
Brent Stephens Aditya Akella, Mike Swift

NSDI 2019

Loom: Flexible and Efficient
NIC Packet Scheduling

Loom is a new Network Interface
Card (NIC) design that offloads all
per-flow scheduling decisions out of
the OS and into the NIC

• Why is packet scheduling important?
• What is wrong with current NICs?
• Why should all packet scheduling be

offloaded to the NIC?
42

Why is packet scheduling important?

43

Collocation (Application and Tenant) is
Important for Infrastructure Efficiency

44

Tenant 1 Tenant 2 CPU Isolation Policy:
Tenant 1:

Memcached: 3 cores
Spark: 1 core

Tenant 2:
Spark: 4 cores

45

Network Performance Goals
Different applications have differing network performance goals

Low Latency High Throughput

46

Network Policies

Network operators must specify and enforce a network isolation policy
• Enforcing a network isolation policy requires scheduling

Pri_1

VM1VM1
Pseudocode

Tenant_1.Memcached -> Pri_1:high
Tenant_1.Spark -> Pri_1:low
Pri_1 -> RL_WAN(Dst == WAN: 15Gbps)
Pri_1 -> RL_None(Dst != WAN: No Limit)
RL_WAN -> FIFO_1; RL_None -> FIFO_1
FIFO_1-> Fair_1:w1
Tenants_2.Spark -> Fair_1:w1
Fair_1 -> Wire

47

Network Policies

Network operators must specify and enforce a network isolation policy
• Enforcing a network isolation policy requires scheduling

Pri_1

VM1VM1
Pseudocode

Tenant_1.Memcached -> Pri_1:high
Tenant_1.Spark -> Pri_1:low
Pri_1 -> RL_WAN(Dst == WAN: 15Gbps)
Pri_1 -> RL_None(Dst != WAN: No Limit)
RL_WAN -> FIFO_1; RL_None -> FIFO_1
FIFO_1-> Fair_1:w1
Tenants_2.Spark -> Fair_1:w1
Fair_1 -> Wire

FIFO_1

RL_WAN RL_None

48

Wire

Network Policies

Network operators must specify and enforce a network isolation policy
• Enforcing a network isolation policy requires scheduling

Fair_1

Pri_1

VM1 VM2VM1
Pseudocode

Tenant_1.Memcached -> Pri_1:high
Tenant_1.Spark -> Pri_1:low
Pri_1 -> RL_WAN(Dst == WAN: 15Gbps)
Pri_1 -> RL_None(Dst != WAN: No Limit)
RL_WAN -> FIFO_1; RL_None -> FIFO_1
FIFO_1-> Fair_1:w1
Tenants_2.Spark -> Fair_1:w1
Fair_1 -> Wire

FIFO_1

RL_WAN RL_None

What is wrong with current NICs?

49

Single Queue Packet Scheduling Limitations

• Single core throughput is limited
(although high with Eiffel)
• Especially with very small packets
• Energy-efficient architectures may

prioritize scalability over single-core
performance

• Software scheduling consumes CPU

• Core-to-core communication
increases latency

50

CPU

NIC

Wire

App 1 App 2

NIC

SQ struggles to drive line-rate

Multi Queue NIC Background and Limitations
• Multi-queue NICs enable parallelism

• Throughput can be scaled across many
tens of cores

• Multi-queue NICs have packet
scheduler that chose which queue to
send packets from

• The one-queue-per-core multi-queue
model (MQ) attempts to enforces
the policy at every core
independently
• This is the best possible without inter-

core coordination, but it is not effective

51

CPU

NIC

Wire

App 1 App 2

NIC

MQ struggles to enforce policies!

MQ Scheduler Problems

52

CPU

NIC
(Network

Interface Card)

Time (t)

Naïve NIC packet
scheduling prevents

colocation!

It leads to:
• High latency
• Unfair and variable

throughput

Packet Scheduler

MQ Scheduler Problems

53

CPU

NIC
(Network

Interface Card)

Time (t)

Naïve NIC packet
scheduling prevents

colocation!

It leads to:
• High latency
• Unfair and variable

throughput

Packet Scheduler

Why should all packet scheduling be
offloaded to the NIC?

54

55

Where to divide labor between the OS and NIC?

CPU

NIC
Wire

Fair_1

Pri_1

VM1 VM2VM1

FIFO_1

RL_WAN RL_None

56

Where to divide labor between the OS and NIC?

CPU

NIC
Option 1: Single Queue (SQ)

• Enforce entire policy in software
• Low Tput/High CPU Utilization Wire

Fair_1

Pri_1

VM1 VM2VM1

FIFO_1

RL_WAN RL_None

57

Where to divide labor between the OS and NIC?

CPU

NIC
Option 1: Single Queue (SQ)

• Enforce entire policy in software
• Low Tput/High CPU Utilization

Option 2: Multi Queue (MQ)
• Every core independently enforces

policy on local traffic
• Cannot ensure polices are

enforced

Wire

Fair_1

Pri_1

VM1 VM2VM1

FIFO_1

RL_WAN RL_None

58

Where to divide labor between the OS and NIC?

CPU

NIC
Option 1: Single Queue (SQ)

• Enforce entire policy in software
• Low Tput/High CPU Utilization

Option 2: Multi Queue (MQ)
• Every core independently enforces

policy on local traffic
• Cannot ensure polices are

enforced

Option 3: Loom
• Every flow uses its own queue
• All policy enforcement is offloaded to

the NIC
• Precise policy + low CPU

Wire

Fair_1

Pri_1

VM1 VM2VM1

FIFO_1

RL_WAN RL_None

59

Loom is a new NIC design that moves
all per-flow scheduling decisions out

of the OS and into the NIC

Loom uses a queue per flow and offloads all packet scheduling to the NIC

Core Problem:

It is not currently possible to offload all packet
scheduling because NIC packet schedulers are
inflexible and configuring them is inefficient

Core Problem:

It is not currently possible to offload all packet
scheduling because NIC packet schedulers are
inflexible and configuring them is inefficient

NIC packet schedulers are currently standing in the way of
performance isolation!

Outline

62

Intro: Loom is a new NIC design that moves all per-flow scheduling decisions out of the OS and
into the NIC

Contributions:

Specification: A new network policy abstraction: restricted
directed acyclic graphs (DAGs)

Enforcement: A new programmable packet scheduling
hierarchy designed for NICs

Updating: A new expressive and efficient OS/NIC interface

Implementation and Evaluation: BESS prototype and CloudLab

Outline
Contributions:

1. Specification: A new network policy
abstraction: restricted directed acyclic graphs
(DAGs)

2. Enforcement: A new programmable packet
scheduling hierarchy designed for NICs

3. Updating: A new expressive and efficient OS/NIC
interface

63

What scheduling polices are needed for
performance isolation?

How should policies be specified?

64

Solution: Loom Policy DAG Two types of nodes:

65
Wire

Fair_1

Pri_1

VM1 VM2VM1

FIFO_1

RL_WAN RL_None

Legend:

Shaping
Node

Scheduling
Node

Child
1

(a)

Child
2

Parent P1 P2

Child

(b)

Child

(c)

FIFO

R1 R2 R3

Child

(d)

P1

R1 R2 R3

P2 P3

Legend:

Shaping
Node

Scheduling
Node

Child
1

(a)

Child
2

Parent P1 P2

Child

(b)

Child

(c)

FIFO

R1 R2 R3

Child

(d)

P1

R1 R2 R3

P2 P3

Scheduling nodes: Work-conserving policies for sharing
the local link bandwidth

Shaping nodes: Rate-limiting policies for sharing the
network core (WAN and DCN)

Programmability: Every node is programmable with a
custom enqueue and dequeue function

Loom can express policies that cannot be expressed with either
Linux Traffic Control (Qdisc) or with Domino (PIFO)!

Important systems like BwE (sharing the WAN) and EyeQ
(sharing the DCN) require Loom’s policy DAG!

Types of Loom Scheduling Policies:

66

Scheduling:
• All of the flows from competing

Spark jobs J1 and J2 in VM1 fairly
share network bandwidth

Shaping:
• All of the flows from VM1 to VM2 are

rate limited to 50Gbps

Types of Loom Scheduling Policies:

67

Scheduling:
• All of the flows from competing

Spark jobs J1 and J2 in VM1 fairly
share network bandwidth

Shaping:
• All of the flows from VM1 to VM2 are

rate limited to 50Gbps

Group by source

Group by destination

Types of Loom Scheduling Policies:

68

Scheduling:
• All of the flows from competing

Spark jobs J1 and J2 in VM1 fairly
share network bandwidth

Shaping:
• All of the flows from VM1 to VM2 are

rate limited to 50Gbps
Because Scheduling and Shaping polices may aggregate flows

differently, they cannot be expressed as a tree!

Group by source

Group by destination

69

Loom: Policy Abstraction
Policies are expressed as restricted acyclic graphs (DAGs)

Legend:

Shaping
Node

Scheduling
Node

Child
1

(a)

Child
2

Parent P1 P2

Child

(b)

Child

(c)

FIFO

R1 R2 R3

Child

(d)

P1

R1 R2 R3

P2 P3

DAG restriction: Scheduling nodes form a tree when the shaping nodes
are removed

(b) And (d) are prevented because they allow parents to reorder packets that were
already ordered by a child node.

70

Loom: Policy Abstraction
Policies are expressed as restricted acyclic graphs (DAGs)

Legend:

Shaping
Node

Scheduling
Node

Child
1

(a)

Child
2

Parent P1 P2

Child

(b)

Child

(c)

FIFO

R1 R2 R3

Child

(d)

P1

R1 R2 R3

P2 P3

DAG restriction: Scheduling nodes form a tree when the shaping nodes
are removed

(b) And (d) are prevented because they allow parents to reorder packets that were
already ordered by a child node.

Outline
Contributions:

1. Specification: A new network policy abstraction:
restricted directed acyclic graphs (DAGs)

2. Enforcement: A new programmable packet
scheduling hierarchy designed for NICs

3. Updating: A new expressive and efficient OS/NIC
interface

71

How do we build a NIC that can enforce
Loom’s new DAG abstraction?

72

Loom Enforcement Challenge
No existing hardware scheduler can efficiently enforce Loom Policy DAGs

Scheduling

Domino PIFO Block

1 x

Shaping

1 x

Scheduling

New PIFO Block?

1 x

Shaping

N x

73

Requiring separate shaping queues for every shaping traffic class would be prohibitive!

Insight: All shaping can be done with a
single queue because all shaping can use

wall clock time as a rank

74

Loom
Enforcement

75

In Loom, scheduling and
shaping queues are separate

1. All traffic is first only
placed in scheduling
queues

2. If a packet is dequeued
before its shaping time, it
is placed in a global
shaping queue

3. After shaping, the packet
is placed back in
scheduling queues

F1
F2
F3

Pri

Mem – 25Gbps RL

Mem – No RL

Spark – No RL

Scheduling Shaping

F1
F1
F1

Loom
Enforcement

76

In Loom, scheduling and
shaping queues are separate

1. All traffic is first only
placed in scheduling
queues

2. If a packet is dequeued
before its shaping time, it
is placed in a global
shaping queue

3. After shaping, the packet
is placed back in
scheduling queues

F1
F2
F3

Pri

Mem – 25Gbps RL

Mem – No RL

Spark – No RL

Scheduling Shaping

F1
F1
F1

Loom
Enforcement

77

In Loom, scheduling and
shaping queues are separate

1. All traffic is first only
placed in scheduling
queues

2. If a packet is dequeued
before its shaping time, it
is placed in a global
shaping queue

3. After shaping, the packet
is placed back in
scheduling queues

F1
F2
F3

Pri

Mem – 25Gbps RL

Mem – No RL

Spark – No RL

Scheduling Shaping

F1
F1
F1

F2
F3

Loom
Enforcement

78

In Loom, scheduling and
shaping queues are separate

1. All traffic is first only
placed in scheduling
queues

2. If a packet is dequeued
before its shaping time, it
is placed in a global
shaping queue

3. After shaping, the packet
is placed back in
scheduling queues

F1
F2
F3

Pri

Mem – 25Gbps RL

Mem – No RL

Spark – No RL

Scheduling Shaping

F1
F1
F1

F2
F3

Loom
Enforcement

79

In Loom, scheduling and
shaping queues are separate

1. All traffic is first only
placed in scheduling
queues

2. If a packet is dequeued
before its shaping time, it
is placed in a global
shaping queue

3. After shaping, the packet
is placed back in
scheduling queues

F1
F2
F3

Pri

Mem – 25Gbps RL

Mem – No RL

Spark – No RL

Scheduling Shaping

F1
F1
F1

F3

Loom
Enforcement

80

In Loom, scheduling and
shaping queues are separate

1. All traffic is first only
placed in scheduling
queues

2. If a packet is dequeued
before its shaping time, it
is placed in a global
shaping queue

3. After shaping, the packet
is placed back in
scheduling queues

F1
F2
F3

Pri

Mem – 25Gbps RL

Mem – No RL

Spark – No RL

Scheduling Shaping

F1
F1
F1

F3

Loom
Enforcement

81

In Loom, scheduling and
shaping queues are separate

1. All traffic is first only
placed in scheduling
queues

2. If a packet is dequeued
before its shaping time, it
is placed in a global
shaping queue

3. After shaping, the packet
is placed back in
scheduling queues

F1
F2
F3

Pri

Mem – 25Gbps RL

Mem – No RL

Spark – No RL

Scheduling Shaping

F1
F1
F1

F3

Loom
Enforcement

82

In Loom, scheduling and
shaping queues are separate

1. All traffic is first only
placed in scheduling
queues

2. If a packet is dequeued
before its shaping time, it
is placed in a global
shaping queue

3. After shaping, the packet
is placed back in
scheduling queues

F1
F2
F3

Pri

Mem – 25Gbps RL

Mem – No RL

Spark – No RL

Scheduling Shaping

F1
F1
F1

F3

Loom
Enforcement

83

In Loom, scheduling and
shaping queues are separate

1. All traffic is first only
placed in scheduling
queues

2. If a packet is dequeued
before its shaping time, it
is placed in a global
shaping queue

3. After shaping, the packet
is placed back in
scheduling queues

F1
F2
F3

Pri

Mem – 25Gbps RL

Mem – No RL

Spark – No RL

Scheduling Shaping

F1
F1
F1

F3

Outline
Contributions:

1. Specification: A new network policy abstraction:
restricted directed acyclic graphs (DAGs)

2. Enforcement: A new programmable packet
scheduling hierarchy designed for NICs

3. Updating: A new expressive and efficient
OS/NIC interface

84

PCIe Limitations:

85

NIC doorbell and update limitations:1

NIC

PCIe
Engine

App

Core

DB1 DB2 DB3

DB4 … DB_F

PCIe 1

2

1 Latency Limitations:
• 120-900ns

2 Throughput Limitations:
• ~3Mops (Intel XL710 40Gbps)

PSPAT: software packet scheduling at hardware speed

Luigi Rizzo1, Paolo Valente2, Giuseppe Lettieri1, Vincenzo Maffione2
1Univ. di Pisa, 2Univ.di Modena e Reggio Emilia

rizzo.unipi@gmail.com. Work supported by H2020 project SSICLOPS.
Author’s copy 20160921, please do not redistribute.

Abstract

Tenants in a cloud environment run services, such as
Virtual Network Function instantiations, that may legiti-
mately generate millions of packets per second. The host-
ing platform, hence, needs robust scheduling mechanisms
that support these rates and, at the same time, provide iso-
lation and dependable service guarantees.

Current hardware or software packet scheduling solu-
tions fail to meet all these requirements, most commonly
lacking on either performance or guarantees.

In this paper we propose an architecture, called PSPAT,
to build efficient and robust software packet schedulers
suitable to high speed, highly concurrent environments.
PSPAT decouples clients, scheduler and device driver
through lock-free mailboxes, thus removing lock con-
tention, increasing performance and providing opportuni-
ties to parallelise operation.

We describe the operation of our system, discussion
implementation and system issues, provide analytical
bounds on the service guarantees of PSPAT, and validate
the behaviour of its Linux implementation even at high
link utilization comparing it with current hardware and
software solutions. Our prototype can make over 15 mil-
lion scheduling decisions per second, and keep latency
low, even with tens of concurrent clients running on a
multi-core, multi-socket system.

1 Introduction

Allocating and accounting for available capacity is the
foundation of cloud environments, where multiple tenants
share resources managed by the cloud provider. Dynamic
resource scheduling in the Operating System (OS) ensures
that CPU, disk, and network capacity are assigned to ten-
ants as specified by contracts and configuration. It is fun-
damental that the platform guarantees isolation and pre-
dictable performance even when overloaded.

PROBLEM AND USE CASE: In this work we focus
on packet scheduling for very high packet rates and large
number of concurrent clients. This is an increasingly com-
mon scenario in servers that host cloud clients: Virtual
Machines (VMs), OS containers, or any other mechanism
to manage and account for resources.

Current hosts feature multiple CPU sockets with tens of
CPU cores, and Network Interfaces (NICs) with an aggre-
gate rate of 10..100 Gbit/s. Even at such data rates, han-
dling bulk TCP traffic is doable: large frames (from 1500
up to 64 Kbyte segments with hardware segmentation of-
floading) imply relatively modest packet rates. On the
contrary, Virtual Network Function (VNF) instances are
challenging, as they often operate with very small packets
and rates of 10+ Millions of packets per second (pps).

THE CHALLENGE: Scheduling the link’s capacity
in a fair and robust way almost always requires to look at
the global state of the system. This translates in some cen-
tralised data structure/decision point that is very expensive
to implement in a high rate, highly concurrent environ-
ment. A Packet Scheduler that cannot sustain the link’s
rate not only reduces communication speed, but may eas-
ily fail to achieve the desired bandwidth allocation or de-
lay bounds, sometimes by a large factor. We give several
such examples in Sections 2.3, 5.5 and 5.6.

PCIe bus

NIC

Packet scheduler

clients
kernel

protocol processing

device driver

clients
kernel

protocol processing

device driver

multiqueue NIC
+ HW scheduler

PCIe bus

Figure 1: Common architectures for software and hard-
ware packet schedulers in OSes.

1

PCIe Limitations:

86

NIC doorbell and update limitations:1

NIC

PCIe
Engine

App

Core

DB1 DB2 DB3

DB4 … DB_F

PCIe 1

2

1 Latency Limitations:
• 120-900ns

2 Throughput Limitations:
• ~3Mops (Intel XL710 40Gbps)

PSPAT: software packet scheduling at hardware speed

Luigi Rizzo1, Paolo Valente2, Giuseppe Lettieri1, Vincenzo Maffione2
1Univ. di Pisa, 2Univ.di Modena e Reggio Emilia

rizzo.unipi@gmail.com. Work supported by H2020 project SSICLOPS.
Author’s copy 20160921, please do not redistribute.

Abstract

Tenants in a cloud environment run services, such as
Virtual Network Function instantiations, that may legiti-
mately generate millions of packets per second. The host-
ing platform, hence, needs robust scheduling mechanisms
that support these rates and, at the same time, provide iso-
lation and dependable service guarantees.

Current hardware or software packet scheduling solu-
tions fail to meet all these requirements, most commonly
lacking on either performance or guarantees.

In this paper we propose an architecture, called PSPAT,
to build efficient and robust software packet schedulers
suitable to high speed, highly concurrent environments.
PSPAT decouples clients, scheduler and device driver
through lock-free mailboxes, thus removing lock con-
tention, increasing performance and providing opportuni-
ties to parallelise operation.

We describe the operation of our system, discussion
implementation and system issues, provide analytical
bounds on the service guarantees of PSPAT, and validate
the behaviour of its Linux implementation even at high
link utilization comparing it with current hardware and
software solutions. Our prototype can make over 15 mil-
lion scheduling decisions per second, and keep latency
low, even with tens of concurrent clients running on a
multi-core, multi-socket system.

1 Introduction

Allocating and accounting for available capacity is the
foundation of cloud environments, where multiple tenants
share resources managed by the cloud provider. Dynamic
resource scheduling in the Operating System (OS) ensures
that CPU, disk, and network capacity are assigned to ten-
ants as specified by contracts and configuration. It is fun-
damental that the platform guarantees isolation and pre-
dictable performance even when overloaded.

PROBLEM AND USE CASE: In this work we focus
on packet scheduling for very high packet rates and large
number of concurrent clients. This is an increasingly com-
mon scenario in servers that host cloud clients: Virtual
Machines (VMs), OS containers, or any other mechanism
to manage and account for resources.

Current hosts feature multiple CPU sockets with tens of
CPU cores, and Network Interfaces (NICs) with an aggre-
gate rate of 10..100 Gbit/s. Even at such data rates, han-
dling bulk TCP traffic is doable: large frames (from 1500
up to 64 Kbyte segments with hardware segmentation of-
floading) imply relatively modest packet rates. On the
contrary, Virtual Network Function (VNF) instances are
challenging, as they often operate with very small packets
and rates of 10+ Millions of packets per second (pps).

THE CHALLENGE: Scheduling the link’s capacity
in a fair and robust way almost always requires to look at
the global state of the system. This translates in some cen-
tralised data structure/decision point that is very expensive
to implement in a high rate, highly concurrent environ-
ment. A Packet Scheduler that cannot sustain the link’s
rate not only reduces communication speed, but may eas-
ily fail to achieve the desired bandwidth allocation or de-
lay bounds, sometimes by a large factor. We give several
such examples in Sections 2.3, 5.5 and 5.6.

PCIe bus

NIC

Packet scheduler

clients
kernel

protocol processing

device driver

clients
kernel

protocol processing

device driver

multiqueue NIC
+ HW scheduler

PCIe bus

Figure 1: Common architectures for software and hard-
ware packet schedulers in OSes.

1

PCIe Limitations:

87

NIC doorbell and update limitations:1

NIC

PCIe
Engine

App

Core

DB1 DB2 DB3

DB4 … DB_F

PCIe 1

2

1 Latency Limitations:
• 120-900ns

2 Throughput Limitations:
• ~3Mops (Intel XL710 40Gbps)

PSPAT: software packet scheduling at hardware speed

Luigi Rizzo1, Paolo Valente2, Giuseppe Lettieri1, Vincenzo Maffione2
1Univ. di Pisa, 2Univ.di Modena e Reggio Emilia

rizzo.unipi@gmail.com. Work supported by H2020 project SSICLOPS.
Author’s copy 20160921, please do not redistribute.

Abstract

Tenants in a cloud environment run services, such as
Virtual Network Function instantiations, that may legiti-
mately generate millions of packets per second. The host-
ing platform, hence, needs robust scheduling mechanisms
that support these rates and, at the same time, provide iso-
lation and dependable service guarantees.

Current hardware or software packet scheduling solu-
tions fail to meet all these requirements, most commonly
lacking on either performance or guarantees.

In this paper we propose an architecture, called PSPAT,
to build efficient and robust software packet schedulers
suitable to high speed, highly concurrent environments.
PSPAT decouples clients, scheduler and device driver
through lock-free mailboxes, thus removing lock con-
tention, increasing performance and providing opportuni-
ties to parallelise operation.

We describe the operation of our system, discussion
implementation and system issues, provide analytical
bounds on the service guarantees of PSPAT, and validate
the behaviour of its Linux implementation even at high
link utilization comparing it with current hardware and
software solutions. Our prototype can make over 15 mil-
lion scheduling decisions per second, and keep latency
low, even with tens of concurrent clients running on a
multi-core, multi-socket system.

1 Introduction

Allocating and accounting for available capacity is the
foundation of cloud environments, where multiple tenants
share resources managed by the cloud provider. Dynamic
resource scheduling in the Operating System (OS) ensures
that CPU, disk, and network capacity are assigned to ten-
ants as specified by contracts and configuration. It is fun-
damental that the platform guarantees isolation and pre-
dictable performance even when overloaded.

PROBLEM AND USE CASE: In this work we focus
on packet scheduling for very high packet rates and large
number of concurrent clients. This is an increasingly com-
mon scenario in servers that host cloud clients: Virtual
Machines (VMs), OS containers, or any other mechanism
to manage and account for resources.

Current hosts feature multiple CPU sockets with tens of
CPU cores, and Network Interfaces (NICs) with an aggre-
gate rate of 10..100 Gbit/s. Even at such data rates, han-
dling bulk TCP traffic is doable: large frames (from 1500
up to 64 Kbyte segments with hardware segmentation of-
floading) imply relatively modest packet rates. On the
contrary, Virtual Network Function (VNF) instances are
challenging, as they often operate with very small packets
and rates of 10+ Millions of packets per second (pps).

THE CHALLENGE: Scheduling the link’s capacity
in a fair and robust way almost always requires to look at
the global state of the system. This translates in some cen-
tralised data structure/decision point that is very expensive
to implement in a high rate, highly concurrent environ-
ment. A Packet Scheduler that cannot sustain the link’s
rate not only reduces communication speed, but may eas-
ily fail to achieve the desired bandwidth allocation or de-
lay bounds, sometimes by a large factor. We give several
such examples in Sections 2.3, 5.5 and 5.6.

PCIe bus

NIC

Packet scheduler

clients
kernel

protocol processing

device driver

clients
kernel

protocol processing

device driver

multiqueue NIC
+ HW scheduler

PCIe bus

Figure 1: Common architectures for software and hard-
ware packet schedulers in OSes.

1

PCIe Limitations:

88

NIC doorbell and update limitations:1

NIC

PCIe
Engine

App

Core

DB1 DB2 DB3

DB4 … DB_F

PCIe 1

2

1 Latency Limitations:
• 120-900ns

2 Throughput Limitations:
• ~3Mops (Intel XL710 40Gbps)

PSPAT: software packet scheduling at hardware speed

Luigi Rizzo1, Paolo Valente2, Giuseppe Lettieri1, Vincenzo Maffione2
1Univ. di Pisa, 2Univ.di Modena e Reggio Emilia

rizzo.unipi@gmail.com. Work supported by H2020 project SSICLOPS.
Author’s copy 20160921, please do not redistribute.

Abstract

Tenants in a cloud environment run services, such as
Virtual Network Function instantiations, that may legiti-
mately generate millions of packets per second. The host-
ing platform, hence, needs robust scheduling mechanisms
that support these rates and, at the same time, provide iso-
lation and dependable service guarantees.

Current hardware or software packet scheduling solu-
tions fail to meet all these requirements, most commonly
lacking on either performance or guarantees.

In this paper we propose an architecture, called PSPAT,
to build efficient and robust software packet schedulers
suitable to high speed, highly concurrent environments.
PSPAT decouples clients, scheduler and device driver
through lock-free mailboxes, thus removing lock con-
tention, increasing performance and providing opportuni-
ties to parallelise operation.

We describe the operation of our system, discussion
implementation and system issues, provide analytical
bounds on the service guarantees of PSPAT, and validate
the behaviour of its Linux implementation even at high
link utilization comparing it with current hardware and
software solutions. Our prototype can make over 15 mil-
lion scheduling decisions per second, and keep latency
low, even with tens of concurrent clients running on a
multi-core, multi-socket system.

1 Introduction

Allocating and accounting for available capacity is the
foundation of cloud environments, where multiple tenants
share resources managed by the cloud provider. Dynamic
resource scheduling in the Operating System (OS) ensures
that CPU, disk, and network capacity are assigned to ten-
ants as specified by contracts and configuration. It is fun-
damental that the platform guarantees isolation and pre-
dictable performance even when overloaded.

PROBLEM AND USE CASE: In this work we focus
on packet scheduling for very high packet rates and large
number of concurrent clients. This is an increasingly com-
mon scenario in servers that host cloud clients: Virtual
Machines (VMs), OS containers, or any other mechanism
to manage and account for resources.

Current hosts feature multiple CPU sockets with tens of
CPU cores, and Network Interfaces (NICs) with an aggre-
gate rate of 10..100 Gbit/s. Even at such data rates, han-
dling bulk TCP traffic is doable: large frames (from 1500
up to 64 Kbyte segments with hardware segmentation of-
floading) imply relatively modest packet rates. On the
contrary, Virtual Network Function (VNF) instances are
challenging, as they often operate with very small packets
and rates of 10+ Millions of packets per second (pps).

THE CHALLENGE: Scheduling the link’s capacity
in a fair and robust way almost always requires to look at
the global state of the system. This translates in some cen-
tralised data structure/decision point that is very expensive
to implement in a high rate, highly concurrent environ-
ment. A Packet Scheduler that cannot sustain the link’s
rate not only reduces communication speed, but may eas-
ily fail to achieve the desired bandwidth allocation or de-
lay bounds, sometimes by a large factor. We give several
such examples in Sections 2.3, 5.5 and 5.6.

PCIe bus

NIC

Packet scheduler

clients
kernel

protocol processing

device driver

clients
kernel

protocol processing

device driver

multiqueue NIC
+ HW scheduler

PCIe bus

Figure 1: Common architectures for software and hard-
ware packet schedulers in OSes.

1

PCIe Limitations:

89

NIC doorbell and update limitations:1

Loom Goal: Less than 1Mops @ 100Gbps

NIC

PCIe
Engine

App

Core

DB1 DB2 DB3

DB4 … DB_F

PCIe 1

2

1 Latency Limitations:
• 120-900ns

2 Throughput Limitations:
• ~3Mops (Intel XL710 40Gbps)

PSPAT: software packet scheduling at hardware speed

Luigi Rizzo1, Paolo Valente2, Giuseppe Lettieri1, Vincenzo Maffione2
1Univ. di Pisa, 2Univ.di Modena e Reggio Emilia

rizzo.unipi@gmail.com. Work supported by H2020 project SSICLOPS.
Author’s copy 20160921, please do not redistribute.

Abstract

Tenants in a cloud environment run services, such as
Virtual Network Function instantiations, that may legiti-
mately generate millions of packets per second. The host-
ing platform, hence, needs robust scheduling mechanisms
that support these rates and, at the same time, provide iso-
lation and dependable service guarantees.

Current hardware or software packet scheduling solu-
tions fail to meet all these requirements, most commonly
lacking on either performance or guarantees.

In this paper we propose an architecture, called PSPAT,
to build efficient and robust software packet schedulers
suitable to high speed, highly concurrent environments.
PSPAT decouples clients, scheduler and device driver
through lock-free mailboxes, thus removing lock con-
tention, increasing performance and providing opportuni-
ties to parallelise operation.

We describe the operation of our system, discussion
implementation and system issues, provide analytical
bounds on the service guarantees of PSPAT, and validate
the behaviour of its Linux implementation even at high
link utilization comparing it with current hardware and
software solutions. Our prototype can make over 15 mil-
lion scheduling decisions per second, and keep latency
low, even with tens of concurrent clients running on a
multi-core, multi-socket system.

1 Introduction

Allocating and accounting for available capacity is the
foundation of cloud environments, where multiple tenants
share resources managed by the cloud provider. Dynamic
resource scheduling in the Operating System (OS) ensures
that CPU, disk, and network capacity are assigned to ten-
ants as specified by contracts and configuration. It is fun-
damental that the platform guarantees isolation and pre-
dictable performance even when overloaded.

PROBLEM AND USE CASE: In this work we focus
on packet scheduling for very high packet rates and large
number of concurrent clients. This is an increasingly com-
mon scenario in servers that host cloud clients: Virtual
Machines (VMs), OS containers, or any other mechanism
to manage and account for resources.

Current hosts feature multiple CPU sockets with tens of
CPU cores, and Network Interfaces (NICs) with an aggre-
gate rate of 10..100 Gbit/s. Even at such data rates, han-
dling bulk TCP traffic is doable: large frames (from 1500
up to 64 Kbyte segments with hardware segmentation of-
floading) imply relatively modest packet rates. On the
contrary, Virtual Network Function (VNF) instances are
challenging, as they often operate with very small packets
and rates of 10+ Millions of packets per second (pps).

THE CHALLENGE: Scheduling the link’s capacity
in a fair and robust way almost always requires to look at
the global state of the system. This translates in some cen-
tralised data structure/decision point that is very expensive
to implement in a high rate, highly concurrent environ-
ment. A Packet Scheduler that cannot sustain the link’s
rate not only reduces communication speed, but may eas-
ily fail to achieve the desired bandwidth allocation or de-
lay bounds, sometimes by a large factor. We give several
such examples in Sections 2.3, 5.5 and 5.6.

PCIe bus

NIC

Packet scheduler

clients
kernel

protocol processing

device driver

clients
kernel

protocol processing

device driver

multiqueue NIC
+ HW scheduler

PCIe bus

Figure 1: Common architectures for software and hard-
ware packet schedulers in OSes.

1

Loom Efficient Interface Challenges

90

Insufficient data:
Before reading any packet data

(headers), the NIC must
schedule DMA reads for a

queue

Too many PCIe writes:
In the worst case (every packet

is from a new flow), the OS
must generate 2 PCIe writes

per-packet

2 writes per 1500B packet at
100Gbps = 16.6 Mops!

Loom Design

91

Loom introduces a new efficient
OS/NIC interface that reduces the

number of PCIe writes through
batched updates and inline metadata

Batched Doorbells

92

Using on-NIC Doorbell FIFOs
allows for updates to different
queues (flows) to be batched

NIC

Per-core
Doorbell

FIFO

App

Core

PCIe

Per-core FIFOs still enable
parallelism

Batched Doorbells

93

Using on-NIC Doorbell FIFOs
allows for updates to different
queues (flows) to be batched

NIC

Per-core
Doorbell

FIFO

App

Core

PCIe

Per-core FIFOs still enable
parallelism

Batched Doorbells

94

Using on-NIC Doorbell FIFOs
allows for updates to different
queues (flows) to be batched

NIC

Per-core
Doorbell

FIFO

App

Core

PCIe

Per-core FIFOs still enable
parallelism

Batched Doorbells

95

Using on-NIC Doorbell FIFOs
allows for updates to different
queues (flows) to be batched

NIC

Per-core
Doorbell

FIFO

App

Core

PCIe

Per-core FIFOs still enable
parallelism

Batched Doorbells

96

Using on-NIC Doorbell FIFOs
allows for updates to different
queues (flows) to be batched

NIC

Per-core
Doorbell

FIFO

App

Core

PCIe

Per-core FIFOs still enable
parallelism

Batched Doorbells

97

Using on-NIC Doorbell FIFOs
allows for updates to different
queues (flows) to be batched

NIC

Per-core
Doorbell

FIFO

App

Core

PCIe

Per-core FIFOs still enable
parallelism

Batched Doorbells

98

Using on-NIC Doorbell FIFOs
allows for updates to different
queues (flows) to be batched

NIC

Per-core
Doorbell

FIFO

App

Core

PCIe

Per-core FIFOs still enable
parallelism

NIC

Inline Metadata

99

Scheduling metadata (traffic

class and scheduling updates)

is inlined to reduce PCIe writes

Descriptor inlining allows for

scheduling before reading

packet data

Wire

DMA Engine

PIFOs

Mem

Q5 Q_F
…

Q1
Q2 Q3

NIC

Inline Metadata

100

Scheduling metadata (traffic

class and scheduling updates)

is inlined to reduce PCIe writes

Descriptor inlining allows for

scheduling before reading

packet data

Wire

DMA Engine

PIFOs

Mem

Q5 Q_F
…

Q1

Q2 Q3

NIC

Inline Metadata

101

Scheduling metadata (traffic

class and scheduling updates)

is inlined to reduce PCIe writes

Descriptor inlining allows for

scheduling before reading

packet data

Wire

DMA Engine

PIFOs

Mem

Q5 Q_F
…

Q1

Q2 Q3

Outline
Contributions:

1. A new network policy abstraction: restricted directed
acyclic graphs (DAGs)

2. A new programmable packet scheduling hierarchy
designed for NICs

3. A new expressive and efficient OS/NIC interface

Evaluation:

1. Implementation and Evaluation: BESS prototype and
CloudLab

102

Loom Implementation

103

Software prototype of Loom in Linux on the
Berkeley Extensible Software Switch (BESS)1

Programmable Packet Scheduling at Line Rate

Anirudh Sivaraman*, Suvinay Subramanian*, Mohammad Alizadeh*, Sharad Chole‡, Shang-Tse Chuang‡, Anurag Agrawal†,
Hari Balakrishnan*, Tom Edsall‡, Sachin Katti+, Nick McKeown+

*MIT CSAIL, †Barefoot Networks, ‡Cisco Systems, +Stanford University

ABSTRACT
Switches today provide a small menu of scheduling algo-
rithms. While we can tweak scheduling parameters, we
cannot modify algorithmic logic, or add a completely new
algorithm, after the switch has been designed. This pa-
per presents a design for a programmable packet scheduler,
which allows scheduling algorithms—potentially algorithms
that are unknown today—to be programmed into a switch
without requiring hardware redesign.

Our design uses the property that scheduling algorithms
make two decisions: in what order to schedule packets and
when to schedule them. Further, we observe that in many
scheduling algorithms, definitive decisions on these two
questions can be made when packets are enqueued. We use
these observations to build a programmable scheduler using
a single abstraction: the push-in first-out queue (PIFO), a
priority queue that maintains the scheduling order or time.

We show that a PIFO-based scheduler lets us program a
wide variety of scheduling algorithms. We present a hard-
ware design for this scheduler for a 64-port 10 Gbit/s shared-
memory (output-queued) switch. Our design costs an addi-
tional 4% in chip area. In return, it lets us program many so-
phisticated algorithms, such as a 5-level hierarchical sched-
uler with programmable decisions at each level.

CCS Concepts
•Networks ! Programmable networks;

Keywords
Programmable scheduling; switch hardware

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than the author(s) must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.
SIGCOMM ’16, August 22 - 26, 2016, Florianopolis , Brazil

© 2016 Copyright held by the owner/author(s). Publication rights licensed to
ACM. ISBN 978-1-4503-4193-6/16/08. . . $15.00
DOI: http://dx.doi.org/10.1145/2934872.2934899

1. INTRODUCTION
Today’s fastest switches, also known as line-rate switches,

provide a small menu of scheduling algorithms: typically,
a combination of Deficit Round Robin [36], strict priority
scheduling, and traffic shaping. A network operator can
change parameters in these algorithms, but cannot change
the core logic in an existing algorithm, or program a new
one, without building new switch hardware.

By contrast, with a programmable packet scheduler, net-
work operators could customize scheduling algorithms to
application requirements, e.g., minimizing flow completion
times [12] using Shortest Remaining Processing Time [35],
allocating bandwidth flexibly across flows or tenants [26,
33] using Weighted Fair Queueing [20], minimizing tail
packet delays using Least Slack Time First [29], etc. More-
over, with a programmable packet scheduler, switch vendors
could implement scheduling algorithms as programs running
on a programmable switching chip, making it easier to ver-
ify and modify these algorithms compared to baking in the
same algorithms into a chip as rigid hardware.

This paper presents a design for programmable packet
scheduling in line-rate switches. All scheduling algorithms
make two basic decisions: in what order packets should
be scheduled and when they should be scheduled, corre-
sponding to work-conserving and non-work-conserving al-
gorithms respectively. Furthermore, for many scheduling al-
gorithms, these two decisions can be made when a packet
is enqueued. This observation suggests a natural hardware
primitive for packet scheduling: a push-in first-out queue
(PIFO) [19, 38]. A PIFO is a priority queue that allows el-
ements to be pushed into an arbitrary position based on an
element’s rank (the scheduling order or time),1 but always
dequeues elements from the head.

We develop a programming model for scheduling (§2)
based on PIFOs with two key ideas. First, we allow users to
set a packet’s rank in a PIFO by supplying a small program
for computing packet ranks (§2.1). Coupling this program
with a single PIFO allows the user to program any schedul-
ing algorithm where the relative scheduling order of buffered
packets does not change with future packet arrivals. Sec-
ond, users can compose PIFOs together in a tree to program

1When the rank denotes the scheduling time, the PIFO im-
plements a calendar queue; we distinguish between PIFOs
and priority queues for this reason.

http://github.com/bestephe/loom

C++ PIFO2 implementation is used for scheduling

10Gbps and 40Gbps CloudLab evaluation

1 2

http://github.com/bestephe/loom

Loom
Evaluation

104

Can Loom drive line
rate? Can Loom enforce
network policies?

Experiment:
Microbenchmarks
with iPerf

Can Loom isolate real
applications?

Experiment: CloudLab
experiments with
memcached and
Spark

How effective is Loom’s
efficient OS/NIC
interface?

Experiment: Analysis
of PCIe writes in Linux
(QPF) versus Loom

Loom 40Gbps Evaluation

105

Setup:
• Every 2s a new tenant

starts or stops
• Each tenant i starts 4i

flows (4-256 total flows)

Fair

T2T1 T3 T4

Policy: All tenants should
receive an equal share. 0 5 10 15 20

Time (seconds)

0
10
20
30
40

Th
ro

ug
hp

ut
(G

bp
s)

T1 T2 T3 T4

0 5 10 15 20
Time (seconds)

0
10
20
30
40

Th
ro

ug
hp

ut
(G

bp
s)

T1 T2 T3 T4

0 5 10 15 20
Time (seconds)

0
10
20
30
40

Th
ro

ug
hp

ut
(G

bp
s)

T1 T2 T3 T4

SQ

MQ

Loom

105

Loom 40Gbps Evaluation

106

Setup:
• Every 2s a new tenant

starts or stops
• Each tenant i starts 4i

flows (4-256 total flows)

Fair

T2T1 T3 T4

Policy: All tenants should
receive an equal share. 0 5 10 15 20

Time (seconds)

0
10
20
30
40

Th
ro

ug
hp

ut
(G

bp
s)

T1 T2 T3 T4

0 5 10 15 20
Time (seconds)

0
10
20
30
40

Th
ro

ug
hp

ut
(G

bp
s)

T1 T2 T3 T4

0 5 10 15 20
Time (seconds)

0
10
20
30
40

Th
ro

ug
hp

ut
(G

bp
s)

T1 T2 T3 T4

Loom can drive line-rate and isolate competing tenants and flows

SQ

MQ

Loom

106

Application Performance: Fairness

107

vs

Bandwidth
Hungry

Bandwidth
Hungry

Policy: Bandwidth
is fairly shared
between Spark
jobs

Fair

30 35 40 45 50
Time (seconds)

0

2

4

6

8

10

Th
ro

ug
hp

ut
 (G

bp
s)

Job1 Job2

30 35 40 45 50 55 60
Time (seconds)

0

2

4

6

8

10

Th
ro

ug
hp

ut
 (G

bp
s)

Job1 Job2

Linux Loom

Application Performance: Fairness

108

vs

Bandwidth
Hungry

Bandwidth
Hungry

Policy: Bandwidth
is fairly shared
between Spark
jobs

Fair

Loom can ensure competing jobs share bandwidth even if
they have different numbers of flows

30 35 40 45 50
Time (seconds)

0

2

4

6

8

10

Th
ro

ug
hp

ut
 (G

bp
s)

Job1 Job2

30 35 40 45 50 55 60
Time (seconds)

0

2

4

6

8

10

Th
ro

ug
hp

ut
 (G

bp
s)

Job1 Job2

Linux Loom

Application Performance: Latency

109

vs

Latency Sensitive Bandwidth Hungry

Setup: Linux software
packet scheduling (Qdisc)
is configured to prioritize
memcached traffic over
Spark traffic

Pri
0

1000

2000

3000

4000

Loom Linux (MQ)

90
th

Pe
rc

en
til

e
La

te
nc

y
(u

s)

Application Performance: Latency

110

vs

Latency Sensitive Bandwidth Hungry

Setup: Linux software
packet scheduling (Qdisc)
is configured to prioritize
memcached traffic over
Spark traffic

Pri

MQ cannot isolate latency-sensitive applications!

0

1000

2000

3000

4000

Loom Linux (MQ)

90
th

Pe
rc

en
til

e
La

te
nc

y
(u

s)

Loom Interface Evaluation

111

Line-rate

Existing
approaches:
PCIe Writes
per second

Loom:
PCIe Writes
per second

10 Gbps 833K 19K

40 Gbps 3.3M 76K

100 Gbps 8.3M 191K

Worse case scenario:
Packets are sent in 64KB batches and each

packet is from a different flow

Loom Interface Evaluation

112

Line-rate

Existing
approaches:
PCIe Writes
per second

Loom:
PCIe Writes
per second

10 Gbps 833K 19K

40 Gbps 3.3M 76K

100 Gbps 8.3M 191K

Worse case scenario:
Packets are sent in 64KB batches and each

packet is from a different flow

Loom Goal: Less than 1Mops @ 100Gbps

Conclusion

113

Loom is a new NIC design that completely
offloads all packet scheduling to the NIC with

low CPU overhead

Loom’s benefits translate into reductions in
latency, increases in throughput, and

improvements in fairness

Current NICs cannot ensure that competing
applications are isolated

Related Work (Eiffel)

114

Eiffel

NIC Scheduling does not eliminate
the need for software scheduling

Loom and Eiffel can be used
together

Bucketed priority queues could be
used to build efficient PIFOs

