
Correctness and Performance for
Stateful Chained Network Functions

Junaid KhalidW,G and Aditya AkellaW

1*This work does not have any affiliation with Google

Network Function Virtualization (NFV)

Hardware NF → software NF over
commodity server

2

Network Function Virtualization (NFV)

Intrusion

detection

system (IDS)

Hardware NF → software NF over
commodity server

2

Network Function Virtualization (NFV)

Caching

proxy

Intrusion

detection

system (IDS)

Hardware NF → software NF over
commodity server

2

Network Function Virtualization (NFV)

Firewall

Caching

proxy

Intrusion

detection

system (IDS)

Hardware NF → software NF over
commodity server

2

Network Function Virtualization (NFV)

Firewall

Caching

proxy

Intrusion

detection

system (IDS)

WAN

optimizer

Hardware NF → software NF over
commodity server

2

Network Function Virtualization (NFV)

Firewall

Caching

proxy

Intrusion

detection

system (IDS)

WAN

optimizer

Hardware NF → software NF over
commodity server

• Enables resource consolidation
• Dynamic allocation of packet processing
• Adding new functionality

2

Network Function Virtualization (NFV)

Firewall

Caching

proxy

Intrusion

detection

system (IDS)

WAN

optimizer

Hardware NF → software NF over
commodity server

• Enables resource consolidation
• Dynamic allocation of packet processing
• Adding new functionality
• Simplifies service chaining

2

Service Chaining

3

Service Chaining

3

Service Chaining

3

Intrusion

detection

system (IDS)

WAN

optimizer

Service Chaining

4

Service Chaining

5

Service Chaining

5

Service Chaining

Chain output equivalence (COE): for any input the
aggregate output of a dynamic set of instances should be
equivalent to the output produced by a single instance

5

Service Chaining

Chain output equivalence (COE): for any input the
aggregate output of a dynamic set of instances should be
equivalent to the output produced by a single instance.

6

Our goal is to provide COE in service chaining without
compromising performance or correctness

Service Chaining

Chain output equivalence (COE): for any input the
aggregate output of a dynamic set of instances should be
equivalent to the output produced by a single instance.

6

Our goal is to provide COE in service chaining without
compromising performance or correctness

Ensuring COE is challenging: NF chain attributes & Dynamic Actions

NF Chain Attributes

7

NF Chain Attributes

• Perform sophisticated stateful actions on
packets/flows

7

1. NF statefulness

NF Chain Attributes

IDS maintains cross-flows state (e.g., per
host active conn. count) and per-flow state
(e.g., TCP conn. state)

• Perform sophisticated stateful actions on
packets/flows

7

1. NF statefulness

NF Chain Attributes

IDS maintains cross-flows state (e.g., per
host active conn. count) and per-flow state
(e.g., TCP conn. state)

• Perform sophisticated stateful actions on
packets/flows

7

1. NF statefulness

NF Chain Attributes

• Perform sophisticated stateful actions on
packets/flows

8

1. NF statefulness

NF Chain Attributes

• Perform sophisticated stateful actions on
packets/flows

• Action taken by an NF instance depends on the
state updates from other NF instances

8

1. NF statefulness

2. Consistent state updates

updating shared state

NF Chain Attributes

• Perform sophisticated stateful actions on
packets/flows

• Action taken by an NF instance depends on the
state updates from other NF instances

9

1. NF statefulness

2. Consistent state updates

off-path

NF Chain Attributes

• Perform sophisticated stateful actions on
packets/flows

• Action taken by an NF instance depends on the
state updates from other NF instances

• Action at the downstream NF may depend on
the upstream NFs

9

1. NF statefulness

2. Consistent state updates

3. Dependency between
different NF instances

FTP

SSH
off-path

NF Chain Attributes

• Perform sophisticated stateful actions on
packets/flows

• Action taken by an NF instance depends on the
state updates from other NF instances

• Action at the downstream NF may depend on
the upstream NFs

9

1. NF statefulness

2. Consistent state updates

3. Dependency between
different NF instances

SSH
off-path

Dynamic Actions
Key requirements

10

Dynamic Actions
Key requirementsLoad balancing/elastic scaling

• Flows are moved from one instance to another to
balance load or handle traffic spikes

10

Dynamic Actions
Key requirements

• Safe cross-instance
state transfer

Load balancing/elastic scaling

• Flows are moved from one instance to another to
balance load or handle traffic spikes

10

Dynamic Actions
Key requirements

• Safe cross-instance
state transfer

Load balancing/elastic scaling

• Flows are moved from one instance to another to
balance load or handle traffic spikes

10

Dynamic Actions
Key requirements

• Safe cross-instance
state transfer

• Consistent shared state

Load balancing/elastic scaling

• Flows are moved from one instance to another to
balance load or handle traffic spikes

10

Dynamic Actions
Key requirements

• Safe cross-instance
state transfer

• Consistent shared state

11

Dynamic Actions
Key requirements

• Safe cross-instance
state transfer

• Consistent shared state

• State availability

Failure recovery

• When NF fails, all its state disappears. For fault
tolerance, that state needs to be recovered

11

Dynamic Actions
Key requirements

• Safe cross-instance
state transfer

• Consistent shared state

• State availability

12

Dynamic Actions
Key requirements

• Safe cross-instance
state transfer

• Consistent shared state

• State availability

• Duplicate suppression

Instance slowdown

• Clones may be launched to handle a straggler NF (a
slow NF)

12

Dynamic Actions
Key requirements

• Safe cross-instance
state transfer

• Consistent shared state

• State availability

• Duplicate suppression

• Chain-wide ordering

Instance slowdown

• Clones may be launched to handle a straggler NF (a
slow NF)

• Downstream NFs rely on the order at upstream NFs

12

Key Requirements for COE

• NF statefulness

• Consistent state updates

• Dependency between
different NF instances

NF chain attributes

Key Requirements for COE

x
• NF statefulness

• Consistent state updates

• Dependency between
different NF instances

NF chain attributes

Key Requirements for COE
Dynamic actions

• Elastic scaling

• Failure recovery

• Instance slowdown

13

x =
• NF statefulness

• Consistent state updates

• Dependency between
different NF instances

NF chain attributes Key requirements

• Safe cross-instance
state transfer

• Consistent shared state

• State availability

• Duplicate suppression

• Chain-wide ordering

Key Requirements for COE
Dynamic actions

• Elastic scaling

• Failure recovery

• Instance slowdown

Existing Solutions

Framework State
availability

State
transfer

Consistent
shared state

Duplicate
suppression

Chain-wide
ordering

Split/Merge[NSDI’13]

OpenNF[SIGCOMM’14]

FTMB [SIGCOMM’ 15]

S6 [NSDI’18]

Pico Rep.[SOCC’13]

StatelessNF[NSDI’17]

14

Existing Solutions

Framework State
availability

State
transfer

Consistent
shared state

Duplicate
suppression

Chain-wide
ordering

Split/Merge[NSDI’13]

OpenNF[SIGCOMM’14]

FTMB [SIGCOMM’ 15]

S6 [NSDI’18]

Pico Rep.[SOCC’13]

StatelessNF[NSDI’17]

14

Incomplete support → restricted functionality

CHC

CHC is a generic NFV framework to support all of these requirements
without trading off correctness for performance or functionality

15

CHC

CHC is a generic NFV framework to support all of these requirements
without trading off correctness for performance or functionality

16

CHC

CHC is a generic NFV framework to support all of these requirements
without trading off correctness for performance or functionality

CHC consist of three main building blocks

16

CHC

CHC is a generic NFV framework to support all of these requirements
without trading off correctness for performance or functionality

CHC consist of three main building blocks
1. State store external to NF

16

Datastore

CHC

CHC is a generic NFV framework to support all of these requirements
without trading off correctness for performance or functionality

CHC consist of three main building blocks
1. State store external to NF
2. NF state-aware state management algorithms

16

Datastore

CHC

CHC is a generic NFV framework to support all of these requirements
without trading off correctness for performance or functionality

CHC consist of three main building blocks
1. State store external to NF
2. NF state-aware state management algorithms
3. Metadata – logical clock and logs

16

Root splitter

Datastore

CHC

CHC is a generic NFV framework to support all of these requirements
without trading off correctness for performance or functionality

CHC consist of three main building blocks
1. State store external to NF
2. NF state-aware state management algorithms
3. Metadata – logical clock and logs

17

CHC – State Externalization

NF state is stored in an in-memory external state store (similar to statelessNF)

18

CHC – State Externalization

NF state is stored in an in-memory external state store (similar to statelessNF)
• This ensures state availability and simplifies reasoning about state ownership

and concurrency control across instances

18

External store

CHC – State Externalization

NF state is stored in an in-memory external state store (similar to statelessNF)
• This ensures state availability and simplifies reasoning about state ownership

and concurrency control across instances

Naively externalizing the state
can degrade NF performance

18

External store

CHC

CHC is a generic NFV framework to support all of these requirements
without trading off correctness for performance or functionality

CHC consist of three main building blocks
1. State store external to NF
2. NF state-aware state management algorithms
3. Metadata – logical clock and logs

19

State Management Strategies

State

20

State Management Strategies

State

per-flow cross-flow

20

State Management Strategies

State

per-flow cross-flow

Any

Instance-local caching w/
periodic nonblocking flush

20

State Management Strategies

State

per-flow cross-flow

Any
Write rarely
(read heavy)

Instance-local caching w/
periodic nonblocking flush

Instance-local caching
w/ callbacks

20

State Management Strategies

State

per-flow cross-flow

Any
Write rarely
(read heavy)

Write mostly
Read rarely

Instance-local caching w/
periodic nonblocking flush

Instance-local caching
w/ callbacks

20

State Management Strategies

State

per-flow cross-flow

Any
Write rarely
(read heavy)

Write mostly
Read rarely

Write/read
often

Instance-local caching w/
periodic nonblocking flush

Instance-local caching
w/ callbacks

20

State Management Strategies

State

per-flow cross-flow

Any
Write rarely
(read heavy)

Write mostly
Read rarely

Write/read
often

Instance-local caching w/
periodic nonblocking flush

Instance-local caching
w/ callbacks

20

Operation offloading

State Maintenance - Offloading Operation

21

An NF instance can offload operations and instruct the datastore to
perform them on its behalf

State Maintenance - Offloading Operation

Operation Description

Increment/Decrement a
value

Increment or decrement the value stored at key by the given value

Push/pop a value to/from
list

Push or pop the value in/from the list stored at the given key

Compare and update Update the value, if the condition is true

21

An NF instance can offload operations and instruct the datastore to
perform them on its behalf

State Maintenance - Offloading Operation

Operation Description

Increment/Decrement a
value

Increment or decrement the value stored at key by the given value

Push/pop a value to/from
list

Push or pop the value in/from the list stored at the given key

Compare and update Update the value, if the condition is true

21

An NF instance can offload operations and instruct the datastore to
perform them on its behalf

The datastore serializes operations issued by different instances for the same
shared state object and applies them in the background

An NF instance can offload operations and instruct the datastore to
perform them on its behalf

State Maintenance - Offloading Operation

22

NF1

An NF instance can offload operations and instruct the datastore to
perform them on its behalf

State Maintenance - Offloading Operation

22

NF2NF1 Datastore
X=0

Without operation offload

NF1

An NF instance can offload operations and instruct the datastore to
perform them on its behalf

State Maintenance - Offloading Operation

22

NF2

NF1

Datastore
X=0

Without operation offload

NF1

An NF instance can offload operations and instruct the datastore to
perform them on its behalf

State Maintenance - Offloading Operation

22

NF2NF1 Datastore
X=0

Without operation offload

NF1

An NF instance can offload operations and instruct the datastore to
perform them on its behalf

State Maintenance - Offloading Operation

22

NF2

NF1

Datastore
X=0

X++

Without operation offload

NF1

An NF instance can offload operations and instruct the datastore to
perform them on its behalf

State Maintenance - Offloading Operation

22

NF2NF1 Datastore
X=0

X++

Without operation offload

NF1

An NF instance can offload operations and instruct the datastore to
perform them on its behalf

State Maintenance - Offloading Operation

22

NF2

NF1

Datastore
X=0

X++

X++

Without operation offload

NF1

An NF instance can offload operations and instruct the datastore to
perform them on its behalf

State Maintenance - Offloading Operation

22

NF2NF1 Datastore

X=2

X=0

X++

X++

Without operation offload

NF1

An NF instance can offload operations and instruct the datastore to
perform them on its behalf

State Maintenance - Offloading Operation

22

NF2

NF1

Datastore

X=2

X=0

X++

X++

NF2NF1 Datastore
X=0

Without operation offload With operation offload

NF1

An NF instance can offload operations and instruct the datastore to
perform them on its behalf

State Maintenance - Offloading Operation

22

NF2NF1 Datastore

X=2

X=0

X++

X++

NF2NF1 Datastore
X=0

Without operation offload With operation offload

NF1

An NF instance can offload operations and instruct the datastore to
perform them on its behalf

State Maintenance - Offloading Operation

22

NF2

NF1

Datastore

X=2

X=0

X++

X++

NF2NF1 Datastore
X=0

Without operation offload With operation offload

NF1

An NF instance can offload operations and instruct the datastore to
perform them on its behalf

State Maintenance - Offloading Operation

22

NF2NF1 Datastore

X=2

X=0

X++

X++

NF2NF1 Datastore
X=0

Without operation offload With operation offload

NF1

An NF instance can offload operations and instruct the datastore to
perform them on its behalf

State Maintenance - Offloading Operation

22

NF2

NF1

Datastore

X=2

X=0

X++

X++

NF2NF1 Datastore
X=0

X=2

Without operation offload With operation offload

State Management Strategies

State

per-flow cross-flow

Any
Write rarely
(read heavy)

Write mostly
Read rarely

23

Instance-local caching w/
periodic nonblocking flush

Instance-local caching
w/ callbacks

State Management Strategies

State

per-flow cross-flow

Any
Write rarely
(read heavy)

Write mostly
Read rarely

Non-blocking
operation without

caching

23

Instance-local caching w/
periodic nonblocking flush

Instance-local caching
w/ callbacks

State Management Strategies

State

per-flow cross-flow

Any
Write rarely
(read heavy)

Write mostly
Read rarely

Write/read
often

Non-blocking
operation without

caching

Depends upon traffic
split. Cache, if split
allows; flush periodically

23

Instance-local caching w/
periodic nonblocking flush

Instance-local caching
w/ callbacks

CHC

CHC is a generic NFV framework to support all of these requirements
without trading off correctness for performance or functionality

CHC consist of three main building blocks
1. State store external to NF
2. NF state-aware state management algorithms
3. Metadata – logical clock and logs

24

Metadata

CHC adds a “root splitter” at the entry of a chain that:

Root splitter
25

Metadata

CHC adds a “root splitter” at the entry of a chain that:

• Root splitter attaches a unique logical clock with each packet. Logical
clock is used for duplication suppression, ordering, and traffic replay

Root splitter
25

Adding
logical clock

Metadata

CHC adds a “root splitter” at the entry of a chain that:

• Root splitter attaches a unique logical clock with each packet. Logical
clock is used for duplication suppression, ordering, and traffic replay

• It also logs all the in-transit packets

Root splitter
25

Packet logging

Adding
logical clock

Metadata

CHC adds a “root splitter” at the entry of a chain that:

• Root splitter attaches a unique logical clock with each packet. Logical
clock is used for duplication suppression, ordering, and traffic replay

• It also logs all the in-transit packets

CHC encodes state object’s ownership information and logical clock
associated with state operations as metadata

Root splitter
25

Packet logging

Adding
logical clock

State
ownership info

CHC – Elastic Scaling

Root splitter

26
Old instance

CHC – Elastic Scaling

Root splitter

• CHC marks the last packet going to the old instance and first packet going to
the new instance

26
Old instance

Last pkt

First pkt

CHC – Elastic Scaling

Root splitter

• CHC marks the last packet going to the old instance and first packet going to
the new instance

• Ownership information encoded as metadata of state objects is used to ensure
consistent handover of per-flow state

26
Old instance

Last pkt

First pkt

CHC – Elastic Scaling

Root splitter

• CHC marks the last packet going to the old instance and first packet going to
the new instance

• Ownership information encoded as metadata of state objects is used to ensure
consistent handover of per-flow state

• Cross-flow state does not require any special handling as operation offloading
is used to update it

26
Old instance

Last pkt

First pkt

CHC provides fault tolerance for:

• NF instance

• Root splitter

• Datastore

CHC – Fault Tolerance

27

CHC provides fault tolerance for:

• NF instance

• Root splitter

• Datastore

CHC – Fault Tolerance

27

NF instance failure recovery:

CHC – Fault Tolerance

28

NF instance failure recovery:

• Failover instance takes over

CHC – Fault Tolerance

28

NF instance failure recovery:

• Failover instance takes over

• Datastore associates the failover instance ID with the relevant state

CHC – Fault Tolerance

28

NF instance failure recovery:

• Failover instance takes over

• Datastore associates the failover instance ID with the relevant state

• Root replays the packet

CHC – Fault Tolerance

28

NF instance failure recovery:

• Failover instance takes over

• Datastore associates the failover instance ID with the relevant state

• Root replays the packet

CHC – Fault Tolerance

28

NF instance failure recovery:

• Failover instance takes over

• Datastore associates the failover instance ID with the relevant state

• Root replays the packet

• Metadata is used to suppress duplicate state-update and processing

CHC – Fault Tolerance

28

CHC – Straggler Mitigation

29

• Metadata (logical clocks) is used to suppress duplicate state updates at the
datastore and duplicate packets at downstream NFs

CHC – Straggler Mitigation

29

• Metadata (logical clocks) is used to suppress duplicate state updates at the
datastore and duplicate packets at downstream NFs

CHC – Straggler Mitigation

29

• Metadata (logical clocks) is used to suppress duplicate state updates at the
datastore and duplicate packets at downstream NFs

CHC – Straggler Mitigation

29suppressed

state updates are suppressed

30

Implementation of CHC

• Prototype is implemented in C++

• Leverages Mellanox messaging accelerator for low latency
communication

30

Implementation of CHC

• Prototype is implemented in C++

• Leverages Mellanox messaging accelerator for low latency
communication

• We implemented four NFs on top of CHC
• NAT

• Trojan detector

• Portscan detector

• Load balancer

30

Implementation of CHC

Traditional NF with infinite capacity

31

Evaluation – Performance

State variable Scope State
Externalization

Caching Asynch. + op
offload

Port mapping per-flow

Total TCP pkt count cross flow

Total IP pkt count cross low

Traditional NF with infinite capacity

Externalized state operations

31

Evaluation – Performance

State variable Scope State
Externalization

Caching Asynch. + op
offload

Port mapping per-flow

Total TCP pkt count cross flow

Total IP pkt count cross low

Traditional NF with infinite capacity

Externalized state operations

State externalization with caching

31

Evaluation – Performance

State variable Scope State
Externalization

Caching Asynch. + op
offload

Port mapping per-flow

Total TCP pkt count cross flow

Total IP pkt count cross low

Traditional NF with infinite capacity

Externalized state operations

State externalization with caching

State externalization with caching and asynchronous + offloaded updates

31

Evaluation – Performance

State variable Scope State
Externalization

Caching Asynch. + op
offload

Port mapping per-flow

Total TCP pkt count cross flow

Total IP pkt count cross low

Traditional NF with infinite capacity

Externalized state operations

State externalization with caching

State externalization with caching and asynchronous + offloaded updates

31

Less than 0.6µs increase in the median per-NF packet processing latency

Evaluation – Performance

Evaluation – Dynamic Actions

32

Evaluation – Dynamic Actions

32

Evaluation – Dynamic Actions

32

Evaluation – Dynamic Actions

During cross instance state sharing

32

Evaluation – Dynamic Actions

During cross instance state sharing

75th%-ile latency of CHC is 20
times lower than OpenNF

32

Evaluation – Dynamic Actions

33

CHC

operation offloading

Evaluation – Dynamic Actions

33

checkpointing every
200ms

CHC

FTMB

operation offloading

Evaluation – Dynamic Actions

Ensuing Fault tolerance

33

checkpointing every
200ms

CHC

FTMB

operation offloading

Evaluation – Dynamic Actions

Ensuing Fault tolerance

75th%-ile latency of CHC is 6 times
lower than FTMB

33

checkpointing every
200ms

CHC

FTMB

operation offloading

Evaluation

Portscan detector Load Balancer NAT

CHC operates at line rate with an end-to-end median per packet
processing overhead of 11.3us

Trojan detector

Evaluation

• State management performance

• Metadata overhead

• Correctness requirements:
• State availability

• Cross instance state transfer

• Cross instance state sharing

• Chain wide ordering

• Duplication suppression

• Fault tolerance

36

• CHC supports output equivalence and high performance state
management for NFV chains

• It hides the complexity of handling states during dynamic actions
(elastic scaling and failure recovery)

• It relies on managing state external to NFs, but couples it with several
caching and state update algorithms to ensure low latency

Summary

