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Loom is a new Network Interface
Card (NIC) design that offloads all
per-flow scheduling decisions out of

the OS and into the NIC

* Why is packet scheduling important?
* What is wrong with current NICs?

 Why should all packet scheduling be
offloaded to the NIC?
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Why is packet scheduling important?
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Collocation (Application and Tenant) is
Important for Infrastructure Efficiency

Tenant 2

CPU Isolation Policy:

C N
m &ﬁ? Tenant 1:
i Memcached: 3 cores
U 4 :

Spark: 1 core

‘ Tenant 2:

Spark: 4 cores

=T~

o W o W e W
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Network Performance Goals

Different applications have differing network performance goals

Spark

Low Latency High Throughput
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Network Policies

VM1 VM1

Pseudocode

Tenant_1.Memcached -> Pri_1:high
Tenant_1.Spark -> Pri 1:low

Pri 1 -> RL_WAN(Dst == WAN: 15Gbps)
Pri 1 -> RL_None(Dst != WAN: No Limit)
RL_WAN -> FIFO 1; RL_None -> FIFO 1
FIFO 1-> Fair 1:wl

Tenants_2.Spark -> Fair_1:wl

Fair 1 -> Wire

Network operators must specify and enforce a network isolation policy

* Enforcing a network isolation policy requires scheduling
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Network Policies

VM1 VM2

Pseudocode

Tenant_1.Memcached -> Pri_1:high

Tenant_1.Spark -> Pri 1:1low
Pri 1 -> RL_WAN(Dst == WAN: 15Gbps)

Pri_1 -> RL_None(Dst != WAN: No Limit) Rt wan|  [RL None
RL_WAN -> FIFO 1; RL_None -> FIFO 1 :
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Tenants_2.Spark -> Fair_1:wl :

Fair 1 -> Wire .

Network operators must specify and enforce a network isolation policy

* Enforcing a network isolation policy requires scheduling



What is wrong with current NICs?
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Single Queue Packet Scheduling Limitations

* Single core throughput is limited
(although high with Eiffel)
* Especially with very small packets

* Energy-efficient architectures may
prioritize scalability over single-core
performance

e Software scheduling consumes CPU

 Core-to-core communication
increases latency
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Multi Queue NIC Background and Limitations
l App 1 l l App 2 l * Multi-queue NICs enable parallelism
* Throughput can be scaled across many
tens ot cores
o 150

* Multi-queue NICs have packet
scheduler that chose which queue to
send packets from

* The one-queue-per-core multi-queue

NIC NIC *

model (MQ) attempts to enforces
the policy at every core
T independently
. * This is the best possible without inter-
Wire core coordination, but it is not effective

MQ struggles to enforce policies! -



MQ Scheduler Problems

Naive NIC packet
scheduling prevents
‘ ‘ ‘ ‘ ‘ ‘ ‘ colocation!
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NIC Packet Scheduler / e High latency

(Network l

 Unfair and variable
throughput

Interface Card)
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Why should all packet scheduling be
offloaded to the NIC?
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Where to divide labor between the OS and NIC?

e CPU O
5 &

RL_WAN RL_None




Where to divide labor between the OS and NIC?

VM1 VM2 PU 0
5@ &

RL_WAN RL_None

Option 1: Single Queue (SQ)

* Enforce entire policy in software
* Low Tput/High CPU Utilization




Where to divide labor between the OS and NIC?

VM1 VM1 VM2 CPU -

Option 2: Multi Queue (MQ)

Every core independently enforces
policy on local traffic

Cannot ensure polices are
enforced

RL_WAN RL_None

Option 1: Single Queue (SQ)

Enforce entire policy in software
Low Tput/High CPU Utilization




Where to divide labor between the OS and NIC?

Option 3: Loom

Every flow uses its own queue

All policy enforcement is offloaded to
the NIC

Precise policy + low CPU

Option 2: Multi Queue (MQ)

Every core independently enforces
policy on local traffic RL WAN RL None

Cannot ensure polices are
enforced

Option 1: Single Queue (SQ)
Enforce entire policy in software
Low Tput/High CPU Utilization




Loom is a new NIC design that moves
all per-flow scheduling decisions out
of the OS and into the NIC

Loom uses a queue per flow and offloads all packet scheduling to the NIC
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Core Problem:

't is not currently possible to offload all packet
scheduling because NIC packet schedulers are
inflexible and configuring them is inefficient




Core Problem:

't is not currently possible to offload all packet
scheduling because NIC packet schedulers are
inflexible and configuring them is inefficient

NIC packet schedulers are currently standing in the way of
performance isolation!




Outline

Intro: Loom is a new NIC design that moves all per-flow scheduling decisions out of the OS and
into the NIC

Specification: A new network policy abstraction: restricted
directed acyclic graphs (DAGs)

L8 Contributions: Enforcement: A new programmable packet scheduling
hierarchy designed for NICs

Updating: A new expressive and efficient OS/NIC interface

Implementation and Evaluation: BESS prototype and CloudLab



Outline

Contributions:

1. Specification: A new network policy
abstraction: restricted directed acyclic graphs

(DAGS)
2. Enforcement: A new programmable packet _
scheduling hierarchy designed for NICs ettt LR
B Copes L Weep-Deam
C. meddleSomes or farncsacsy K, Clo¥\ Deam
. . e e 0. mem ber o Bt L m
3. Updating: A new expressive and efficient OS/NIC ¢ i = eyl
: F %oed or & A, Feadles
interface G M*Xe O, Heel-Touer
H Dreadl-Bean, P Tamb-Nutd
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What scheduling polices are needed for
nerformance isolation?

How should policies be specified?
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Solution: Loom Policy DAG :  Twotypesof nodes;

Scheduling Shaping
i i .. . Node Node
Scheduling nodes: Work-conserving policies for sharing & o e
the local link bandwidth
VM1 VM2

Shaping nodes: Rate-limiting policies for sharing the
network core (WAN and DCN)

Programmability: Every node is programmable with a : @
custom enqueue and dequeue function :

RL_WAN RL_None

Loom can express policies that cannot be expressed with either
Linux Traffic Control (Qdisc) or with Domino (PIFO)! . @

Important systems like BWE (sharing the WAN) and EyeQ @
(sharing the DCN) require Loom’s policy DAG! : Wire
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Types of Loom Scheduling Policies:

Scheduling:
* All of the flows from competing
Spark jobs J1 and J2 in VM1 fairly

share network bandwidth
Shaping:

e All of the flows from VM1 to VM2 are
rate limited to 50Gbps
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Types of Loom Scheduling Policies:

Scheduling: froupby o
* All of the flows from competing
Spark jobs J1 and J2 jn VM1 fairly
share network bandwidth 61000 by destination

Shaping:

e All of the flows from|VM1 to VM2]are

rate limited to 50Gbps
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Types of Loom Scheduling Policies:

. Group by source
Scheduling: //
* All of the flows from competing
Spark jobs J1 and J2 jn VM1 fairly
share network bandwidth 61000 by destination

Shaping:

/
e All of the flows from|VM1 to VM2]are

rate limited to 50Gbps

Because Scheduling and Shaping polices may aggregate flows

differently, they cannot be expressed as a tree!




Loom: Policy Abstraction

Policies are expressed as restricted acyclic graphs (DAGs)
: l l |
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DAG restriction: Scheduling nodes form a tree when the shaping nodes
are removed

(b) And (d) are prevented because they allow parents to reorder packets that were

already ordered by a child node.




Loom: Policy Abstraction

Policies are expressed as restricted acyclic graphs (DAGs)

I P
-egend: parem 6 ‘ /o |G D@D
______ | | |I A
Shaping : : II' ‘I: é R3
e :‘ ki “ i I
cheduling | | | I

Node ! J ! x 1\ ,’ ! x

| (@) | (b) 1 MO (d)

DAG restriction: Scheduling nodes form a tree when the shaping nodes
are removed

(b) And (d) are prevented because they allow parents to reorder packets that were

already ordered by a child node.




Outline

Contributions:

1. Specification: A new network policy abstraction:
restricted directed acyclic graphs (DAGS)

2. Enforcement: A new programmable packet ST
o o QM

scheduling hierarchy designed for NICs A. Top-Cuatle 1, Slab-ack
B Copes L Weep-Deam
C. meddleSomes or farncsacsy K, Clo¥\ Deam
0. Bpmember of Batin L Lamms
3. Updating: A new expressive and efficient OS/NIC ,‘};;'j;;"“‘“ Q{jﬁ:‘
. G Shotfie Tace O, feel-Towe
interface H Breast-Peac, P, Franb- Nl
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How do we b

Jild @ NIC that can enforce

Loom’s r

ew DAG abstraction?
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Loom Enforcement Challenge

No existing hardware scheduler can efficiently enforce Loom Policy DAGs

Domino PIFO Block New PIFO Block?
Scheduling Shaping Scheduling Shaping

Requiring separate shaping queues for every shaping traffic class would be prohibitive!




Insight: All shaping can be done with a
single gueue because all shaping can use
wall clock time as a rank
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Loom
Enforcement

In Loom, scheduling and
shaping queues are separate

1.  All traffic is first only
placed in scheduling

queues

2. If a packetis dequeued
before its shaping time, it
is placed in a global
shaping queue

3. After shaping, the packet
IS ﬁlaced back in
scheduling queues

Sche!uhng

Shaping
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Loom
Enforcement

In Loom, scheduling and
shaping queues are separate
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Outline

Contributions:

1. Specification: A new network policy abstraction:
restricted directed acyclic graphs (DAGS)

2. Enforcement: A new programmable packet

scheduling hierarchy designed for NICs A vpcatle 1 tab-diick
B Copes L Weep-Deam
C. meddleSromes or farncsacs K, Clot\ Deam
0. Top mem ber of Batdn L Lamms
3. Updating: A new expressive and efficient “Poerlam ARG
) C m:&(e o.}hl'h.
OS/NIC interface H Breadt-Bus, P Sranb- Nl
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PCle Limitations:

NIC doorbell and update limitations:*

lllllllllllllllllllllllllllllllll

o Latency Limitations:
* 120-900ns

e Throughput Limitations:
e ~3Mops (Intel XL710 40Gbps)

1 | PSPAT: software packet scheduling at hardware speed

Luigi Rizzo!, Paolo Valente?, Giuseppe Lettieri', Vincenzo Maffione?
1Univ. di Pisa, 2Univ.di Modena e Reggio Emilia
rizzo.unipi@gmail.com. Work supported by H2020 project SSICLOPS.
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PCle Limitations:

NIC doorbell and update limitations:*

: Core o Latency Limitations:
[ App ] - * 120-900ns

e PCle 0 ..... . :
N 7 : a Throughput Limitations:

4 [ PCIGJ : « ~3Mops (Intel XL710 40Gbps)

Engine
DB4 DB_F e
1 | PSPAT: software packet scheduling at hardware speed
|
N IC " Luigi Rizzo!, Paolo Valente?, Giuseppe Lettieri', Vincenzo Maffione?
K . 1Univ. di Pisa, 2Univ.di Modena e Reggio Emilia
m rizzo.unipi@gmail.com. Work supported by H2020 project SSICLOPS.
u

Loom Goal: Less than 1Mops @ 100Gbps

89



Loom Efficient Interface Challenges

Too many PCle writes: Insufficient data:
In the worst case (every packet @ efore reading any packet data
is from a new flow), the OS : (headers), the NIC must
must generate 2 PCle writes : !

schedule DMA reads for a

-packet
per-packe queue

2 writes per 1500B packet at
100Gbps = 16.6 Mops!
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Loom Design

Loom introduces a new efficient
OS/NIC interface that reduces the
number of PCle writes through
batched updates and inline metadata

©




Batched Doorbells

lllllllllllllllllllllllllllllllll
° 04

(
Per-core
= Doorbell
FIFO

Using on-NIC Doorbell FIFOs
allows for updates to different
gueues (flows) to be batched

Per-core FIFOs still enable
parallelism
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Batched Doorbells

lllllllllllllllllllllllllllllllll
. 04

- Core : n
[ ) i Using on-NIC Doorbell FIFOs
- :  allows for updates to different
------------ () LLLLREEELLLE R :
{- } ---------------- i  queues (flows) to be batched
4 -
Per-core : Per-core FIFOs still enable
5 Doorbell - ‘ .

[ HFOJ parallelism

\NIC
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Batched Doorbells
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Inline Metadata

Scheduling metadata (traffic
class and scheduling updates)
is inlined to reduce PCle writes

DMA Engine
¥

Descriptor inlining allows for
scheduling before reading
packet data

PIFOs
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is inlined to reduce PCle writes

DMA Engine
¥
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scheduling before reading
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Outline

Contributions:

1. A new network policy abstraction: restricted directed
acyclic graphs (DAGs

2. A new programmable packet scheduling hierarchy
designed for NICs

3. A new expressive and efficient OS/NIC interface

Evaluation:

1. Implementation and Evaluation: BESS prototype and
CloudLab

Tl o e Loom:

A, Top-Cuatle

B, Copes

C. meddleSomes or farncsacsy
D. Top-mem ber of Batin,

L Seords o Palen

N Feed or Sley

G Shotfie Tpce

H Drcodt-Bean,

1. Siab-dkxk,
L Weep-Deam
K, Clo¥\ Deam
L Lamms

M, X-Trame
R, Feadler

Q. Heel=Toow

¥ Taunb-Nul3
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Loom Implementation

e C++ PIFO? implementation is used for scheduling

® 10Gbps and 40Gbps CloudLab evaluation

Software prototype of Loom in Linux on the
Berkeley Extensible Software Switch (BESS)!

http://github.com/bestephe/loom

BESS
Berkeley Extensible Software Switch

2

Programmable Packet Scheduling at Line Rate

Anirudh Sivaraman®, Suvinay Subramanian”, Mol h mmad Alizadeh”, Shar: dCh le¥, Shang-Tse Chuang*, Anurag Agrawal®,

Hari Balakrishnan”, Tom Eds: llShK NkMKw
MITCSAIL "Bar f ¢ Net works, ¥Cisco Sys ems *Stanford University
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http://github.com/bestephe/loom

Loom

Evaluation

Can Loom drive line
rate? Can Loom enforce
network policies?

Can Loom isolate real
applications?

How effective is Loom’s
efficient OS/NIC
interface?

Experiment:
Microbenchmarks
with iPerf

Experiment: CloudLab
experiments with
memcached and
Spark

Experiment: Analysis
of PCle writes in Linux
(QPF) versus Loom
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SQ

Loom 40Gbps Evaluation &

Throughput
(Gbps)

== N W
o O O O
1 1 1

Policy: All tenants should : I S
receive an equal share. 0 5 0 15 20

Time (seconds)
—T1 --T2 —--T3 —T4

40
5 30
£% 201
3G 10
Setup: £ES R o 1 ¥ Lk
- 0 5 . 10 15 20
* Every 2s a new tenant : o, Tmelseconds
starts or stops :
: - : Loom
 Each tenant j starts 4’ : 40
flows (4-256 total flows) Zza0. , |
ge A i
- 00 é 1IO 1|5 20

Time (seconds)
—T1 =--T2 —-T3 —T4 105



SQ

Loom 40Gbps Evaluation .

Throughput
(Gbps)

Policy: All tenants should : 0 ) Y
receive an equal share. 0 5 0 15 20

Time (seconds)
—T1 --T2 —--T3 —T4

40

5 301

£% 201

33 10-
Setup: £S . — L AT

- 0 5 10 15 20
* Every 2s a new tenant : o, Tmelseconds
starts or stops .
: : . Loom

e Each tenant j starts 4 - 40

flows (4-256 total flows) N l ) .
25 1 |

Loom can drive line-rate and isolate competing tenant

—T1 --T2 —-T3 —T4 106



Application Performance: Fairness

Sporfz 'y VS Sporf(\z
Bandwidth Bandwidth
Hungry Hungry

Policy: Bandwidth (sei) (seak

is fairly shared \‘)/

between Spark
jobs

Throughput (Gbps)

10

o NN B~ OO ©©

Linux

Time (seconds)

—Job1l - Job2

Throughput (Gbps)

10

o NN B~ OO ©©

Loom

L gmgee || |

30 35 40 45

Time (sec

— Job1

50 55 60
onds)

- Job2



App\ication Performance: Fairness

—_i
o

Linux Loom
VS 10 —
sl a Al s
Bandwidth ~ Bandwidth : S . . S sl |__’, ______ ]
Hungry Hungry 2 | H !
P2 s : g 4l :
.................................... 3 3 I
2 2 - 2 2L -
Policy: Bandwidth (&= 030 35 20 45 50 030 35 40 45 50 55 60
is fairly shared Time (seconds) Time (seconds)
between Spark Fair) —Job1 - Job2 —Job1 - Job2

jobs
Loom can ensure competing jobs share bandwidth even if

they have different numbers of flows




Application Performance: Latency

VS Spor‘l'g 4000

)
Latency Sensitive Bandwidth Hungry = "» 3000
q) S
5 ? 2000
Setup: Linux software
> - - - oY
packet scheduling (Qdisc) 2 T 1000
is configured to prioritize :
memcached traffic over @
Spark traffic 0

Loom Linux (MQ)
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Application Performance: Latency

@ VS 4000

)
Latency Sensitive Bandwidth Hungry = "» 3000
q) S
------------------------------------------------------- 8 (>-)~ 2000
Setup: Linux software o o
. . - - 8
packet scheduling (Qdisc) 2 T 1000
is configured to prioritize o)
memcached traffic over @ :
Spark traffic : 0

Loom Linux (MQ)

MQ cannot isolate latency-sensitive applications!




Loom Interface Evaluation

Worse case scenario:
Packets are sent in 64KB batches and each
packet is from a different flow

Existing Loom:
- approaches: | PCle Writes
Line-rate PCle Writes | per second
per second
10 Gbps 833K 19K
40 Gbps 3.3M 76K
100 Gbps 8.3M 191K
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Loom Interface Evaluation

Worse case scenario:
Packets are sent in 64KB batches and each
packet is from a different flow

Existing Loom:
- approaches: | PCle Writes
Line-rate PCle Writes | per second
per second
10 Gbps 833K 19K
40 Gbps 3.3M 76K
D Sl N
\
100 Gbps 8.3M (\ 191K )

Loom Goal: Less than 1Mops @ 100Gbps
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Conclusion

Current NICs cannot ensure that competing
applications are isolated

Loom is a new NIC design that completely
offloads all packet scheduling to the NIC with
low CPU overhead

Loom’s benefits translate into reductions in
latency, increases in throughput, and
improvements in fairness
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Related Work (Eiffel

NIC Scheduling does not eliminate
the need for software scheduling

Loom and Eiffel can be used
together

Bucketed priority queues could be
used to build efficient PIFOs

Eiffel



