
Redundancy in Network Traffic: Findings and Implications

Ashok Anand!, Chitra Muthukrishnan!, Aditya Akella! and Ramjee Ramachandran†

!UW-Madison, †Microsoft Research-India

ABSTRACT
A large amount of popular content is transferred repeatedly across
network links in the Internet. In recent years, packet-level protocol-
independent redundancy elimination which can remove duplicate
strings from within network packets has emerged as a powerful
technique to improve the efficiency of network links in the face
of repeated data. Many vendors offer such redundancy elimination
middleboxes to improve the effective bandwidth of enterprise, data
center and ISP links alike.

In this paper, we conduct a large scale trace-driven study of pro-
tocol independent redundancy elimination mechanisms, driven by
several terabytes of packet payload traces collected at 12 distinct
network locations, including the access link of a large US-based
university and of 11 different enterprise networks of different sizes.
Based on extensive analysis, we present a number of findings on
the benefits and fundamental design issues in redundancy elimina-
tion systems. Two of our key findings are (1) A new redundancy
elimination algorithm based on Winnowing that outperforms the
widely-used Rabin fingerprint-based algorithm by 5-10% on most
traces and by as much as 35% in some traces. (2) A surprising
finding that 75-90% of middlebox bandwidth savings in our en-
terprise traces is due to redundant byte-strings from within each
client’s traffic, implying that an end-to-end redundancy elimination
solution could obtain most of the middlebox’s bandwidth savings.

1. INTRODUCTION
Network traffic exhibits large amount of redundancy when differ-
ent users on the Internet access same or similar content. Many
diverse systems have explored how to eliminate this redundant con-
tent from network links and improve network efficiency. Several of
these systems operate at the application- and object-levels. For ex-
ample, Web proxy caches [27] and the more recent P2P caches [6]
store frequently accessed objects and serve repeated requests from
cache. Dictionary-based algorithms such as GZIP [30] remove du-
plicate bytes from within objects. Numerous studies have explored
the effectiveness of such application-layer and object-level systems
and have developed algorithms for optimizing their designs (see,
for example, [28, 29, 17, 30, 15]).

In recent years, a new class of protocol-independent redundancy
elimination algorithms have been developed that can identify and
remove strings of bytes that are repeated across network packets.
First pioneered by Spring et al [26], and later developed into “WAN
Optimization” middleboxes by multiple vendors [7, 8, 3, 1, 5, 4],
these approaches operate in a transparent fashion below the ap-
plication layer and suppress any repeated strings of bytes that ap-
pear on a network link. Since these approaches subsume multiple
object-level and application-specific techniques they are both more
effective at removing redundant bytes and also more flexible to use.

Protocol-independent redundancy elimination is becoming increas-
ingly popular [2, 9]. Redundancy elimination middleboxes are be-
ing widely deployed to improve the effective bandwidth of network
access links of enterprises and data centers alike, and for improv-
ing link loads in small ISP networks. Driven by the high effec-
tiveness of these systems, recent efforts have also considered how
to make these systems first-class network entities. For instance,
Anand et al proposed that protocol-independent redundancy elimi-
nation be deployed on a wider scale across multiple network routers
enabling an IP-layer redundancy elimination service [12]. This ex-
pands the benefits of redundancy elimination to multiple end-to-
end applications. It could also enable new routing protocols [12].
Li et al similarly considered how to modify Web applications by
introducing data markers that help in-network redundancy elimi-
nation mechanisms to identify and remove redundancy more ef-
fectively [19]. Ditto [16] similarly proposes to use application-
independent caching at nodes in city-wide wireless mesh networks
to improve the throughput of data transfers.

As redundancy elimination techniques become more widely de-
ployed and more tightly integrated into network infrastructure and
protocols, it becomes crucial to understand the benefits, trade-offs
and design issues in these systems. Unfortunately, there is very
little insight into even the basic issues underlying these systems to-
day: What is the optimal level of performance one can expect from
protocol-independent packet-level techniques? Do currently popu-
lar techniques [26] perform close to optimal or do better-performing
algorithms exist? When is network-based redundancy elimination—
which is the currently popular model of deployment and usage—
most effective and under what situations do end-to-end approaches
offer better cost-performance trade-offs? What fundamental traf-
fic redundancy patterns drive the design and bound the effective-
ness of redundancy elimination systems? Understanding these is-
sues is central not only to improving the design, and ensuring cost-
effective usage, of current redundancy elimination techniques but
also in guiding future redundancy elimination-based network ar-
chitectures such as those proposed in [12, 19, 16].



In this paper, we conduct a large scale trace-driven study of proto-
col independent redundancy elimination to shed light on some of
the above fundamental issues. Our large-scale study is driven by
packet payload traces collected at 12 distinct network locations, in-
cluding the access link of a large US-based university and of 11
different enterprise networks of different sizes. These traces, de-
scribed in Section 3 and Table 1, span diverse user populations
and cover multiple days’ and terabytes worth of traffic, giving us
a comprehensive view into traffic redundancy and the effectiveness
of redundancy elimination.

Our study consists of three parts. In the first part, presented in Sec-
tion 4, we focus on the redundancy elimination algorithms. We
compare the popular algorithm due to Spring et al with a new al-
gorithm based on Winnowing [25], as well as with a hypothetical
algorithm that can identify the optimal amount of redundancy. In
the second part, presented in Section 5, we study the macroscopic
benefits of redundancy elimination, focusing on whether and how
redundancy elimination improves the average and peak utilizations
for different networks links. We also examine the impact on tem-
poral variations in traffic volumes and compare redundancy elim-
ination against protocol-specific approaches such as HTTP object
compression and caching. Finally, in Section 6, we take an in-depth
microscopic look into network traffic redundancy. We study a va-
riety of issues which have direct implications on the design of re-
dundancy elimination systems. These include various properties of
redundant content ranging from origin of redundant strings, preva-
lence and importance of partial packet matches, and temporal and
count distribution of the redundant strings. In all cases, we study
traces from the full set of 12 network locations to ensure that our
empirical insights are broadly applicable.

We present a full list of the findings and implications of our study in
Section 7. Two of our key findings are (1) A new redundancy elim-
ination algorithm that provides more uniform selection of chunks
for indexing outperforms the widely used fingerprint selection algo-
rithm proposed in [26] by 5-10% on most traces and by as much as
35% in some traces. (2) A surprising finding that 75-90% of mid-
dlebox bandwidth savings in our enterprise traces is due to redun-
dant chunk matches from within each client’s traffic. This implies
that an end-to-end redundancy elimination solution could obtain
most of the middlebox’s bandwidth savings, obviating the need for
deployment of expensive middleboxes in enterprises and sidestep-
ping the attendant problems such as encryption. Some of our other
observations include: (1) While average bandwidth savings of re-
dundancy elimination can be as high as 60%, it may not result in
similar savings in peak usage, and more generally, the burstiness
of traffic after redundancy elimination is not commensurately re-
duced. (2) Redundant segment matches follow a Zipf-like distribu-
tion with the implication that small caches can capture bulk of the
bandwidth savings, while it takes increasing amount of cache size
and indexing effort in order to obtain incremental gains.

2. RELATED WORK
Several papers have looked at various aspects of redundancy in net-
work information. Some of the approaches focused of redundancy
at the object level, while the more recent ones examine redundancy
at the packet level. We compare these papers with our work next.

Object-level approaches. Object-level Caching and its effect on
wide-area performance has been extensively studied. Several stud-
ies have examined that users accesses of Web objects are Zipfian
in nature [14]. Other studies have considered the impact of these

access patterns on caching and the effectiveness of caching. For
instance, Wolman et al. considered the sharing of Web documents
among users at the University of Washington [29]. They showed
that users are more likely to request objects that are shared across
departments than objects that are only shared within a department.
In follow-up work, Wolman et al [28] showed that while sharing of
Web objects across departments or divisions in organization can
improve Web object hit rates, there is a strong evidence of di-
minishing returns when the population of clients sharing the cache
crosses a certain limit. Redundancy elimination during file down-
loads has also received a large amount of attention [21, 22]. The
basic idea behind these approaches is to divide files into content-
based chunks and download only those chunks that are not already
present locally. In contrast with these object-level approaches, our
work takes a more information centric view by focusing on the rep-
etition in content within packets. We study the popularity of strings
contained in packets, how the packet level content is shared by dif-
ferent pools of users, and whether similar evidence of diminishing
returns exists when we consider greater amounts of caching and
sharing of packet level content.

Packet-level approaches. As mentioned in §1, Spring et al. de-
veloped the first protocol independent approach for identifying re-
dundant bytes in network traffic [26]. We describe this approach
and other candidate approaches in more detail in §4. Applying
this approach to traces collected at an enterprise network, Spring
et al found that, on average, 20% of the bytes were redundant in
the inbound direction, and 50% were redundant in the outbound
direction [26]. They also showed that protocol-independent tech-
niques are more effective than object level caching. In our work,
we consider a much broader data set including both directions of a
University access link and 11 enterprise networks of various sizes.
Our work also goes beyond just identifying the amount of redun-
dancy identified by a specific packet-level algorithm and examines
several fundamental issues. These include: what is the amount of
redundancy that a packet-level approach can identify in the best
case? How close to optimal do practical algorithms get? What ben-
efits do packet level techniques offer in managing link loads? What
trade-offs do they impose? What are the fundamental characteris-
tics of the duplicate bytes? How do these characteristics impact the
design of practical redundancy elimination mechanisms?

More recently, Anand et al [12] explored the benefits of deploy-
ing Spring et al’s mechanism on all Internet routers. Such a de-
ployment would enable redundancy elimination as a primitive ser-
vice that is accessible to all end-to-end flows. They showed that
such a service can improve the performance of end-to-end flows,
improve link loads everywhere and also enable new routing and
traffic engineering mechanisms. Our work informs the design of
such wide-spread redundancy elimination services. In particular,
our work shows where middleboxes are beneficial, how to design
those caches and how much cache to provision to obtain reasonable
redundancy elimination. Our observations regarding the sources of
redundancy and the temporal and spatial variations could be lever-
aged when designing new “redundancy-aware” protocols such as
the ones outlined in [12].

WAN Optimization. Bandwidth requirements of network enti-
ties such as small ISPs and enterprise networks have seen steep
increases in recent years. However, augmenting WAN capacity to
meet the growing demand is not a cheap proposition. To meet these
requirements, small ISPs and enterprises are increasingly turning
toward WAN optimization middleboxes which can simultaneously



improve the effective capacity of network links and lower link us-
age costs. Different vendors like Riverbed, Cisco, Juniper etc. are
involved in this increasingly competitive market (see [7, 8, 3, 1,
5, 4] for descriptions of the products, and a longer list of products
at [10]). The core techniques used by these optimizers are based
on packet-level redundancy elimination such as the ones we de-
scribe in §4. In addition, some products employ domain-specific
data compression by effectively representing known data patterns,
protocol specific optimization like protocol spoofing by bundling
multiple requests by chatty applications to one etc. While these
products are presumed to offer substantial benefits at the locations
where they are deployed, very little is known in the open literature
about the quantitative extent of benefits, the underlying tradeoffs
involved in using these approaches, and the challenges and design
considerations in implementing WAN optimization. Our measure-
ment observations shed light on these important issues.

3. DATA SETS
Our empirical study is based on full packet traces collected at sev-
eral distinct network edge locations. One is from a large univer-
sity’s access link to the commercial Internet, while the others are
from access links of enterprises of various sizes. The key charac-
teristics of our traces are shown in Table 1.

Enterprise Traces. We monitored access links at 11 corporate en-
terprise locations and collected several days worth of traffic going
into and out of these sites. We classify the enterprises as small,
medium or large based on the number of internal host IP addresses
seen (less than 50, 50-100, and 100+, respectively) in a typical 24
hour trace at each of these sites. While this classification is some-
what arbitrary, we use this division to study if there are redundancy
properties that are dependent on the size of an enterprise. Note
that the total amount of traffic in each trace is also approximately
correlated to the number of host IP addresses, though there is a
large amount of variation from day to day. Typical incoming traffic
numbers for small enterprises were about 0.3-3GB/day, for medium
enterprises were about 2-12GB/day and for large enterprises about
7-50GB/day. The access link capacities at these sites varied from a
few Mbps to several tens of Mbps. Note that even the largest enter-
prise site in our trace is one or more orders of magnitude smaller
than the University site in terms of number of IPs, traffic or access
link capacity. Finally, the total volume of enterprise network traffic
collected and analyzed is about 3TB.

University Traces. We monitored the access link of a large Uni-
versity located in the US. The University has a 1Gbps full-duplex
connection to the commercial Internet and has roughly 50000 users.
We logged entire packets (including payloads) going in either di-
rection on the access link. Due to limitations of our collection in-
frastructure, we were only able to log traffic from one direction at a
time. Thus, we alternatively logged a few minutes of traffic in each
direction.

We collected two sets of traces at the University access link. First,
we collected several 60s-long traces between 6am on Friday, Dec
15 and 9pm on Saturday Dec 16, 2006. On average, we collected 3
traces per hour for either direction, resulting in a total of 147 traces
for each direction. We alternated between inbound and outbound
traffic, with a gap of 30s between the traces for the two directions.
The total size of these traces is 558GB. Henceforth, we shall use
term Univ-In-60s to refer to the inbound traffic traces, and the term
Univ-out-60s for the outbound traffic traces.

Second, during Jan 23-25, 2007, we collected 1.1TB worth of traf-
fic during different hours between 10am and 7pm. Again, we al-
ternated between the incoming and outgoing directions; each trace
spanned ≈ 600 seconds on average. Henceforth, we shall use the
terms Univ-In-long and Univ-Out-long to describe these traces.

Other uses of the traces. We also focus on the subset of the Uni-
versity traces involving traffic to and from a certain high volume
/24 prefix owned by the University. Several of the most popular
Web servers in the University are located on this /24. We use these
University trace-subsets as potential logs for evaluating how redun-
dancy suppression may help data centers.

Figure 1: Protocol distribution over five days at incoming link
of large enterprise (starting with HTTP at bottom. moving up)

























Figure 2: Protocol distribution at University outgoing link
(starting with HTTP at 12 noon, proceeding clockwise)
In order to provide a flavor of these traces, we show the trace com-
position by protocols across five week days for a large enterprise
trace in Figure 1. This figure highlights the significant differences
in network access link traffic since the 1999 enterprise traces that
were analyzed by Spring et al. in [26]. First, while [26] observed
a dominant fraction of traffic comprised of HTTP (64% of incom-
ing traffic), we see HTTP traffic is significant but not dominant
today, with large variations seen from day to day (20-55%). Sec-
ond, while [26] hardly observed any file transfer traffic (FTP 1.9%),
the traffic over our enterprise access links comprise a significant
amount (25-70%) of file transfer traffic (SMB, NetBios, Source



Trace name Description Dates/Times Span of each trace Number of traces Total Volume (GB)
Small Enterprise Inbound/Outbound 1PM on 07/28/08 24 hours 8 100
( 3 sites, 0-50 IP) to 7PM on 08/08/08
Medium Enterprise Inbound/Outbound 1PM on 07/28/08 24 hours 8 400
( 5 sites, 50-100 IP) to 7PM on 08/08/08
Large Enterprise Inbound/Outbound 1PM on 07/28/08 24 hours 8 500
( 2 sites, 100+ IP) to 7PM on 08/08/08
Large Research Lab Inbound/Outbound 10AM on 06/16/08 24 hours 17 2000
( 1 site, 100+ IP) to 10AM on 07/03/08
Univ-In-60s Inbound traffic 6:00 AM on 12/15/06 60s worth of traffic 147 253

at university access link to 9:00 PM on 12/16/06
Univ-Out-60s Outbound traffic 6:00 AM on 12/15/06 60s worth of traffic 147 305

at university access link to 9:00 PM on 12/16/06
Univ-In-long Inbound traffic 10:00 AM to 7:00 PM, ≈600s worth of traffic 27 550

at university access link between 01/23/07 and 01/25/07
Univ-Out-long Outbound traffic 10:00 AM to 7:00 PM, ≈600s worth of traffic 27 550

at university access link between 01/23/07 and 01/25/07

Table 1: Characteristics of the data traces gathered from 12 sites

Code Server, etc.). This is likely due to a significant shift in en-
terprise management approach in the last few years where increas-
ingly servers are centralized in a few locations/data centers in order
to save administrative expenses. Finally, Figure 2 shows protocol
composition at a university outgoing link and the traffic character-
istics here are quite different from the enterprise - HTTP is signif-
icant at 36% and a large portion of traffic, likely peer-to-peer, is
classified as others (note that the edonkey control traffic itself is
significant and identified separately).

4. ALGORITHMS FOR REDUNDANCY
ELIMINATION

Broadly speaking, redundancy in network packets can be elimi-
nated in two ways: 1) detection and removal of redundancy of bytes
across different packets, also called redundancy suppression and
2) redundancy elimination within a packet using data compression.
We first discuss algorithms for performing redundancy suppression,
and then briefly discuss compression.

4.1 Redundancy Suppression
To date, middlebox-based techniques for redundancy suppression [12,
26] rely on the approach proposed by Manber [20], in the context
of identifying similar files in a file system. We first describe this
approach, referred to as MODP, and then describe an alternative ap-
proach called MAXP. We then describe a technique for estimating
the performance of an optimal redundancy suppression algorithm
and present performance comparisons of MODP and MAXP with
respect to the optimal.

Before we describe the MODP and MAXP algorithms, we first de-
scribe the overall approach behind redundancy suppression for net-
work traffic, first proposed in [26]. Given a cache/dictionary of past
packets, redundancy suppression techniques need to identify con-
tiguous strings of bytes in the current packet that are also present
in the cache. This is accomplished by identifying a set of repre-
sentative “fingerprints” for each packet and then comparing these
fingerprints with a “fingerprints store” that holds the fingerprints of
all the past packets in the cache. The fingerprints serve as “random
hooks” into portions of the packet payload which is used to find re-
dundant content. For each fingerprint of the packet that is matched
against the store, the matching packet is retrieved and the match-
ing region is expanded byte-by-byte in both directions to obtain the
maximal region of redundant bytes. Once all matches are iden-
tified, the matched segments are replaced with fixed-size pointers

into the cache, thereby suppressing redundancy. Finally, the cache
and fingerprint store are updated with the new packet. If the packet
cache is full, the earliest packet in the store is evicted and all its
fingerprints are freed. The key difference between the MODP and
MAXP algorithms is simply in how the representative fingerprints
are computed, which we describe next.

4.1.1 MODP
In this algorithm, Rabin fingerprints [23] of sliding windows of w
contiguous bytes of the payload of each packet are computed. Pa-
rameter w represents the minimum match size of interest. Smaller
w would help identify more matches at a potential cost of missing
larger matches. Typical values for w range from 12 − 64 bytes.

For a packet with S bytes of payload, S ≥ w, a total of S − w
fingerprints are generated. Since S >> w, the number of such
fingerprints is approximately the same as the number of bytes in
the packet.

Since it is impractical to store all these fingerprints, a fraction 1/p
of fingerprints are chosen whose value is 0 mod p (p can be chosen
as a power of two for ease of computation). In this way, finger-
prints are chosen independent of their position and is thus robust
to reordering and insertions/deletions. In cases where the MODP
selection criteria does not choose even a single fingerprint from a
given packet, we explicitly enforce that at least one fingerprint is
chosen per packet.

Parameter p controls the memory overhead of the fingerprint store
with typical values of p ranging from 32 to 128. For example,
in [12], using 16 fingerprints per 1500 byte packet (or p ≈ 90)
results in indexing memory overhead of 50% the cache size.

4.1.2 MAXP
One shortcoming with the MODP approach is that the fingerprints
are chosen based on a global property, i.e., fingerprints have to take
certain pre-determined values to be chosen. While this would re-
sult in the desired fraction of fingerprints being chosen across a
large packet store, on a per-packet basis, the number of fingerprints
chosen can be significantly different and not enough sometimes.

In order to guarantee that adequate number of fingerprints are cho-
sen uniformly from each packet, a local technique such as win-
nowing [25] is essential. Winnowing, similar to the work by Man-
ber [20], was also introduced in the context of identifying similar



documents and can be easily adapted to identifying redundancy in
network traffic. The key idea behind winnowing is to choose those
fingerprints that are local-maxima (or minima) over each region
of p bytes, thus ensuring that one fingerprint is selected over every
segment of a packet.

Our MAXP fingerprint selection algorithm is based on the local-
maxima based chunking algorithm designed for remote differential
compression of files [13]. This algorithm is similar to winnowing
but has the advantages of imposing a lower bound on chunk length
and lower computational overhead since the local-maxima is com-
puted using the bytes directly as digits (rather than computing a
hash first before the minima computation in winnowing). The de-
tails of the algorithm can be found in [13].

While the authors of winnowing show that, in the case of web files,
the MODP approach can result in no hashes being picked for ap-
proximately 30K of non-whitespace characters, it is not immedi-
ately clear whether similar deficiencies of MODP will be visible in
our setting, where the network traffic comprises a mix of protocols.

4.1.3 Optimal
For a given minimum match size w, the optimal algorithm for re-
dundancy elimination would require that every fingerprint be stored
for potential future matches. Since the number of fingerprints is on
the order of number of bytes in the packet store, the memory over-
head of indexing every fingerprint is simply impractical.

We devise an alternate approach based on bloom filters in order
to estimate the upper bound of the optimal algorithm. Instead of
indexing every fingerprint, we store the fingerprints in an appropri-
ately sized bloom filter. We then identify fingerprint matches when
the bloom filter contains the fingerprint. Given all the matched re-
gions in the packet, we can identify the optimal set of matches that
maximizes redundancy elimination.

While bloom filters are susceptible to false positives, we choose 8

hash functions and a bloom filter size (in bits) that is 16 times the
number of bytes in the packet store such that the false positive rate
is under 0.1% [17]. One drawback of using a bloom filter is that
even though we know a match exists with high probability, we do
not know the location of the match. This is problematic in the case
of overlapping matches of two or more w byte strings, since we are
unsure whether the overlapping matches correspond to the same lo-
cation in the packet store (resulting in maximum redundancy elim-
ination) or not. We optimistically assume that overlapping matches
in the bloom filter would also overlap in the packet store and thus
the resultant computation provides an upper bound in the redun-
dancy suppression performance of the optimal algorithm.

Finally, if we need to model packet eviction from a full cache, a
counting bloom filter can be used instead of a simple bloom filter.

4.1.4 Comparison
In this section, we present a comparison of the bandwidth sav-
ings of the MODP and the MAXP algorithms with respect to the
upper bound of the Optimal algorithm. Given the high computa-
tional requirements for obtaining the results presented in this sec-
tion, we use only small representative subsets (averaged over sev-
eral GBs/hours worth of traffic) of the overall traces. While we
present extensive trace evaluations of MODP and MAXP in the
next section, here our goal is to evaluate their performance charac-
teristics relative to the optimal.

(a) Trace 1 (b) Trace 2

Figure 3: Comparison of MODP, MAXP, and Optimal

We define bandwidth savings as the ratio of number of bytes saved
due to redundancy elimination as compared to the original network
traffic. While computing savings, we take into account all over-
heads including packet header overheads and the shim headers [12]
necessary to encode the pointers in the MODP/MAXP algorithms.

We use a minimum match window size, w, of 32 bytes (the impact
of w is discussed in Section 6) and vary the sampling period p from
128 to 4. Results from two enterprise traffic traces are shown in
Figure 3(a) and (b), respectively.

First, notice that the gap between MODP and MAXP narrows as
we decrease the sampling period, because we are indexing more
and more fingerprints and their performance approaches the upper
bound of the optimal at p = 4. Second, we see that MAXP out-
performs MODP by up to 10% in Figure 3(a) while we see a much
wider performance gap of up to 20% between MAXP and MODP
in Figure 3(b). This highlights the trace driven nature of MODP’s
performance and the advantage of uniform fingerprint sampling ap-
proach of MAXP. As we shall see in the next section, there are
traces where MAXP outperforms MODP by up to 35%.

Finally, we choose p = 32 as the default sampling period in the
rest of the paper. While p = 4 delivers the best performance, the
indexing memory overhead at p = 4 is approximately 10X the
cache size and is not a desirable operating point. A choice of p =

32 delivers performance within 10% of p = 4 (10-20% of optimal
upper bound) and has a memory overhead roughly comparable to
the cache size.

4.2 Compression
Clearly, irrespective of whether redundancy suppression is being
implemented or not, each packet can be compressed by a com-
pression algorithm such as the deflate algorithm used in gzip. The
deflate algorithm replaces repeated strings with pointers and fur-
ther uses huffman coding to efficiently encode commonly occurring
symbols. While the authors in [26] compared redundancy suppres-
sion with deflate, they did not consider a) the benefits of aggregat-
ing packets within a small time window, say 10ms, before applying
compression1 and b) the benefits of applying compression after re-

1It is well-known that deflate does not compress very small packets
well as it needs to build a dictionary before the benefits of compres-
sion kick in. However, note that neither MODP nor MAXP bene-
fits from aggregation since the minimum match size w << S, the



Site #IP Trace size(GB) GZIP GZIP+10ms MODP MAXP MAXP@4xCACHE MAXP+GZIP+10ms MAXP-outgoing
Small Enterprise

1 44 5.8 19 25 35 37 39 41 61
2 31 21.7 7 10 40 54 59 61 54
3 18 0.2 15 21 37 38 38 41 41

Medium Enterprise
1 54 7.7 6 8 15 16 17 19 51
2 72 7.1 13 18 33 35 39 41 43
3 79 10.6 12 16 25 27 30 34 44
4 79 14.3 9 12 18 19 21 24 25
5 61 4.4 9 13 27 28 31 32 44

Large Enterprise
1 122 17.5 6 8 15 16 20 19 54
2 142 3 8 12 23 24 26 27 44
3 160 31 10 13 22 23 31 27 34

Table 2: Bandwidth savings across different enterprise sites in percentage

Traffic Type #IP Trace size(GB) GZIP GZIP+10ms MODP MAXP MAXP@4xCACHE MAXP+GZIP+10ms
Incoming 9360 22 4 5 9 9 12 10
Outgoing - 22 3 4 11 12 15 14
Outgoing /24 29 2.3 2 3 33 41 48 43

Table 3: Bandwidth savings across University traffic in percentage

dundancy suppression and whether there are complementary gains
to be had. We evaluate these aspects in the next section.

5. MACROSCOPICVIEW:COREBENEFITS
In this section, we explore the core benefits of deploying redun-
dancy elimination on either end of the WAN access link to the
enterprise/university. Our analysis across diverse settings gives a
comprehensive view of when (and to what extent) redundancy elim-
ination techniques help.

We first evaluate the average bandwidth savings due to redundancy
elimination using the various algorithms described in Section 4,
individually, and in combination. We then examine the temporal
variability of the savings. Finally, we examine redundancy char-
acteristics for different protocols and then focus on HTTP in order
to answer the following question: how does protocol-independent
redundancy elimination compare with protocol-specific techniques
such as compression of HTTP objects and the use of web caches?

5.1 Bandwidth Savings
Tables 2 and 3 present the average bandwidth savings using the
different redundancy elimination algorithms described in 4 for the
enterprise and university traces, respectively.

Let us first focus on the enterprise results in Table 2. We classify
enterprise sites as small, medium, and large based on the number of
host IP addresses seen within the enterprise. While the total trace
size is mostly proportional to the number of IP addresses, we can
see several outliers such as small enterprise site 2 with over 20GB
of traffic while large enterprise site 2 with only 3GB of traffic. Ex-
cept for the last column which presents savings on outgoing traffic,
the rest of the results are for traffic incoming to the enterprise, since
this is the dominant portion of traffic (≈ 80-90% of trace size). We
use w = 32, p = 32 and a default cache size of 250MB (plus ap-
proximately 250MB for indexing overhead), which corresponds to
roughly 2 to 10 minutes of traffic at peak utilization for the different
sites.

packet size.

We make several observations from the table. First, while perform-
ing gzip compression per packet provides some gains, the gains
are only half or less of the gains from the MODP or MAXP al-
gorithms. Second, while aggregating packets helps improve GZIP
gains, an aggregation latency of 10ms still does not provide sub-
stantial gains. Third, MAXP outperforms MODP by 5-10% on
most of the traces (1-2% absolute bandwidth gains) and, in some
traces such as small enterprise 2, performs as much as 35% better
than MODP (14% absolute). This highlights the importance of the
uniform sampling approach of MAXP since one could very well hit
a large stream of bytes where the MODP algorithm misses out on
significant redundancy elimination opportunities. Fourth, increas-
ing the cache size by 4X provides incremental gains of 0-35% (0-
8% absolute), with large enterprises benefiting the the most. Fifth,
applying GZIP with 10ms aggregation after MAXP provides gains
of 8-26% (3-7% absolute) over MAXP alone, delivering, in most
cases, comparable savings as using MAXP alone at 4X the cache
size. Thus, compression can be effective in complementing the
gains obtained via redundancy suppression. Sixth, the average sav-
ings are generally higher for the small/medium enterprises as com-
pared to large enterprises. Finally, the savings on outgoing links
(last column) are generally higher than the savings on incoming
links.

Examining the results for the university traces in Table 3, the broad
observations made earlier for the enterprise traces hold good. Here,
we only highlight a few salient points. Note that , the incoming
and outgoing traffic are roughly similar, in size, unlike the skewed
incoming dominant case for the enterprise. Thus, we present re-
sults for incoming and outgoing separately. Overall, the savings
are in the 10-15% range, continuing the trend seen earlier of larger
sites resulting in lower average savings. Focusing specifically on
the outgoing traffic from high volume /24 prefix that hosts popular
web servers, we see that the trace demonstrates significant savings
of over 40%. Finally, note that MAXP significantly outperforms
MODP by 22% in this trace, again illustrating the advantage of
uniform sampling of the MAXP algorithm.

In summary, results from this section demonstrate that redundancy



(a) Incoming (b) Outgoing

Figure 4: Volume, in Mbps, of original and compressed data.

elimination can bring down the average utilization of access links
substantially. The benefits range from 10% to 60% in average
bandwidth savings, with smaller sites generally achieving higher
savings. The MAXP algorithm outperforms the MODP algorithm,
sometimes substantially by up to 35%, and applying packet level
gzip compression with 10ms aggregation after MAXP provides fur-
ther gains of up to 26%.

5.2 Temporal variations
While average savings provide a good measure of the overall effec-
tiveness of redundancy elimination, it can hide significant temporal
effects. In this section, we study the temporal variability of savings
due to redundancy elimination.

In Figure 4(a) and 4(b), we plot the volume in Mbps of all bytes
for the Univ-In-60s and Univ-Out-60s traces (y1-axis). We overlay
the fraction of redundancy in the same figure as well (y2-axis). We
see a slight negative correlation between the fraction of redundancy
and the volume of traffic for inbound traffic (Figure 4(a)). In con-
trast, there is a slight positive correlation for the outbound traffic
(Figure 4(b)). We also observed a slight positive correlation be-
tween link utilization and redundancy fraction in the outgoing /24
trace (not shown). The correlation between traffic load and redun-
dancy can play a vital role in terms of bandwidth savings at peak
traffic periods. In order to quantitatively study the impact of tem-
poral variability with respect to bandwidth savings, we define two
metrics:
• Peak and 95th-percentile savings: Since links are sometimes
charged and/or provisioned based on peak or 95th-percentile traf-
fic load [18, 24], we compare the peak and 95th percentile sav-
ings with the average savings available in the trace. We compute
these measures over a range of time buckets starting from 1 sec-
ond to 5 hours, and study how they vary both with respect to
these time buckets as well as compared to the average savings.

• Burstiness: We use the burstiness metric as computed using wavelet-
based multiresolution analysis (MRA) [11] to study how redun-
dancy elimination impacts traffic burstiness at various timescales.
MRA-based energy plots depict the variance or burstiness of
traffic at different timescales and, in general, one would expect
compression to help reduce burstiness in traffic.

In Figure 5(a) and (b), we plot the mean, median, 95th percentile
and peak savings over buckets of different timescales (in log scale)
from a 24 hour trace for a large-sized and medium-sized enterprise,
respectively. Examining the figure for the large enterprise, the re-

(a) Large enterprise (b) Medium enterprise

Figure 5: Savings in Median, 95-percentile and Peak usage

sults are not very encouraging — the median savings is signifi-
cantly higher than the mean savings while the peak savings is gen-
erally lower than the mean savings, for almost the entire range. This
implies that redundancy elimination is negatively correlated with
load, i.e., at peak hours there is less redundancy than in lean hours.
The 95th-percentile savings measure is somewhat better than the
peak measure and approaches the mean savings for time units of
100-600 seconds. The results for the medium-sized enterprise,
while also broadly similar to the large enterprise case, is better with
95th-percentile savings outperforming mean savings over a large
range of time values. In case of University, we used Univ-In/Out-
60s traces for this evaluation as indicative of few 60 second sam-
ples. We observed that peak savings and 95th-percentile savings
were better than mean savings for 60 second samples. For Univ-
outbound trace, peak savings and 95th percentile savings were 16%
and 14.5% as compared to mean of 12%, supporting earlier obser-
vation of slight positive correlation of redundancy savings with uti-
lization. For incoming trace, the differences were not significant
from mean savings of 10%, In conclusion, examining the average
savings over an interval does not depict a true measure of the tem-
poral variations in savings and we find that redundancy elimination
may be negatively correlated with load, resulting in lower peak sav-
ings as compared to average savings.

We now examine the burstiness metric derived from wavelet-based
multiresolution analysis using an energy plot, which depicts base-2
log of the energy (variance) against the base-2 log of the time scale.
Figures 6(a) and (b) depict the energy plot for the original traffic,



(a) Enterprise (b) Univ-outgoing/24

Figure 6: Burstiness of original and compressed traffic

the compressed traffic and a hypothetical trace where the original
traffic is compressed uniformly using the average compression sav-
ings value for a large enterprise and the university outgoing /24
traces, respectively. Note that the time scale ranges from 10 mil-
liseconds to 1 hour (1 minute) for the enterprise (university) traces.
The differences between the two curves are quite obvious — we
notice that the compressed traffic does not reduce the burstiness of
original traffic significantly for most of the range of the time scale
depicted in the enterprise trace (the two curves practically over-
lap compared to the compressed uniformly curve) while burstiness
is reduced significantly in the university trace, especially in the 1
minute timescale. This lack of reduction in burstiness in the enter-
prise trace is not surprising, given our observation that the median
(peak) savings are generally higher (lower) than the mean savings
across different timescales in the traces. On the other hand, as men-
tioned earlier, the positive correlation between link utilization and
redundancy in the outgoing /24 trace, helps reduce its overall bursti-
ness.

One caveat with this analysis is that we simply compute burstiness
of the original and compressed traces, assuming that the arrival
process does not change. However, redundancy elimination may
impact TCP’s congestion control behavior which can change the
arrival process and result in different burstiness values, especially
at the smaller timescales. We plan to study this issue in more detail
by replaying the traces using TCP over a testbed and re-evaluating
the burstiness metric.

In conclusion, our temporal variability analysis presents a mixed
picture of the benefits of redundancy suppression. While the av-
erage savings of up to 60% are significant, peak savings can be
significantly lower than the average savings. We do find that the
95th-percentile savings is closer to mean savings, at least over cer-
tain time scales, which may be helpful in curtailing usage costs in
certain situations. Finally, the overall traffic burstiness is not sig-
nificantly reduced in the enterprise case, implying that redundancy
elimination is not too helpful in making traffic more predictable
or enabling more effective traffic engineering on enterprise access
links.

5.3 Redundancy in protocols
In Table 4, we show the redundancy that we observe in popular net-
work protocols that traverse the WAN access link in the university

Port # Protocol Univ-In-60s Univ-Out-60s
% of % redundancy % of % redundancy
bytes bytes

20 ftp-data 0.04 16.93 1.1 7.5
25 smtp 0.02 22.69 0.08 70.63
53 dns 0.22 21.39 0.14 47.99
80 possibly http 58.10 12.49 31.69 20.37
443 https 0.60 2.00 3.59 2.08
554 rtsp 3.38 1.99 1.34 24.40

Large Enterprise-In Large Enterprise-Out
445 SMB 45.46 21.40 45.44 17.18
80 HTTP 16.8 29.45 14.41 76.31
139 NetBios 2.88 7.98 0.8 36.52
389 LDAP 4.85 44.33 12.5 71.68
- Src Code Crtl 17.96 50.32 0.1 72.31

Table 4: Redundancy in key protocols

Trace Object-GZIP MAXP MAXP+GZIP+10ms
Univ-In-long 7.69 10.94 14.93
Univ-Out-long 10.1 20.52 23.75
Univ-Out/24 6.25 53.49 54.69
Large Enterprise 24.45 29.45 34.1

Table 5: Redundancy in HTTP traffic

and a large enterprise trace. For each protocol, we show the fraction
of total bytes that belong to the protocol, and the fraction of redun-
dancy in the protocol’s payload. Our observations here are different
from Spring et al. [26] in a few key ways. For example, Spring et al.
found HTTP traffic to be highly redundant (∼ 30% after excluding
web caching, ∼ 54% overall) and SMTP traffic to be modestly re-
dundant (∼ 20%). In contrast, we see that the redundancy in SMTP
traffic is much higher (70% in the outgoing trace), while the redun-
dancy in HTTP traffic is lower (16% and 32% in university and
enterprise traces, respectively, using weighted incoming+outgoing
bytes). The reduction in HTTP redundancy, as compared to the re-
sults reported in [26], is likely due to the increasing usage of port 80
for all types of traffic such as media streaming, games, etc. We also
note that 5% of all bytes belong to HTTPS and since the HTTPS
payload is encrypted, it shows minimal redundancy. Also, note the
mix of protocols in the enterprise trace is quite different from what
was observed in the enterprise traces in [26], where the top three
protocols were HTTP (64%), RTSP (7%) and Napster (3%).

The changing composition of protocols and also the evolution of
what comprises traffic over a well-known port such as port 80, ar-
gues for a protocol-independent redundancy elimination solution,
assuming it performs as well or better than alternative protocol-
specific solutions. We next focus on redundancy in HTTP and com-
pare protocol-independent redundancy elimination with object-level
compression and caching.

5.3.1 Redundancy in HTTP
In order to estimate the performance of HTTP with object-level
compression, we reverse engineer HTTP object-level compression
from the network-level traces. We first parse the network trace
to extract HTTP objects into separate files. We then apply gzip
compression on each of the objects and compare its compression
savings against the savings from redundancy elimination using the
MAXP algorithm. The results are shown in Table 5.

Note that the compression savings for GZIP represents an opti-
mistic scenario since many objects may be dynamically generated



or composed of latency sensitive parts and thus may not be amenable
to GZIP compression over the entire object. Even with this opti-
mistic assumption, we find that redundancy elimination delivers at-
least 5-10% additional savings in all the traces and results in signif-
icant out-performance (almost 50% additional savings) in the case
of university outgoing/24 trace (a popular web site), because of its
ability to exploit redundancy across traffic from different users.

Finally, we examined if HTTP object-level caching could help in
bandwidth savings. We found that many of the HTTP objects were
deemed non-cacheable and only about 5% bandwidth savings would
be accrued due to the deployment of a web proxy in the enterprise
trace.

Note that, the authors in [26] did not compare their approach against
HTTP object-level compression and while they compared against
web caching, the cacheable percentage in our case is lower. This
is likely due to a combination of higher percentage of dynamically
generated web pages and the advertising-related incentives for web
sites to serve pages directly to clients.

In conclusion, protocol-independent redundancy elimination is an
effective technique for suppressing redundancy and is not impacted
by the changing composition of the protocols that traverse the ac-
cess links of universities and enterprises. Furthermore, in the case
of HTTP, we found that redundancy elimination performs better
than both object-level compression and caching, thus diminishing
the need for deploying protocol-specific solutions.

6. MICROSCOPIC VIEW: UNDERSTAND-
ING REDUNDANCY

In this section, we perform in-depth empirical analyses to under-
stand various redundancy characteristics. Our goal is to leverage
these empirically observed properties to design effective redun-
dancy elimination techniques.

We first focus on the origins of redundancy: is the observed re-
dundancy mostly due to content common to different users or is it
mostly content from within each user’s protocol/traffic? We then
examine spatial characteristics of redundant chunks in order to an-
swer the following question: is most of the savings from full packet
matches or partial packet matches? More generally, what is the dis-
tribution of sizes of the identified redundant chunks? Next, we eval-
uate the temporal characteristics of redundant match: are matches
mostly from recent packets in the cache, or, more generally, what
is the temporal distribution of matches? Finally, we study the hit
characteristics of redundant chunks: is redundant suppression due
to a few popular chunks? Does chunk hits have zipf-like character-
istics that are seen in web page requests?

One important caveat to note with respect to redundancy character-
istics studied in this section: these characteristics are identified in
the context of packet-level redundancy elimination approaches, that
use caches limited by DRAM sizes (GBs) and history in the order
of minutes/hours; these results may not be applicable to file-level
redundancy elimination approaches such as [21, 22] that typically
store and index terabytes (days/months) of data (history).

6.1 Redundancy: Origins
Given that one of the major claims/advantages of middlebox-based
redundancy elimination devices is the ability to leverage redun-
dancy across traffic from different users and flows, it is important

Figure 7: Composition of Redundancy (intra/inter-flow/user)

to understand the composition of redundancy due to matches be-
tween traffic from different users. In general, given a four-tuple
of source/destination IP addresses and ports, it would be interest-
ing to know, for each match, how many of these four-tuples were
common between the current packet and the matched packet. For
example, if most of the savings are due to matches between packets
with the same source and destination IP addresses, a purely end-to-
end solution would suffice, obviating the need for middleboxes that
are being deployed today.

In this section, we quantify the contribution of matches to band-
width savings by dividing up the matches into the following five
classifications: (a) intraflow (match was from a packet with the
same four-tuple), b) interflow (match from same source-dest IP but
different ports), c) interdst (match from same source IP but differ-
ent destination IPs), d) intersrc (match from same destination IP but
different source IPs), and e) internode (match from different four-
tuples). In [26], since the clients in the traces were anonymized,
they were unable to correlate redundancy by four-tuples. They
found that redundant traffic is mostly (78%) from the same server
(interdst) and hypothesized that a server to proxy redundancy elim-
ination would be advantageous as compared to a pure end-to-end
solution.

Figure 7 presents the match origin classification for various enter-
prise (incoming-only) and university traces. Based on the figure,
we make the following observations. First, in the case of small
and medium enterprises, approximately 90% of savings are due
to intraflow and interflow matches (same source-dest IP), imply-
ing that a pure end-to-end solution would capture the vast major-
ity of the middle-box savings. In fact over 90% of the interflow
matches (not shown) also had the same source port number, in-
dicating that the flows are likely part of the same protocol. Sec-
ond, while the large enterprise does leverage traffic across differ-
ent users, it still has about 75% of savings due to matches from
flows with the same source-dest IP addresses. Third, in the case
of university traces, we see only 10-40% contribution to due in-
traflow/interflow with a large contribution due to interdst, espe-
cially in the case of the outgoing/24 trace, representative of a busy
web server. While we do see variations of these contributions in dif-
ferent traces (the enterprise results are averages over several days),
these results were generally not sensitive either to cache size used
for the redundancy elimination or to time of day, i.e., peak/lean



hour (results not shown).

In summary, the key takeaways are: 1) An end-to-end redundancy
elimination solution could provide approximately similar savings
as a middlebox in small/medium enterprises, and to an extent, large
enterprises too, obviating the need for deploying an expensive middlebox-
based solution. 2) A middlebox-based solution is more compelling
at access links to busy web servers.

6.2 Redundancy: Spatial view
In this section, we seek to understand if the contribution to the ob-
served redundancy comes mainly from full packet matches, or par-
tial packet matches. If the former is true, one can design simpler
techniques to index a packet than Spring et al’s proposal. For in-
stance, rather than store multiple fingerprints per packet, we can
store a single hash for the entire packet’s content. If the matches
are due to partial packet matches, understanding the match length
will help advise on the appropriate minimum match size parameter,
w, used by the redundancy elimination algorithms.

(a) Matches Distribution (b) Savings Contribution

(c) Matches Distribution (d) Savings Contribution

Figure 8: Match Len Distribution and contribution to total sav-
ings. (a) and (b) are for large Enterprise. (c) and (d) are for
University Inbound traces.
In Figure 8(a), we show the percent of matches for chunks of var-
ious sizes for a large enterprise. We see that over 70% of matches
are for chunks of size less than 150 bytes and less than 10% of
matches are from full 1500 byte packet matches. On the other
hand, Figure 8(b) shows the savings contribution of chunks by their
sizes and we see that nearly half of the savings are due to large,
full packet matches and with approximately 20% due to matches
of size less than 150 bytes Examining at an even finer granularity,
we found that approximately 4% of savings was due to 50 byte or
smaller matches (not shown).

Similar results are seen in the University trace as well. In Fig-
ure 8(c) for Univ-Incoming trace, we see that around 70% of the
matches are for chunks of size less than 150 bytes and full 1500

byte packet matches are less than 5% of the matches. Figure 8(d)
shows that less than quarter of the savings are due to large, full
packet matches.while 20 % of savings are due to matches of size
less than 150 bytes.

Thus, while full packet matches provide 20-50% in overall savings,
in order to get the maximum benefit of redundancy elimination, we
need to index the vast majority of small packet matches of size less
than 150 bytes.

6.3 Redundancy: Temporal view
In this section, we would like to understand the temporal locality
of matches, i.e., when a redundant chunk is matched between the
current packet and a packet in the cache, how far in the past is the
matched packet? We consider two temporal metrics: 1) time be-
tween current packet and matched packet and 2) time between the
final/most recent match and the first match for a given chunk. Lets
consider the first metric now. In order to have a normalized met-
ric that works both during peak and lean traffic periods, we use the
percent of cache size between the current packet and the matched
packet as the normalized temporal metric.

(a) Savings vs Match Time (b) Time between matches

Figure 9: Redundancy: Temporal Characteristics

In Figure 9(a), we plot the redundancy match contribution to overall
savings as a percentage vs the recency of match (computed as a
percentage of cache size). We use a default cache size of 250MB.
The curves rise steeply for all the traces with 60-80% of the savings
due to matches with packets in the recentmost 10% of the cache.
This characteristic implies that a) adding packets to the cache in
a FIFO manner and evicting the oldest packet is a good strategy
and b) small cache sizes can provide bulk of the savings of a large
cache.

Let us now consider time difference between the final time a spe-
cific chunk was matched and the first time the same chunk was
matched. This metric capture the duration a chunk is useful. Note
that the time difference can be much larger than the holding time of
the cache since popular chunks can recur throughout the trace and
the time difference can be as large as the trace length (24 hours).
In Figure 9(b), we plot the CDF of the time difference in log scale
between the final and first matches of each unique chunk. Note that
for 60% of the chunks, the time difference is less than 100 seconds
and for approximately 80% of the chunks, the time difference is
less than 1000 seconds. This again highlights the high degree of



temporal locality of matches that a small cache would be able to
accommodate.

(a) Enterprise (b) University

Figure 10: Redundancy vs Cache Size
Figure 10 plots the savings versus cache size for the enterprise and
university traces, respectively. We can see that small cache sizes
do indeed provide significant percentage of the savings, with the
“knee” of the savings curve between 100-250MB.

6.4 Redundancy: Hit Distribution
We now examine if the redundancy in network traffic is primarily
due to a few pieces of content repeated multiple times or multi-
ple pieces of content repeated a few times each. If the former is
true, then a small packet store would suffice to identify a signifi-
cant fraction of the redundancy. If the latter is true we may have to
store many more chunks of data in a much larger packet store.

More generally, we would like to understand the distribution of
frequency of unique chunk matches. Given that researchers have
shown that web page access frequency exhibits a zipf-like distri-
bution [14], it would be interesting to see if the same phenonmena
also holds for chunk matches. Zipf-like distributions will have rela-
tive probability of a hit for the ith most popular chunk proportional
to iα for some α close to −1.

 1

 100

 10000

 1e+06

 1  100  10000  1e+06

Ch
un

k H
its

Chunk Ranking

large enterprise
zipf fit, slope=-0.97

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  10  20  30  40  50  60  70  80  90 100

Co
ntr

ibu
tio

n t
o S

av
ing

s (
%)

Chunk Ranking (%)

large enterprise

(a) Chunk matches (b) Match contribution

Figure 11: Chunkmatch Distribution and their contribution to
total savings
In order to answer this question, we keep track of each matched
chunk and count how many times the identical chunk is matched
in the entire trace. In Figure 11(a), we plot the frequency of chunk
hits versus the chunk rank, sorted by the number of hits, in a log-
log scale for a large enterprise trace. The linear distribution in the

Counts Length Protocol description
268K 128 various string of zeros
30K 42 SMB content fragment
28K 68 HTTP content fragment
24K 50 SMB content fragment
21K 8 Kerberos full packet

Table 6: Characteristics of popular chunks

log-log plot confirms the zipf-like nature of the chunk hits. We also
fit a zipf-distribution for the bulk of the data points, ignoring the
top 100 chunks and chunks with exactly 1 hit, and find that the best
fit results in α = −0.97 (a fit over all the data points results in
α = −0.9). Similar zipf-like characteristics are also seen in other
traces (not shown).

Figure 11(b) shows the contribution of the chunk hits to the band-
width savings versus the percentage of chunks sorted by their con-
tribution. It is clear from the figure that about 80% of savings come
from 20% of the chunks. On the other hand, in order to obtain the
remainder 20% of savings, we need to retain 80% of the chunks.
This implies that a small cache should be able to capture bulk of the
savings but capturing the full savings would require a large amount
of cache. The zipf-like chunk hit distribution thus explains the di-
minishing returns of the large cache size seen in Figure 10(b).

Table 6 lists some of the characteristics of popular chunks in the
enterprise trace. Most of these chunks are less than 150 bytes long
and are content fragments of a packet except for one chunk of 8
bytes that represents a full packet. The small chunk sizes seen mo-
tivate the need for using a small minimum match size parameter,
w.

7. FINDINGS AND IMPLICATIONS
Protocol-independent redundancy elimination techniques have be-
come increasingly popular in recent years and are poised to play an
important role in the current and future Internet architecture. Our
goal in this paper was to conduct an in-depth measurement-based
study of the fundamental issues pertaining to the benefits, trade-offs
and design issues underlying these techniques.

In this section, we summarize our empirical findings and iden-
tify important implications on the design and usage of redundancy
elimination and the role it can play in network infrastructure and
protocols.
• Protocol composition: Protocol composition over the access
link has changed significantly since the work by [26]. Specif-
ically, enterprise traffic (25-70%) has significant amount of file
access traffic (SMB, NetBios, etc.) due to the likely shift in en-
terprise management approach towards use of centralized servers
in data centers. The changing composition of protocols over
time makes a strong argument for the sustained relevance of
protocol-independent redundancy elimination techniques.

• Algorithm: While network traffic redundancy suppression pro-
posals [12, 26] rely on the on a fingerprint selection algorithm,
termed MODP in this paper, we find that an algorithm that en-
sures more uniform selection of fingerprints using a local prop-
erty such as local-maxima , termed MAXP, outperforms MODP
by 5-10% on most traces and as much as 35% in some traces.

• Packet-level compression: We find that packet-level compres-
sion can be effectively applied after redundancy suppression, de-
livering incremental gains of up to 26%.



• Object-level compression: Protocol-independent redundancy
elimination outperformed both HTTP object-level compression
as well as caching, with significant outperformance in the case
of the University /24 trace.

• Temporal variability:Wefind that redundancy elimination does
not reduce traffic variability commensurately. While 95th-percentile
savings deliver close to average savings over some time inter-
vals, peak savings are generally lower than average savings in
many of the traces. The burstiness of traffic, as measured by the
energy metric derived using wavelet-based multiresolution anal-
ysis, is typically not commensurately lower due to redundancy
elimination.

• Origins: In the enterprise traces, we found that 75-90% of sav-
ings were due to intra-user matches between packets that had
the same source and destination IP addresses. This argues for a
pure end-to-end redundancy elimination solution, obviating the
need for the deployment of middleboxes in most enterprises. On
the other hand, based on our university traces, we found that
a middlebox solution is beneficial in busy web server settings
where significant portion of redundancy is due to inter-user traf-
fic matches.

• Spatial view: We find that most matches (70%) are small in size
(less than 150 bytes) while only about 10% of matches are full-
packet matches. In terms of contribution to savings, full packet
matches contribute to (25-50%) of total savings while packets of
size less than 150 (50) bytes contribute to about 20% (4%) of the
savings. Thus, simple techniques like indexing only full packets
can provide up to half of the total savings, while capturing the
full savings involves a significant amount of indexing of small
packet fragments.

• Temporal view: We find that most matches are from recent
packets in the cache. Thus, a FIFO-based approach for storing
packets in the cache would work well.

• Match Distribution: We find that the chunk match hit follows
a zipf-like distribution, with a few chunks that extract a large
number of hits and vast majority of chunks with one or two hits.
This implies that smaller caches can provide bulk of the gains of
redundancy elimination and increasing cache size would provide
diminishing returns in terms of bandwidth savings.

8. CONCLUSION
Following the work of Spring et al. in 2000, a slew of commercial
WAN optimization middleboxes have emerged which attempt to
improve network link performance by suppressing repeated strings
of bytes in network packets. Today, there are many deployments
of these protocol-independent redundancy elimination techniques
at enterprise and data center access links and across congested ISP
links. Based on the perceived benefits of these techniques, recent
efforts have argued for integrating redundancy elimination into net-
work infrastructure and protocols [12, 19, 16].

Despite the increasingly important role of redundancy elimination
in the network infrastructure, very little is known about the range
of benefits and trade-offs these approaches offer today, and the fun-
damental issues underlying their design. Using packet traces col-
lected at twelve distinct network vantage points, we showed that
packet-level redundancy elimination techniques can deliver average
bandwidth savings of 15-60% for enterprise and university access
links as well as the links connecting busy web servers. However,
in the case of enterprise traffic we found that the overall burstiness
of traffic was not significantly reduced and the savings during peak
traffic periods was variable.

We found several interesting characteristics of redundancy in net-
work traffic, summarized in the previous section. One surpris-
ing implication of our findings was that a client-server redundancy
elimination solution could provide approximately similar savings
as a middlebox in small/medium, and to an extent, large enterprises,
obviating the need for deploying an expensive middlebox-based re-
dundancy elimination solution. Designing such an end-to-end re-
dundancy elimination system that is scalable and efficient is a topic
for future work.

9. REFERENCES
[1] Citrix, application delivery infrastructure. http://www.citrix.com/.
[2] Computerworld - WAN optimization continues growth.

www.computerworld.com.au/index.php/id;1174462047;fp;
16;fpid;0/.

[3] F5 Networks: WAN Delivery Products. http://www.f5.com/.
[4] Netequalizer Bandwidth Shaper. http://www.netequalizer.com/.
[5] Packeteer WAN optimization solutions. http://www.packeteer.com/.
[6] PeerApp: P2P and Media Caching. http://www.peerapp.com.
[7] Peribit Networks (Acquired by Juniper in 2005): WAN Optimization Solution.

http://www.juniper.net/.
[8] Riverbed Networks: WAN Optimization.

http://www.riverbed.com/solutions/optimize/.
[9] WAN optimization revenues grow 16% - IT Facts. www.itfacts.biz/

wan-optimization-market-to-grow-16/1205/.
[10] WAN Optimization: Wikipedia entry.

http://en.wikipedia.org/wiki/WAN_Optimization.
[11] P. Abry and D. Veitch. Wavelet analysis of long-range dependent traffic. IEEE

Transactions on Information Theory, 44(1):2–15, Jan 1998.
[12] A. Anand, A. Gupta, A. Akella, S. Seshan, and S. Shenker. Packet Caches on

Routers: The Implications of Universal Redundant Traffic Elimination. In ACM
SIGCOMM, Seattle, WA, Aug. 2008.

[13] N. Bjorner, A. Blass, and Y. Gurevich. Content-Dependent Chunking for
Differential Compression, the Local Maximum Approach. Technical Report
109, Microsoft Research, July 2007.

[14] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web caching and
zipf-like distributions: Evidence and implications. In IEEE Infocom, 1999.

[15] M. Burrows and D. J. Wheeler. A block-sorting lossless data compression
algorithm. Technical report, Digital SRC Research Report, 1994.

[16] F. Dogar, A. Phanishayee, H. Pucha, O. Ruwase, and D. Andersen. Ditto - A
System for Opportunistic Caching in Multi-hop Wireless Mesh Networks. In
Proc. ACM Mobicom, San Francisco, CA, Sept. 2008.

[17] L. Fan, P. Cao, J. Almeida, and A. Z. Broder. Summary cache: a scalable
wide-area web cache sharing protocol. In SIGCOMM ’98, 1998.

[18] D. Goldenberg, L. Qiu, H. Xie, Y. Yang, and Y. Zhang. Optimizing cost and
performance for multihoming. In ACM SIGCOMM, 2004.

[19] X. Li, D. Salyers, and A. Striegel. Improving packet caching scalability through
the concept of an explicit end of data marker. In HotWeb, 2006.

[20] U. Manber. Finding similar files in a large file system. In USENIX Winter
Technical Conference, 1994.

[21] A. Muthitacharoen, B. Chen, and D. Mazières. A low-bandwidth network file
system. SIGOPS Oper. Syst. Rev., 35(5), 2001.

[22] H. Pucha, D. G. Andersen, and M. Kaminsky. Exploiting similarity for
multi-source downloads using file handprints. In Proc. 4th USENIX NSDI,
Cambridge, MA, Apr. 2007.

[23] M. Rabin. Fingerprinting by random polynomials. Technical report, Harvard
University, 1981. Technical Report, TR-15-81.

[24] RouteScience Technologies, Inc. Routescience PathControl.
http://www.routescience.com/products.

[25] S. Schleimer, D. Wilkerson, and A. Aiken. Winnowing: Local algorithms for
document fingerprinting. In SIGMOD, 2003.

[26] N. T. Spring and D. Wetherall. A protocol-independent technique for
eliminating redundant network traffic. In SIGCOMM, pages 87–95, 2000.

[27] Squid Web Proxy Cache. http://www.squid-cache.org/.
[28] A. Wolman et al. On the scale and performance of cooperative Web proxy

caching. In ACM Symposium on Operating Systems Principles, 1999.
[29] A. Wolman et al. Organization-based Analysis of Web-Object Sharing and

Caching. In Proceedings of the 2nd USITS, Oct 1999.
[30] J. Ziv and A. Lempel. A universal algorithm for sequential data compression.

Information Theory, IEEE Transactions on, 23(3):337–343, 1977.


