(c,y);}72, of
structured prompts c and their responses y using our original
microservice trace dataset. Each set C; corresponds to a dif-
ferent type of instruction, with the goal of creating a model
suited for diverse and possibly unseen generation tasks at
inference time. Noting that the responses are sequences of
tokens y = (s1, 82, -..,8m), we factorize the target data
distribution for a given prompt c as

m

p(y|C):Hp(sm\c,sl,SQ,...,sm,l). (2)
i=1

We denote the prompt with the single letter ¢ for conve-
nience, though c is a sequence of tokens as well. We
parameterize our generative model given prompt c as
po(x|c) = H§:1p9(5t|c,51,32,...7575_1). We fine-tune
our pre-trained model weights 6 over the examples in each
instruction set C; to predict the next token of target response
y given the prompt c¢. Since we create each instruction-
response task with no manual human input (besides defining
the prompt format), this is a weakly supervised learning
objective.

Task types and instruction templates. We define several
tasks for microservice trace generation:

* Dependency graph generation: given prompt ¢ with
graph-level information (e.g. depth and number of
edges), generate the edges of the corresponding graph
as a microservice trace. Note that this corresponds to
the trace generation task we describe in Section 2.2
when c is blank, meaning that our prompt-based tuning
method is a generalization of “vanilla” autoregressive
training.
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* Dependency graph context generation: given ¢ with
information about a system’s activity at a specific time
interval, generate graph-level information about the
microservice dependency graphs created during that
interval.

We extract prompts from traces for each task to finetune
LLMs with instructions. Table 1 shows the manually de-
signed templates of instructions and training data. Instruc-
tions are generated by concatenating those instructions,
where the values are extracted from training data. For gen-
eralizability, we randomly shuffle the order of attributes and
drop some attributes in each instruction. We illustrate our
approach in Figure 2.

Benefits of separating into multiple tasks. The develop-
ment of prompt-guided trace generation addresses critical
inefficiencies inherent in trace data. Predominantly, trace
data are characterized by high skewness, resulting in sub-
stantial redundancy. In the case of Alibaba microservice
traces (Luo et al., 2022), the traces feature small depen-
dency graphs (e.g., 1 or 2 edges), resulting in 55% being
duplicates of those in the remaining 45%. This redundancy
not only bloats datasets but also risks overfitting machine
learning models to specific trace structures, thus impairing
their generalizability. Conventionally, the naive removal of
redundant traces has been practiced; however, this approach
disrupts the natural distribution of training data. A sophisti-
cated method that eliminates redundancy while preserving
the underlying data distribution is essential.

Furthermore, the efficacy of this approach is enhanced when
considering the constraints imposed by sequence length lim-
its in the transformer modules. A simple approach would be
to fit a variety of trace structures within a single sequence,
but this would sacrifice the ability to make long-term pre-
dictions. Prompt-guided trace generation circumvents this
by extracting key distribution-related information from the
traces and converting them into concise instructions. This
technique allows for the inclusion and learning of a broader
spectrum of trace information during the fine-tuning process
of models, thereby optimizing their learning capacity and
efficiency.

3.2. Trace Generation with Fine-tuned Models

Coarse-to-fine Trace Generation We generate microser-
vice traces through Coarse-to-fine scheme, where traces
are generated in multiple stages from coarse-grained trace
contexts to fine-grained dependency graph structures. For
each step, we leverage the tasks defined in Section 3.1. The
defined tasks for trace generation have close relationships
with each other so that the output of a task can be leveraged
as an instruction for other tasks.

We generate synthetic traces x using system-level informa-

# Prompt:
[Generate Dependency o
Graph Context] \
# Output: e .
[Context 1, Context 2, ..., = — - Fine-tuned
Context N] Language Model
# Prompt:
[Generate Dependency Graph] /
Context 1 o / <>
i /

T

- // Trace Oracle

# Output: / Q Pass
[Edge 1, Edge 2, ..., Edge N] ! ‘@ E:
T O Fail

Figure 3. Trace generation workflow using the fine-tuned language
model.

tion c; as a conditioning signal. Since the desired graph
properties are poorly specified in the conditioning signal, it
is challenging for our model to generate sharp and diverse
samples. To improve the quality of generated samples, we
propose a two-stage sampling process. First, we use c; to
generate graph-level context information co using the model.
The context information ¢, is then used as a conditioning
signal to generate the final output traces x. This corre-
sponds to factorizing the desired conditional distribution
as p(z|c1) = p(x|ea)p(cz|er). By introducing the latent
variable ¢y as an intermediate generation step, we allow the
model to sharpen and add detail to an initial coarse output.

The generation workflow is illustrated in Figure 3. First,
the model generates dependency graph contexts (€}, @).
The generated contexts are broken down into multiple in-
structions for dependency graph generation tasks (e), and
those instructions are passed to the model to generate the

dependency graphs (9, e).

Trace Validation using Trace Oracle Since there are no
guarantees that LLMs are always generating the right out-
puts, we introduce the concept of Trace Oracle to ensure the
validity of generated traces during generation. This Trace
Oracle evaluates the generated traces, ensuring they not
only conform to pre-defined constraints but also incorporate
structures akin to those in the training data. The validation
process involves checking that the generated traces form
a connected Directed Acyclic Graph (DAG). Furthermore,
Trace Oracle can be used to only include edges or subgraphs
present in the training data. This methodology guarantees
that the generated traces are both structurally sound and
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Dependency Graph Generation

Attribute Template Description

Application ID ID:<string> Application ID

Number of Edges  num edges:<integer> Number of API calls in the graph

Maximum Depth max depth:<integer> Maximum depth of the graph

Request Latency latency (ms) :<integer> Time taken to finish the user request
Dependency Graph Context Generation

Attribute Template Description

Number of Traces num traces:<integer>

Start Time start:<datetime>
End Time end:<datetime>
Application IDs include:<string><string>, ..

.,<string>

Number of dependency graphs to generate

Time of the first dependency graph in the window

Time of the last dependency graph in the window

A list of application IDs that should be included in the window

Table 1. Templates of attributes included in instructions for each task.

reflective of the learned patterns from the training dataset.
Whenever the generated traces do not satisfy conditions,
Trace Oracle sends the request to the model again and re-
tries generation.

4. Evaluation

Dataset We use Alibaba microservice traces (Luo et al.,
2022) as our training data. We obtain 19 million microser-
vice dependency graphs from the first 5 hours of public
traces after filtering data with missing or incomplete infor-
mation. The data are obtained from more than 10K appli-
cations total with 17K microservices. Also, after extracting
fine-tuning tasks, we remove redundant dependency graphs
from training data. We use 2% and 1% of the trace dataset
as validation and test data, respectively.

Training Details We select pre-trained Open LLaMA-7B
v2 model (Geng & Liu, 2023) as our fine-tuning target. For
fine-tuning, we leverage LoRA technique (Hu et al., 2022)
(rank=8, alpha=16, dropout=0.1) adapting only attention
weights as suggested in the original paper. We fine-tune
the pre-trained model for 1 epoch of training data with
batch size 64 using AdamW (Loshchilov & Hutter, 2017)
optimizer with maximum learning rate 3e-4.

4.1. Trace Validity

We first report the quality of generated dependency graphs
in terms of validity. We break down validity conditions into
two aspects, structural and semantic validity. In the case of
structural validity, we check whether the generated outputs
form connected DAGs with proper attributes in each field.
We define a generated dependency graph as semantically
valid when all edges can be found in the training data. An
example case of semantically invalid outputs can include
edges connecting two different applications.

Figure 4 shows the percentage of valid dependency graphs
out of 10K generations varying the temperature parame-
ter (Ackley et al., 1985) during the decoding phase. We use

Structural

I Structural ] + Semantic

100

A O ©
o O O

Validity (%)

N
o

0 02 04 06 08 1.0
Temperature

Figure 4. Validity of generated microservice dependency graphs
varying temperature.

prompts from the test dataset to generate dependency graphs.
When only considering the structural validity, the fine-tuned
LLM can generate at least 99.0% valid dependency graphs.
When including semantic validity, the validity drops from
88.7% to 65.2% by increasing the temperature parameter.

4.2. Accuracy in Following Instructions

To see whether the model learned fine-tuning tasks, we eval-
uate whether the model follows instructions in prompts. We
compare values in instructions with the generated outputs
and count the number of generations that satisfy all con-
ditions in the instructions. For instance, in the case of the
Number of Traces attribute, we count the number of traces
in the generated output and compare it with the value in the
instruction.

Figure 5 reports the accuracy of 1K generation queries from
dependency graph context generation tasks. The accuracy
ranges from 71.8% to 93.2% showing that the fine-tuned
model generally follows instructions well. Most of the
failure cases are from the Application IDs condition, where
all the application IDs in instructions should be found in
generated traces.
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Figure 5. The percentage of generations that satisfy all conditions
specified in prompts varying temperature.

5. Conclusion

In this paper, we propose a fine-tuning method to use pre-
trained LLMs for microservice trace generations. Leverag-
ing the power of LLMs to learn multiple tasks, we create
multiple fine-tuning tasks from the trace dataset by augment-
ing traces with instructions. During generation, Coarse-
to-fine trace generation scheme allows generating traces
in multiple stages using outputs from context generation
tasks as instructions for dependency graph generation tasks.
To complement the probabilistic nature of LLM inference,
Trace Oracle checks the generated trace validity and retries
invalid cases. Using our fine-tuning and generation schemes,
we show that the fine-tuned LLaMA-7B model can gener-
ate valid dependency graphs by up to 88.7% and follow
conditions specified in the instructions by up to 93.2%.
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