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Loom is a new Network Interface 
Card (NIC) design that offloads all
per-flow scheduling decisions out of 
the OS and into the NIC

• Why is packet scheduling important?
• What is wrong with current NICs?
• Why should all packet scheduling be 

offloaded to the NIC?
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Why is packet scheduling important?
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Collocation (Application and Tenant) is 
Important for Infrastructure Efficiency
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Tenant 1 Tenant 2 CPU Isolation Policy:
Tenant 1:

Memcached: 3 cores
Spark: 1 core

Tenant 2:
Spark: 4 cores



45

Network Performance Goals
Different applications have differing network performance goals

Low Latency High Throughput
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Network Policies

Network operators must specify and enforce a network isolation policy
• Enforcing a network isolation policy requires scheduling

Pri_1

VM1VM1
Pseudocode

Tenant_1.Memcached -> Pri_1:high
Tenant_1.Spark -> Pri_1:low 
Pri_1 -> RL_WAN(Dst == WAN: 15Gbps)
Pri_1 -> RL_None(Dst != WAN: No Limit)
RL_WAN -> FIFO_1; RL_None -> FIFO_1
FIFO_1-> Fair_1:w1
Tenants_2.Spark -> Fair_1:w1
Fair_1 -> Wire
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Wire

Network Policies

Network operators must specify and enforce a network isolation policy
• Enforcing a network isolation policy requires scheduling
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Pri_1
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What is wrong with current NICs?
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Single Queue Packet Scheduling Limitations

• Single core throughput is limited 
(although high with Eiffel) 
• Especially with very small packets
• Energy-efficient architectures may 

prioritize scalability over single-core 
performance

• Software scheduling consumes CPU

• Core-to-core communication 
increases latency
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CPU

NIC

Wire

App 1 App 2

NIC

SQ struggles to drive line-rate



Multi Queue NIC Background and Limitations
• Multi-queue NICs enable parallelism

• Throughput can be scaled across many 
tens of cores

• Multi-queue NICs have packet 
scheduler that chose which queue to 
send packets from

• The one-queue-per-core multi-queue 
model (MQ) attempts to enforces 
the policy at every core 
independently
• This is the best possible without inter-

core coordination, but it is not effective
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CPU

NIC

Wire

App 1 App 2

NIC

MQ struggles to enforce policies!



MQ Scheduler Problems
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CPU

NIC 
(Network 

Interface Card)

Time (t)

Naïve NIC packet 
scheduling prevents 

colocation!

It leads to:
• High latency
• Unfair and variable 

throughput

Packet Scheduler



MQ Scheduler Problems
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Interface Card)

Time (t)

Naïve NIC packet 
scheduling prevents 

colocation!

It leads to:
• High latency
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throughput

Packet Scheduler



Why should all packet scheduling be 
offloaded to the NIC?
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Where to divide labor between the OS and NIC?

CPU

NIC
Wire

Fair_1

Pri_1

VM1 VM2VM1

FIFO_1

RL_WAN RL_None
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Where to divide labor between the OS and NIC?

CPU

NIC
Option 1: Single Queue (SQ)

• Enforce entire policy in software
• Low Tput/High CPU Utilization Wire

Fair_1

Pri_1

VM1 VM2VM1

FIFO_1

RL_WAN RL_None
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Where to divide labor between the OS and NIC?

CPU

NIC
Option 1: Single Queue (SQ)

• Enforce entire policy in software
• Low Tput/High CPU Utilization

Option 2: Multi Queue (MQ)
• Every core independently enforces 

policy on local traffic 
• Cannot ensure polices are 

enforced

Wire

Fair_1

Pri_1

VM1 VM2VM1

FIFO_1

RL_WAN RL_None
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Where to divide labor between the OS and NIC?

CPU

NIC
Option 1: Single Queue (SQ)

• Enforce entire policy in software
• Low Tput/High CPU Utilization

Option 2: Multi Queue (MQ)
• Every core independently enforces 

policy on local traffic 
• Cannot ensure polices are 

enforced

Option 3: Loom
• Every flow uses its own queue
• All policy enforcement is offloaded to 

the NIC
• Precise policy + low CPU

Wire

Fair_1

Pri_1

VM1 VM2VM1

FIFO_1

RL_WAN RL_None
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Loom is a new NIC design that moves 
all per-flow scheduling decisions out 

of the OS and into the NIC

Loom uses a queue per flow and offloads all packet scheduling to the NIC



Core Problem: 

It is not currently possible to offload all packet 
scheduling because NIC packet schedulers are 
inflexible and configuring them is inefficient



Core Problem: 

It is not currently possible to offload all packet 
scheduling because NIC packet schedulers are 
inflexible and configuring them is inefficient

NIC packet schedulers are currently standing in the way of 
performance isolation! 



Outline
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Intro: Loom is a new NIC design that moves all per-flow scheduling decisions out of the OS and 
into the NIC

Contributions:

Specification: A new network policy abstraction: restricted 
directed acyclic graphs (DAGs)

Enforcement: A new programmable packet scheduling 
hierarchy designed for NICs

Updating: A new expressive and efficient OS/NIC interface

Implementation and Evaluation: BESS prototype and CloudLab



Outline
Contributions:

1. Specification: A new network policy 
abstraction: restricted directed acyclic graphs 
(DAGs)

2. Enforcement: A new programmable packet 
scheduling hierarchy designed for NICs

3. Updating: A new expressive and efficient OS/NIC 
interface
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What scheduling polices are needed for 
performance isolation?

How should policies be specified?
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Solution: Loom Policy DAG Two types of nodes: 
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VM1 VM2VM1
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Scheduling nodes: Work-conserving policies for sharing 
the local link bandwidth  

Shaping nodes: Rate-limiting policies for sharing the 
network core (WAN and DCN)

Programmability: Every node is programmable with a 
custom enqueue and dequeue function

Loom can express policies that cannot be expressed with either 
Linux Traffic Control (Qdisc) or with Domino (PIFO)!

Important systems like BwE (sharing the WAN) and EyeQ
(sharing the DCN) require Loom’s policy DAG!



Types of Loom Scheduling Policies:
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Scheduling:
• All of the flows from competing 

Spark jobs J1 and J2 in VM1 fairly 
share network bandwidth

Shaping:
• All of the flows from VM1 to VM2 are 

rate limited to 50Gbps



Types of Loom Scheduling Policies:

67

Scheduling:
• All of the flows from competing 

Spark jobs J1 and J2 in VM1 fairly 
share network bandwidth

Shaping:
• All of the flows from VM1 to VM2 are 

rate limited to 50Gbps

Group by source

Group by destination



Types of Loom Scheduling Policies:
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Scheduling:
• All of the flows from competing 

Spark jobs J1 and J2 in VM1 fairly 
share network bandwidth

Shaping:
• All of the flows from VM1 to VM2 are 

rate limited to 50Gbps
Because Scheduling and Shaping polices may aggregate flows 

differently, they cannot be expressed as a tree!

Group by source

Group by destination
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Loom: Policy Abstraction
Policies are expressed as restricted acyclic graphs (DAGs)

Legend:

Shaping
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Scheduling
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Child
1
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(b)
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FIFO
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P1

R1 R2 R3

P2 P3

DAG restriction: Scheduling nodes form a tree when the shaping nodes 
are removed

(b) And (d) are prevented because they allow parents to reorder packets that were 
already ordered by a child node.
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Loom: Policy Abstraction
Policies are expressed as restricted acyclic graphs (DAGs)
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DAG restriction: Scheduling nodes form a tree when the shaping nodes 
are removed

(b) And (d) are prevented because they allow parents to reorder packets that were 
already ordered by a child node.



Outline
Contributions:

1. Specification: A new network policy abstraction: 
restricted directed acyclic graphs (DAGs)

2. Enforcement: A new programmable packet 
scheduling hierarchy designed for NICs

3. Updating: A new expressive and efficient OS/NIC 
interface

71



How do we build a NIC that can enforce 
Loom’s new DAG abstraction?
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Loom Enforcement Challenge
No existing hardware scheduler can efficiently enforce Loom Policy DAGs

Scheduling

Domino PIFO Block

1 x

Shaping

1 x

Scheduling

New PIFO Block?

1 x

Shaping

N x
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Requiring separate shaping queues for every shaping traffic class would be prohibitive!



Insight: All shaping can be done with a 
single queue because all shaping can use 

wall clock time as a rank
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Loom 
Enforcement
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In Loom, scheduling and 
shaping queues are separate

1. All traffic is first only 
placed in scheduling 
queues

2. If a packet is dequeued
before its shaping time, it 
is placed in a global 
shaping queue

3. After shaping, the packet 
is placed back in 
scheduling queues

F1
F2
F3

Pri

Mem – 25Gbps RL

Mem – No RL

Spark – No RL

Scheduling Shaping

F1
F1
F1
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Outline
Contributions:

1. Specification: A new network policy abstraction: 
restricted directed acyclic graphs (DAGs)

2. Enforcement: A new programmable packet 
scheduling hierarchy designed for NICs

3. Updating: A new expressive and efficient 
OS/NIC interface
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Abstract

Tenants in a cloud environment run services, such as
Virtual Network Function instantiations, that may legiti-
mately generate millions of packets per second. The host-
ing platform, hence, needs robust scheduling mechanisms
that support these rates and, at the same time, provide iso-
lation and dependable service guarantees.

Current hardware or software packet scheduling solu-
tions fail to meet all these requirements, most commonly
lacking on either performance or guarantees.

In this paper we propose an architecture, called PSPAT,
to build efficient and robust software packet schedulers
suitable to high speed, highly concurrent environments.
PSPAT decouples clients, scheduler and device driver
through lock-free mailboxes, thus removing lock con-
tention, increasing performance and providing opportuni-
ties to parallelise operation.

We describe the operation of our system, discussion
implementation and system issues, provide analytical
bounds on the service guarantees of PSPAT, and validate
the behaviour of its Linux implementation even at high
link utilization comparing it with current hardware and
software solutions. Our prototype can make over 15 mil-
lion scheduling decisions per second, and keep latency
low, even with tens of concurrent clients running on a
multi-core, multi-socket system.

1 Introduction

Allocating and accounting for available capacity is the
foundation of cloud environments, where multiple tenants
share resources managed by the cloud provider. Dynamic
resource scheduling in the Operating System (OS) ensures
that CPU, disk, and network capacity are assigned to ten-
ants as specified by contracts and configuration. It is fun-
damental that the platform guarantees isolation and pre-
dictable performance even when overloaded.

PROBLEM AND USE CASE: In this work we focus
on packet scheduling for very high packet rates and large
number of concurrent clients. This is an increasingly com-
mon scenario in servers that host cloud clients: Virtual
Machines (VMs), OS containers, or any other mechanism
to manage and account for resources.

Current hosts feature multiple CPU sockets with tens of
CPU cores, and Network Interfaces (NICs) with an aggre-
gate rate of 10..100 Gbit/s. Even at such data rates, han-
dling bulk TCP traffic is doable: large frames (from 1500
up to 64 Kbyte segments with hardware segmentation of-
floading) imply relatively modest packet rates. On the
contrary, Virtual Network Function (VNF) instances are
challenging, as they often operate with very small packets
and rates of 10+ Millions of packets per second (pps).

THE CHALLENGE: Scheduling the link’s capacity
in a fair and robust way almost always requires to look at
the global state of the system. This translates in some cen-
tralised data structure/decision point that is very expensive
to implement in a high rate, highly concurrent environ-
ment. A Packet Scheduler that cannot sustain the link’s
rate not only reduces communication speed, but may eas-
ily fail to achieve the desired bandwidth allocation or de-
lay bounds, sometimes by a large factor. We give several
such examples in Sections 2.3, 5.5 and 5.6.

PCIe bus

NIC

Packet scheduler

clients
kernel

protocol processing

device driver

clients
kernel

protocol processing

device driver

multiqueue NIC
+ HW scheduler

PCIe bus

Figure 1: Common architectures for software and hard-
ware packet schedulers in OSes.
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low, even with tens of concurrent clients running on a
multi-core, multi-socket system.

1 Introduction

Allocating and accounting for available capacity is the
foundation of cloud environments, where multiple tenants
share resources managed by the cloud provider. Dynamic
resource scheduling in the Operating System (OS) ensures
that CPU, disk, and network capacity are assigned to ten-
ants as specified by contracts and configuration. It is fun-
damental that the platform guarantees isolation and pre-
dictable performance even when overloaded.

PROBLEM AND USE CASE: In this work we focus
on packet scheduling for very high packet rates and large
number of concurrent clients. This is an increasingly com-
mon scenario in servers that host cloud clients: Virtual
Machines (VMs), OS containers, or any other mechanism
to manage and account for resources.

Current hosts feature multiple CPU sockets with tens of
CPU cores, and Network Interfaces (NICs) with an aggre-
gate rate of 10..100 Gbit/s. Even at such data rates, han-
dling bulk TCP traffic is doable: large frames (from 1500
up to 64 Kbyte segments with hardware segmentation of-
floading) imply relatively modest packet rates. On the
contrary, Virtual Network Function (VNF) instances are
challenging, as they often operate with very small packets
and rates of 10+ Millions of packets per second (pps).

THE CHALLENGE: Scheduling the link’s capacity
in a fair and robust way almost always requires to look at
the global state of the system. This translates in some cen-
tralised data structure/decision point that is very expensive
to implement in a high rate, highly concurrent environ-
ment. A Packet Scheduler that cannot sustain the link’s
rate not only reduces communication speed, but may eas-
ily fail to achieve the desired bandwidth allocation or de-
lay bounds, sometimes by a large factor. We give several
such examples in Sections 2.3, 5.5 and 5.6.
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Figure 1: Common architectures for software and hard-
ware packet schedulers in OSes.
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NIC doorbell and update limitations:1
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1 Latency Limitations:
• 120-900ns

2 Throughput Limitations:
• ~3Mops (Intel XL710 40Gbps)
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Abstract

Tenants in a cloud environment run services, such as
Virtual Network Function instantiations, that may legiti-
mately generate millions of packets per second. The host-
ing platform, hence, needs robust scheduling mechanisms
that support these rates and, at the same time, provide iso-
lation and dependable service guarantees.

Current hardware or software packet scheduling solu-
tions fail to meet all these requirements, most commonly
lacking on either performance or guarantees.

In this paper we propose an architecture, called PSPAT,
to build efficient and robust software packet schedulers
suitable to high speed, highly concurrent environments.
PSPAT decouples clients, scheduler and device driver
through lock-free mailboxes, thus removing lock con-
tention, increasing performance and providing opportuni-
ties to parallelise operation.

We describe the operation of our system, discussion
implementation and system issues, provide analytical
bounds on the service guarantees of PSPAT, and validate
the behaviour of its Linux implementation even at high
link utilization comparing it with current hardware and
software solutions. Our prototype can make over 15 mil-
lion scheduling decisions per second, and keep latency
low, even with tens of concurrent clients running on a
multi-core, multi-socket system.

1 Introduction

Allocating and accounting for available capacity is the
foundation of cloud environments, where multiple tenants
share resources managed by the cloud provider. Dynamic
resource scheduling in the Operating System (OS) ensures
that CPU, disk, and network capacity are assigned to ten-
ants as specified by contracts and configuration. It is fun-
damental that the platform guarantees isolation and pre-
dictable performance even when overloaded.

PROBLEM AND USE CASE: In this work we focus
on packet scheduling for very high packet rates and large
number of concurrent clients. This is an increasingly com-
mon scenario in servers that host cloud clients: Virtual
Machines (VMs), OS containers, or any other mechanism
to manage and account for resources.

Current hosts feature multiple CPU sockets with tens of
CPU cores, and Network Interfaces (NICs) with an aggre-
gate rate of 10..100 Gbit/s. Even at such data rates, han-
dling bulk TCP traffic is doable: large frames (from 1500
up to 64 Kbyte segments with hardware segmentation of-
floading) imply relatively modest packet rates. On the
contrary, Virtual Network Function (VNF) instances are
challenging, as they often operate with very small packets
and rates of 10+ Millions of packets per second (pps).

THE CHALLENGE: Scheduling the link’s capacity
in a fair and robust way almost always requires to look at
the global state of the system. This translates in some cen-
tralised data structure/decision point that is very expensive
to implement in a high rate, highly concurrent environ-
ment. A Packet Scheduler that cannot sustain the link’s
rate not only reduces communication speed, but may eas-
ily fail to achieve the desired bandwidth allocation or de-
lay bounds, sometimes by a large factor. We give several
such examples in Sections 2.3, 5.5 and 5.6.
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Figure 1: Common architectures for software and hard-
ware packet schedulers in OSes.
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Insufficient data:
Before reading any packet data 

(headers), the NIC must 
schedule DMA reads for a 

queue

Too many PCIe writes:
In the worst case (every packet 

is from a new flow), the OS 
must generate 2 PCIe writes 

per-packet

2 writes per 1500B packet at 
100Gbps = 16.6 Mops!
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Loom introduces a new efficient 
OS/NIC interface that reduces the 

number of PCIe writes through 
batched updates and inline metadata
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allows for updates to different 
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Outline
Contributions:

1. A new network policy abstraction: restricted directed 
acyclic graphs (DAGs)

2. A new programmable packet scheduling hierarchy 
designed for NICs

3. A new expressive and efficient OS/NIC interface

Evaluation:

1. Implementation and Evaluation: BESS prototype and 
CloudLab
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Software prototype of Loom in Linux on the 
Berkeley Extensible Software Switch (BESS)1

Programmable Packet Scheduling at Line Rate

Anirudh Sivaraman*, Suvinay Subramanian*, Mohammad Alizadeh*, Sharad Chole‡, Shang-Tse Chuang‡, Anurag Agrawal†,
Hari Balakrishnan*, Tom Edsall‡, Sachin Katti+, Nick McKeown+

*MIT CSAIL, †Barefoot Networks, ‡Cisco Systems, +Stanford University

ABSTRACT
Switches today provide a small menu of scheduling algo-
rithms. While we can tweak scheduling parameters, we
cannot modify algorithmic logic, or add a completely new
algorithm, after the switch has been designed. This pa-
per presents a design for a programmable packet scheduler,
which allows scheduling algorithms—potentially algorithms
that are unknown today—to be programmed into a switch
without requiring hardware redesign.

Our design uses the property that scheduling algorithms
make two decisions: in what order to schedule packets and
when to schedule them. Further, we observe that in many
scheduling algorithms, definitive decisions on these two
questions can be made when packets are enqueued. We use
these observations to build a programmable scheduler using
a single abstraction: the push-in first-out queue (PIFO), a
priority queue that maintains the scheduling order or time.

We show that a PIFO-based scheduler lets us program a
wide variety of scheduling algorithms. We present a hard-
ware design for this scheduler for a 64-port 10 Gbit/s shared-
memory (output-queued) switch. Our design costs an addi-
tional 4% in chip area. In return, it lets us program many so-
phisticated algorithms, such as a 5-level hierarchical sched-
uler with programmable decisions at each level.

CCS Concepts
•Networks ! Programmable networks;

Keywords
Programmable scheduling; switch hardware
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1. INTRODUCTION
Today’s fastest switches, also known as line-rate switches,

provide a small menu of scheduling algorithms: typically,
a combination of Deficit Round Robin [36], strict priority
scheduling, and traffic shaping. A network operator can
change parameters in these algorithms, but cannot change
the core logic in an existing algorithm, or program a new
one, without building new switch hardware.

By contrast, with a programmable packet scheduler, net-
work operators could customize scheduling algorithms to
application requirements, e.g., minimizing flow completion
times [12] using Shortest Remaining Processing Time [35],
allocating bandwidth flexibly across flows or tenants [26,
33] using Weighted Fair Queueing [20], minimizing tail
packet delays using Least Slack Time First [29], etc. More-
over, with a programmable packet scheduler, switch vendors
could implement scheduling algorithms as programs running
on a programmable switching chip, making it easier to ver-
ify and modify these algorithms compared to baking in the
same algorithms into a chip as rigid hardware.

This paper presents a design for programmable packet
scheduling in line-rate switches. All scheduling algorithms
make two basic decisions: in what order packets should
be scheduled and when they should be scheduled, corre-
sponding to work-conserving and non-work-conserving al-
gorithms respectively. Furthermore, for many scheduling al-
gorithms, these two decisions can be made when a packet
is enqueued. This observation suggests a natural hardware
primitive for packet scheduling: a push-in first-out queue
(PIFO) [19, 38]. A PIFO is a priority queue that allows el-
ements to be pushed into an arbitrary position based on an
element’s rank (the scheduling order or time),1 but always
dequeues elements from the head.

We develop a programming model for scheduling (§2)
based on PIFOs with two key ideas. First, we allow users to
set a packet’s rank in a PIFO by supplying a small program
for computing packet ranks (§2.1). Coupling this program
with a single PIFO allows the user to program any schedul-
ing algorithm where the relative scheduling order of buffered
packets does not change with future packet arrivals. Sec-
ond, users can compose PIFOs together in a tree to program

1When the rank denotes the scheduling time, the PIFO im-
plements a calendar queue; we distinguish between PIFOs
and priority queues for this reason.

http://github.com/bestephe/loom

C++ PIFO2 implementation is used for scheduling

10Gbps and 40Gbps CloudLab evaluation  

1 2

http://github.com/bestephe/loom
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Can Loom drive line 
rate?  Can Loom enforce 
network policies?

Experiment: 
Microbenchmarks 
with iPerf

Can Loom isolate real 
applications?

Experiment: CloudLab 
experiments with 
memcached and 
Spark

How effective is Loom’s 
efficient OS/NIC 
interface?

Experiment: Analysis 
of PCIe writes in Linux 
(QPF) versus Loom
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vs

Bandwidth
Hungry
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Bandwidth
Hungry
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jobs
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vs

Latency Sensitive Bandwidth Hungry

Setup: Linux software 
packet scheduling (Qdisc) 
is configured to prioritize 
memcached traffic over 
Spark traffic
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Line-rate

Existing 
approaches:
PCIe Writes 
per second

Loom:
PCIe Writes 
per second

10 Gbps 833K 19K

40 Gbps 3.3M 76K

100 Gbps 8.3M 191K

Worse case scenario:
Packets are sent in 64KB batches and each 

packet is from a different flow
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Line-rate

Existing 
approaches:
PCIe Writes 
per second

Loom:
PCIe Writes 
per second

10 Gbps 833K 19K

40 Gbps 3.3M 76K

100 Gbps 8.3M 191K

Worse case scenario:
Packets are sent in 64KB batches and each 

packet is from a different flow

Loom Goal: Less than 1Mops @ 100Gbps
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Loom is a new NIC design that completely 
offloads all packet scheduling to the NIC with 

low CPU overhead

Loom’s benefits translate into reductions in 
latency, increases in throughput, and 

improvements in fairness

Current NICs cannot ensure that competing 
applications are isolated
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Eiffel

NIC Scheduling does not eliminate 
the need for software scheduling

Loom and Eiffel can be used 
together

Bucketed priority queues could be 
used to build efficient PIFOs


