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Hardware NF → software NF over 
commodity server

• Enables resource consolidation
• Dynamic allocation of packet processing
• Adding new functionality
• Simplifies service chaining
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Our goal is to provide COE in service chaining without 
compromising performance or correctness

Ensuring COE is challenging: NF chain attributes & Dynamic Actions
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Dynamic Actions
Key requirements

• Safe cross-instance 
state transfer

• Consistent shared state

• State availability

• Duplicate suppression

• Chain-wide ordering

Instance slowdown

• Clones may be launched to handle a straggler NF (a 
slow NF) 

• Downstream NFs rely on the order at upstream NFs
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• This ensures state availability and simplifies reasoning about state ownership 

and concurrency control across instances
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can degrade NF performance
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An NF instance can offload operations and instruct the datastore to 
perform them on its behalf

The datastore serializes operations issued by different instances for the same 
shared state object and applies them in the background
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State Management Strategies

State

per-flow cross-flow

Any
Write rarely 
(read heavy)

Write mostly
Read rarely

Write/read 
often

Non-blocking 
operation without 

caching

Depends upon traffic 
split. Cache, if split 
allows; flush periodically

23

Instance-local caching w/ 
periodic nonblocking flush

Instance-local caching 
w/ callbacks



CHC

CHC is a generic NFV framework to support all of these requirements 
without trading off correctness for performance or functionality

CHC consist of three main  building blocks
1. State store external to NF
2. NF state-aware state management algorithms
3. Metadata – logical clock and logs
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Metadata

CHC adds a “root splitter” at the entry of a chain that:

• Root splitter attaches a unique logical clock with each packet. Logical 
clock is used for duplication suppression, ordering, and traffic replay

• It also logs all the in-transit packets

CHC encodes state object’s ownership information and logical clock 
associated with state operations as metadata

Root splitter
25

Packet logging
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CHC – Elastic Scaling

Root splitter

• CHC marks the last packet going to the old instance and first packet going  to 
the new instance 

• Ownership information encoded as metadata of state objects is used to ensure 
consistent handover of per-flow state

• Cross-flow state does not require any special handling as operation offloading 
is used to update it

26
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NF instance failure recovery:

• Failover instance takes over

• Datastore associates the failover instance ID with the relevant state

• Root replays the packet

• Metadata is used to suppress duplicate state-update and processing
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• Prototype is implemented in C++

• Leverages Mellanox messaging accelerator for low latency 
communication

• We implemented four NFs on top of CHC
• NAT

• Trojan detector

• Portscan detector

• Load balancer

30

Implementation of CHC
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Less than 0.6µs increase in the median per-NF packet processing latency
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75th%-ile latency of CHC is 20 
times lower  than OpenNF
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Evaluation – Dynamic Actions

Ensuing Fault tolerance 

75th%-ile latency of CHC is 6 times 
lower than FTMB

33
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Evaluation

Portscan detector Load Balancer NAT

CHC operates at line rate with an end-to-end median per packet 
processing overhead of 11.3us

Trojan detector



Evaluation

• State management performance

• Metadata overhead

• Correctness requirements:
• State availability

• Cross instance state transfer

• Cross instance state sharing

• Chain wide ordering

• Duplication suppression

• Fault tolerance
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• CHC supports output equivalence and high performance state 
management for NFV chains

• It hides the complexity of handling states during dynamic actions 
(elastic scaling and failure recovery)

• It relies on managing state external to NFs, but couples it with several 
caching and state update algorithms to ensure low latency

Summary


