
A Standardized Southbound API for VNF
Management

Junaid Khalid, Mark Coatsworth, Aaron Gember-Jacobson, Aditya Akella
Department of Computer Sciences
University of Wisconsin-Madison

{junaid, coatsworth, agember, akella}@cs.wisc.edu

ABSTRACT
Network Function Virtualization (NFV) offers network op-
erators great flexibility toward managing network functions,
i.e. in-network appliances such as firewalls, load balancers
and NATs. Several frameworks exist to this end; however
VNF management is fragmented, and no standard manage-
ment API exists. As a result, each framework uses a pro-
prietary API which a network function must support to fully
realize its benefits. This lack of standardization is a major
barrier in the wider adoption of NFV. We propose a stan-
dard, framework-agnostic southbound API to facilitate faster
adoption of NFV and enable innovation in the design of both
management frameworks and network functions.

CCS Concepts
•Networks → Middle boxes / network appliances; Net-
work manageability;

Keywords
Network functions virtualization; service chaining; state
management

1. INTRODUCTION
Middleboxes (also known as network functions) are sys-

tems that perform sophisticated and often stateful packet
processing, e.g. load balancers, caching proxies, intrusion
detection systems, etc. In recent years, there has been
a growing trend towards network function virtualization
(NFV), in which network functions (NFs) run as software
on generic compute resources, rather than dedicated hard-
ware [7].

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

HotMiddlebox, August 22–26, 2016, Florianopolis, Brazil
c© 2016 ACM. ISBN 978-1-4503-4424-1/16/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2940147.2940156

NFV provides network operators a greater degree of flexi-
bility in handling application level performance that was not
previously possible with monolithic hardware. One new op-
portunity is elastically scaling NFs [13, 23]—dynamically
provisioning new instances as network traffic load increases,
redistributing traffic among them, then freeing these re-
sources when load decreases. Another is dynamically com-
posing service chains [10]—run-time allocation, reordering
and deallocation of a sequence of NF instances through
which a particular flow traverses. Several frameworks [13,
12, 21, 23, 10, 11, 16, 19] have been proposed to fully
achieve the potential of virtualization which is envisioned
by NFV.

However, for a NF to work within these frameworks, NF
developers are required to modify their code to support a
framework-specific API. Lack of a standard API for NFs has
been frequently cited as a primary hurdle in the adoption of
NFV [2, 18]. This has made it difficult not only for network
operators who stand to benefit from this technology, but also
for NFV vendors who need to support all possible APIs.

To enable faster adoption of NFV, the European Telecom-
munications Standards Institute (ETSI) has been working on
the standardization of NFV architecture. Their NFV Man-
agement and Orchestration (MANO) working group has de-
fined a high level specification [9] for the NFV ecosystem.
The MANO group is responsible for managing the com-
plete life cycle of virtual network functions (VNFs), from
handling cloud infrastructure to managing VNFs to creating
services composed of VNFs. Although the MANO speci-
fication defines a high level API for service chaining, the
lack of fine-grained details has caused confusion among NF
vendors. As a result, vendors are coming up with their own
interpretations. In addition, the MANO specification does
not provide any standard for handling the internal state of
NFs.

We argue that most proposed APIs for various aspects of
NFV orchestration require VNFs to provide the same basic
functionality. By standardizing this functionality and expos-
ing a common management API, a wide range of orches-
trators will be able to manage an NFV deployment. We
argue the standard should be detailed enough to not cause
any confusion, but also general enough to not dictate any
specific implementation. We decouple the intention of op-

38

VNF

Compute Infrastructure

NFV Orchestrator

VNF

VNF Manager Infrastructure
Manager

(e.g. OpenStack)

Forwarding
Infrastructure

Flow Manager
(e.g. OpenDaylight)

Figure 1: The red dotted arrows show the proposed API in
the NFV architecture.
erations from the functional mechanisms that perform them.
We leave the implementation of an underlying core mecha-
nism to support the API operation to the NFs.

In this position paper, we propose the definition of a stan-
dard, framework-agnostic API to enable flexible control over
NFs by decoupling the core mechanisms from the opera-
tional intent. Decoupling of intent from the implementation
of mechanism enables NF vendors and management frame-
work developers to innovate independently. In the rest of
this paper, we start by enumerating the requirements for
a generic and framework agnostic API, then we give an
overview of existing NF management frameworks, followed
by the proposed API design.

2. REQUIREMENTS FOR A
STANDARD API

Based on the use cases of interest for NFV described
in [8], we identify four core operations which a generic,
framework-agnostic API should provide. Those four oper-
ations are described as follows:

• State Management: NFs are stateful: they create and
manage internal state while processing network traf-
fic. This state is critical to their functionality and must
be made available when network traffic is moved from
one instance to another [12, 13, 23]. State handling is
necessary to support functions like elastic scaling (dy-
namically spinning up a new instance and redistribut-
ing traffic among these instances) as well as resource
consolidation (moving all network traffic to a power-
ful instance to use resources more efficiently). Some
frameworks [12, 13, 24, 22] also rely on control over
the internal state to provide fault tolerance.
• Service Chaining: Network operators depend on NFs

in service chains to meet high-level policy objectives
such as performance, resource monitoring and security
objectives [10, 21, 11]. For example, an ingress policy
can dictate that all incoming web traffic passes through
a firewall, followed by a caching proxy, and then a load
balancer. Additionally, network operators may also
want to dynamically add and remove NFs from service
chains in response to changing traffic conditions. For
example, a deep packet inspection (DPI) engine needs
to be dynamically chained after a firewall, so it can
further analyze traffic if the firewall detects an alarm.
Similarly, a NF should be removed when it is no longer

needed in order to reduce resource wastage and packet
latency.
• Bottleneck Detection: Usage of network, CPU and

memory resources by virtualized NFs varies a lot based
on the type and configuration of NFs [5, 3, 6]. Bottle-
neck detection is required to help frameworks in mak-
ing insightful decisions about chaining and scaling. In-
efficient chaining or scaling can result in missing per-
formance objectives and wasting resources.
• Configuration: Prior work [14] has looked at the stan-

dardization of configuration for NFs which is out of the
scope for this paper.

3. EXISTING FRAMEWORKS
Researchers have proposed several mechanisms [13, 23,

12, 10, 21, 11, 16, 19] to enable flexible control over NFs.
Unfortunately, these existing frameworks only address one
or two of the requirements outlined in Section 2.

3.1 State Management
There are several frameworks [13, 23, 12, 16], designed

to handle state by transferring and sharing it among differ-
ent NF instances. These frameworks may differ in terms of
how they track and move state around, but they all use flows-
pace: a set of packet header fields which define a particular
flow, to request and filter state. To share and transfer state
efficiently and avoid any possible bottleneck, most of them
perform these operations in a peer to peer fashion.

These frameworks do differ with respect to how they han-
dle in-transit packets. In Split/Merge [23], to migrate a flow,
the controller suspends the traffic arriving at the NF. The
packets arriving at the switch are temporarily buffered at
the controller. Once the state is migrated, the controller
updates the forwarding rules in the switch and injects any
buffered packets in the switch. Any packet received by
the old instance while migration is happening are dropped.
OpenNF [13, 12] uses a similar approach: packets arriv-
ing at the old middlebox instance during a state transfer are
buffered at the middlebox instance instead of being dropped.
The old instance forwards the in-transit packets, along with
the state, to the new instance. To mark the last in-transit
packet, OpenNF injects a tracer packet in the switch after
updating the forwarding rule. When the old NF receives the
tracer packet, it signals to the new instance there are no more
in-transit packets.

3.2 Service Chaining
Most of the service chaining frameworks [19, 11, 10, 21]

rely on routing to steer traffic through a set of NFs in a spe-
cific order. These rely on software defined network (SDN)
controllers to install fine grained forwarding rules that en-
able steering of traffic. This is inefficient. Most switches
have limited space to store forwarding rules. Moreover, NFs
may modify the packets, so there is no guaranteed one-to-
one correlation between input and output traffic. A packet
modified by a NF might no longer follow the forwarding
rules and hence make it difficult to ensure service chaining.

39

SIMPLE [21], FlowTags [10] and NSH [15] solve these
problems by adding extra tags to packets to provide addi-
tional necessary information. Tag based routing is used to
reduce the required number of forwarding entries in the table
at the switch. To enforce policies and ensure that packets tra-
verse the correct set of NFs despite packet mangling NFs on
the path, SIMPLE computes a similarity-based correlation
at the controller to correlate input traffic with output traffic.
FlowTags argues for integrating the tag generation and con-
sumption, along with tracking the relationship between input
and output traffic, into NFs. While SIMPLE enables steer-
ing traffic through a specific set of NFs to compose service
chains, it does not provide the capability to dynamically add
or remove a NF to/from the service chain. Whereas Flow-
Tags also provide support for dynamically adding and re-
moving network instances from a service chain. NSH spec-
ifies a protocol for creating and updating service chains, but
it does not provide any details of an API for communicating
with the NFs.

An MPTCP based approach is proposed [19] to add and
remove a NF in an end to end path. They insert or delete
a NF by creating a new path and tearing down the old one.
This approach moves the task of selecting the service chain
to the end host.

3.3 Bottleneck detection
Resource consumption of virtual network functions

(VNFs) varies with the type of NF, traffic workload char-
acteristics and configuration [5, 3, 6]. Techniques used in
detecting CPU bottlenecks in traditional cloud infrastruc-
ture [1] cannot be employed in VNF settings. Metrics like
CPU utilization or memory usage can be deceptive in detect-
ing resource bottlenecks in case of VNFs. Researcher have
shown that increased processing delay is a better indicator
for bottleneck detections s [26, 25]. When a NF becomes a
bottleneck, the packet processing time increases because of
queue buildup and longer system calls. Measuring process-
ing delay at the packet level is difficult, because: (1) due to
session termination, traffic compression and packet modifi-
cation, there is no one-to-one correspondence between in-
put and output packet streams; and (2) measuring per packet
processing delay adds significant overhead. To overcome
these challenges in measuring processing delay, VND [26]
analyzes round trip time (RTT) to identify bottlenecks. Perf-
Sight [25] leverages the fact that an increase in processing
delay is propositional to queue buildup. It collects and ana-
lyzes statistics about different buffers and queues to identify
bottlenecks.

We argue that these existing frameworks have enough
similarities in their API requirements that a common API
can be designed with necessary requirements that support
all these frameworks.

4. DESIGN OF APIS
We now present the design of an intent-based VNF API

that simplifies the task of managing VNFs. The API allows
a VNF Manager (Figure 1) to specify what VNFs should do

Container
Network Function

Classifier

Network stack

iface tun

(a) Integrated classifier

Container

Network Function

Network stack

Container

Network stack

Classifier

(b) Standalone classifier
Figure 2: Proposed network function architecture

with state and traffic, rather than how the state and traffic
should be passed between VNFs. This allows an NF ven-
dor, which knows its NF best, to select the most appropriate
mechanisms for managing the NF’s state, chaining the NF,
and quantifying the NF’s performance. Correspondingly, the
VNF Manager can focus on making decisions that are best
for the overall VNF deployment, without worrying about the
intricacies of individual NFs. Furthermore, decoupling in-
tent and mechanism enables NFs and the VNF Manager to
evolve independently.

While our API would ideally be completely NF-agnostic,
there are certain aspects of state management, service chain-
ing, and bottleneck detection that are inherently tied to an
NF’s type and implementation. For example, the annotations
that an NF may add to packets of a flow, to influence which
downstream NFs process the flow, are dependent on the type
of NF: e.g., a caching proxy may mark whether a request
was a cache hit or miss, while an IDS may mark whether
the flow matches the signature of a known vulnerability.
Thus, while the functions contained in our API are com-
mon to all NFs, the values of some arguments and the con-
tents of some responses are unique to individual NFs. To aid
an operator in configuring a VNF Manager to appropriately
specify/interpret these NF-specific arguments/responses, we
expect NFs that implement our API to provide an informa-
tional document that contains a natural language description
of the semantics of NF-specific arguments/responses. Ta-
ble 1 shows an example of what this document contains. We
discuss this in more detail below.

4.1 Service Chaining
Service chaining has two aspects: (1) setting up a se-

quence of NFs, and (2) providing contextual information for
a packet/flow to another NF in a chain.

A naïve approach for setting up a chain of NFs is to have
the VNF Manager disseminate the service chain information
individually to each NF. However, this approach is ineffi-
cient. In cases when the NF mangles the packet header, the
VNF Manager has to get the new flowspace identifier (e.g.,
IP address or MPLS label) of the output packet from an NF
and relay it to the subsequent NF [21]. We believe the VNF
Manager should just be responsible for providing the list of
NFs in a service chain to the first NF in the service chain,
and the first NF should be responsible for coordinating with

40

Semantic information Description
Service chaining {label = status, values=[hit, miss]} Flow’s cache hit/miss status

Resource bottleneck CPU usage CPU utilization
Per pkt. processing delay Processing delay (µsec) measured using VND [26]

Table 1: An excerpt from a vendor’s specification document of a caching proxy

the rest of the NFs to set up the service chain. Offloading the
process of setting up service chains to NFs makes the con-
trol protocol for setting up the service chains independent of
the VNF Manager1 NF vendors can implement one or more
protocols of their choosing (e.g., NSH [15]), with the caveat
that all NFs in a chain must have at least one protocol in
common. As part of our API, we provide a function that al-
lows a VNF Manager to query which chaining protocols an
NF supports:
list<protocol> getChainingProtocols()

The service chain setup API allows the VNF Manager to
specify the list of NFs which a flow should traverse along
with a scope which defines the flowspace. To setup a service
chain, we define the following API call:
serviceChain(scope, <list>nexthop)

The list contains the identifiers of all the hops in the ser-
vice chain and their order. These can be tags for tunnel end-
points, labels or host names, depending upon the containers’
network stacks2 and underlying network fabric. The calls re-
quired for setting up a service chain are shown in Figure 3a

Our API requires each NF to include a logical classifier an
essential component of an NF, similar to NSH [15]. Figure 2
shows an overview of the NF architecture with a classifier.
The classifier has two responsibilities:

1. Classifier should annotate packets with an identifier
(e.g., IP address or tag) for the next hop NF such that
the container’s network stack and the underlying fab-
ric can route the packet to the appropriate next hop.
The identifier to use depends on the implementation
of the network stack and fabric: e.g., if the network
stack uses IP addresses to determine where to route
traffic, then the classifier must encapsulate the packet
in a header containing the IP address of the next hop
NF; if the network stack uses MAC addresses to deter-
mine where to route traffic, then the classifier must put
the appropriate MAC address in the packet’s Ethernet
header.

2. Convey contextual information to other NFs in the
chain by marking or tagging packets. This marking
is used to transmit contextual information to the sub-
sequent network instances like a signal about the last
packet in-transit on the old path after moving the traf-
fic to a new destination or information whether there
was a cache hit or miss at the caching proxy.

We envision open-source classifier implementations will be
available for NF vendors to integrate into their NFs.
1The VNF Orchestrator coordinates with the Flow Manager
to install the appropriate forwarding rules.
2Container can be a software-container or a VM

VNF Manager
getChaining()

serviceChain()

1
2

3
Setting up the chain[e.g. NSH]

VNFVNF

(a) Service Chaining

VNF Manager
transfer()

serviceChainUpdate()

1

markLastInTransit()

2

src VNF

dst VNF

3

4

getVariants()

(b) State Management
Figure 3: Interaction of VNF Manager with VNFs

If an NF’s classifier does not support the forwarding prim-
itive which the underlying network is using, a network op-
erator/VNF Manager can use a standalone classifier instance
as a wrapper to provide support for the required forwarding
mechanism as shown in Figure 2b.

To support dynamically reconfigure the service chain by
adding or removing NFs, we propose the following API:
serviceChainUpdate(scope,
<list>nexthop)

To add or remove an NF, the VNF Manager provides the
updated list to the NF from which the subsequent service
chain needs a modification, and it is the responsibility of that
NF to update the service chain by adding or removing the
NF.

The second aspect of service chaining is to convey the
contextual information generated by an upstream NF to a
downstream NF. For example, consider a service chain that
has a caching proxy followed by a firewall. The firewall
needs to know whether the flow was a hit or miss at the
caching proxy, to make its block/allow decision. However,
there is not a standard format to communicate the contex-
tual information from one NF to another NF, nor is it possi-
ble for a NF to understand all possible inputs. To overcome
this challenge, we require: (1) if an NF can consume some
contextual information, the NF should consume the context
in the form of labels defined in the configuration, and (2)
an upstream NF must translate NF-specific contextual infor-
mation into generic labels which could be consumed by a

41

downstream NF. For example, the operator defines in the
configuration of the firewall that the label 21 means a hit and
label 22 is a miss. The semantics of the contextual infor-
mation (i.e.,the type of labels and their acceptable values)
which a particular NF can consume or generate must be pro-
vided by the NF vendor in the specification document. To
translate the contextual information into consumable labels,
we leverage our classifier. The VNF Manager adds rules in
the classifier of the upstream NF to perform this translation.
In our example, the classifier at the caching proxy translate
the hit and miss information to their respective labels.

4.2 State Management
While existing state management frameworks require the

VNF Manager to oversee state operations [13, 23], we argue
that NFs should be responsible for orchestrating state op-
erations, and the VNF Manager should only be responsible
for indicating which operation to perform. This prevents the
VNF Manager from becoming a bottleneck [12] and allows
NF vendors to conduct state operations in a manner that is
safe and efficient for their NFs.

Our API provides two functions for expressing state man-
agement intents:

transfer(destination, scope, variant)
replicate(destination, scope, variant)

The former enables a VNF Manager to communicate its
intent that one NF instance (destination) immediately take
over the responsibility of processing a particular set of traf-
fic from another NF instance (source). The latter enables a
VNF Manager to communicate its intent that an NF instance
(destination) serve as a hot standby that could take over the
processing of a particular set of traffic in the event another
NF instance (source) fails. For both operations we leverage
the fact that an NF’s state generally pertains to either indi-
vidual flows or a collection of flows, and we define the scope
of an operation in terms of a flowspace—i.e., a set of flows
identified based on source/destination IPs, transport proto-
col, source/destination ports, etc.

Operation variants. NF vendors may use any of the mech-
anisms discussed in Section 3.1, or their own mechanisms,
to realize the above operations. For example, an NF may
use a combination of moving and sharing state, with vari-
ous consistency guarantees, to implement a transfer opera-
tion (Figure 3b shows the calls for transferring state.). Simi-
larly, to implement replicate, an NF may copy state (or state
deltas) after processing every packet, every n packets, pack-
ets with special flags (e.g., SYN and FIN packets), etc. For
a given NF, different combinations of mechanisms have dif-
ferent trade-offs between NF performance, accuracy, and re-
source consumption. In other words, an NF vendor may im-
plement multiple variants of transfer and replicate to give
VNF Managers the flexibility to chose the variant that best
meets a network operator’s goals.

To help a VNF Manager choose the appropriate variant of
an operation, each NF is expected to provide a list of variants
and a numeric measure of the performance, accuracy, and
resource consumption of each variant:

map<variant,[int,int,int]>
getVariants(operation)

The numeric measures can be compared across an NF’s vari-
ants to determine the relative performance, accuracy, and re-
source consumption of a particular variant. Our API does
not stipulate how performance, accuracy, and resource con-
sumption are quantified, nor is there an expectation that the
values provided by the NF are linearly related. For exam-
ple, a variant whose performance and resource consumption
measures are 2 and 1, respectively, may be ten times faster
and consume half the resources of a variant whose perfor-
mance and resource consumption measures are 1 and 2, re-
spectively.
Handling traffic. In addition to making state available,
a VNF Manager must also update the classification be-
havior of neighboring NFs in the chain such that the set
of traffic identified in the transfer operation is sent
to the destination NF, rather than the source NF. The
serviceChainUpdate function (Section 4.1) can be
used for this purpose. However, following the chain update,
the destination NF may need to know that all in-transit traf-
fic matching scope has been processed by the source NF
or redirected to the destination NF [13]. Thus, our API in-
cludes a function that allows the destination NF to request
that the classifiers of the neighboring NFs in the chain mark
the last in-transit packet to source NF:
markLastInTransit(source, scope)

4.3 Resource Bottleneck
To support innovative and NF-specific mechanisms of

detecting bottlenecks, we propose an API that is general
enough to accommodate a variety of resource bottleneck in-
dicators. Our API returns a list of key-value pairs with infor-
mation about the performance/resource consumption of the
NF, similar to SNMP:
map<metric,int> queryMetrics()
reportMetrics(interval, callback)

We leave the type of information, the technique for measur-
ing and the granularity up to the NF vendors, as they know
what indicators are best for their NFs. Vendors define the se-
mantics of their metrics in the NF-specific information doc-
ument we discussed at the beginning of this section.

The API supports both periodic event and polling based
requests. In the case of a periodic event, the framework reg-
isters an event handler with the NF. The interval between
two events can be either based on the number of packets (e.g.
generate an event after the nth packet) or it can be after fixed
time intervals (e.g. generate an event after the kth second).
In the case of a polling based request, the framework actively
polls the NF for the values of its metrics.

5. IMPLEMENTATION
Several implementation challenges exist for a standard-

ized southbound API. VNF software must be modified to
implement and expose the southbound API; moreover, VNF
Manager must be modified to use these calls. These are not
necessarily hard problems, but they have real world implica-
tions that affect the adoption of a new API.

42

5.1 Modifications to VNFs
In order for VNF software to adhere to a specific, stan-

dard management API, vendors must add new code that im-
plements the proposed functions. These functions require a
detailed analysis of internal application state and configura-
tion, which can differ considerably between different VNF
products.

Our previous work on StateAlyzr [17], and others [24]
demonstrates that program analysis tools are well suited to
this task. These tools can complete most of the work, which
removes the menial engineering process and allows human
developers to focus on the specific business logic for each
NF.

5.2 Modifications to VNF Managers
The applications that communicate with instances must

be able to speak the same language of the API. The NFV
MANO specification describes an architecture in which
VNF Managers are responsible for this management. Ex-
isting management frameworks such as OpenMANO [20] or
CORD [4] can be extended to handle the calls we propose.

Fundamentally, all of these frameworks must have some
mechanism for communicating with VNFs. Many solutions
exist at present, but they are all fragmented and proprietary.
Our proposed API allows all VNF software to communicate
via a common interface, which managers only have to im-
plement once before realizing all the gains of working in a
standardized software space.

6. SUMMARY
Our standard API will make it easier for VNF vendors

to implement a common set of functions which many VNF
managers and other software orchestrators will be able to
use. This is a critical step towards the widespread, produc-
tion adoption of NFV. This also paves a path for the adoption
of state management and service chaining frameworks.

7. REFERENCES
[1] AWS Auto Scaling.

http://aws.amazon.com/autoscaling.
[2] BANERJEE, A. Featured guest article: The

commercialization of SDN and NFV.
https://sdxcentral.com/articles/contributed/
agile-virtualization-commercialization-ari-banerjee/
2016/03.

[3] BEYENE, Y., FALOUTSOS, M., AND MADHYASTHA,
H. V. SyFi: A systematic approach for estimating
stateful firewall performance. In PAM (2012).

[4] CORD. http://opencord.org/.
[5] DOBRESCU, M., ARGYRAKI, K., AND RATNASAMY,

S. Toward predictable performance in software
packet-processing platforms. In NSDI 12 (2012).

[6] DREGER, H., FELDMANN, A., PAXSON, V., AND
SOMMER, R. Predicting the resource consumption of
network intrusion detection systems. In RAID (2008).

[7] ETSI. Network functions virtualisation.
https://portal.etsi.org/nfv/nfv_white_paper.pdf, 2012.

[8] ETSI. Network functions virtualisation (NFV); use
cases. http://etsi.org/deliver/etsi_gs/nfv/001_099/001/
01.01.01_60/gs_nfv001v010101p.pdf, 2013.

[9] ETSI. Network functions virtualisation (NFV);
management and orchestration.
etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/01.
01.01_60/gs_NFV-MAN001v010101p.pdf, 2014.

[10] FAYAZBAKHSH, S. K., CHIANG, L., SEKAR, V.,
YU, M., AND MOGUL, J. C. Enforcing network-wide
policies in the presence of dynamic middlebox actions
using FlowTags. In NSDI (2014).

[11] GEMBER, A., KRISHNAMURTHY, A., JOHN, S. S.,
GRANDL, R., GAO, X., ANAND, A., BENSON, T.,
AKELLA, A., AND SEKAR, V. Stratos: A
network-aware orchestration layer for middleboxes in
the cloud. Tech. rep., University of
Wisconsin-Madison, 2013.

[12] GEMBER-JACOBSON, A., AND AKELLA, A.
Improving the safety, scalability, and efficiency of
network function state transfers. In HotMiddlebox
(2015).

[13] GEMBER-JACOBSON, A., VISWANATHAN, R.,
PRAKASH, C., GRANDL, R., KHALID, J., DAS, S.,
AND AKELLA, A. OpenNF: Enabling innovation in
network function control. SIGCOMM (2014).

[14] IETF. Nec’s simple middlebox configuration (simco).
https://tools.ietf.org/html/rfc4540, 2006.

[15] IETF. Network service header.
https://tools.ietf.org/id/draft-quinn-sfc-nsh-07.txt,
2015.

[16] KABLAN, M., CALDWELL, B., HAN, R., JAMJOOM,
H., AND KELLER, E. Stateless network functions. In
HotMiddlebox (2015).

[17] KHALID, J., GEMBER-JACOBSON, A., MICHAEL,
R., ABHASHKUMAR, A., AND AKELLA, A. Paving
the way for NFV: Simplifying middlebox
modifications using StateAlyzr. In NSDI (2016).

[18] MISHRA, S. NFV orchestration: Challenges in
telecom deployments.
youtube.com/watch?v=YHJQpdjCFJ.

[19] NICUTAR, C., PAASCH, C., BAGNULO, M., AND
RAICIU, C. Evolving the internet with connection
acrobatics. In HotMiddlebox (2013).

[20] OpenMANO. github.com/nfvlabs/openmano.
[21] QAZI, Z. A., TU, C.-C., CHIANG, L., MIAO, R.,

SEKAR, V., AND YU, M. SIMPLE-fying middlebox
policy enforcement using SDN. In SIGCOMM (2013).

[22] RAJAGOPALAN, S., WILLIAMS, D., AND JAMJOOM,
H. Pico Replication: A high availability framework
for middleboxes. In SoCC (2013).

[23] RAJAGOPALAN, S., WILLIAMS, D., JAMJOOM, H.,
AND WARFIELD, A. Split/Merge: System support for
elastic execution in virtual middleboxes. In NSDI
(2013).

[24] SHERRY, J., GAO, P., BASU, S., PANDA, A.,
KRISHNAMURTHY, A., MACCIOCCO, C., MANESH,
M., MARTINS, J., RATNASAMY, S., AND SHENKER,
L. R. S. Rollback recovery for middleboxes. In
SIGCOMM (2015).

[25] WU, W., HE, K., AND AKELLA, A. PerfSight:
Performance diagnosis for software dataplanes. In
IMC (2015).

[26] WU, W., WANG, G., AKELLA, A., AND SHAIKH, A.
Virtual network diagnosis as a service. In SoCC
(2013).

43

