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Abstract

Computer system traces, defined as records of hardware or software events during
system operations, are essential for understanding the behavior of complex systems
and managing resources. However, obtaining real-world traces can be challenging
due to the significant collection overheads in performance and privacy concerns that
arise in proprietary systems. As a result, synthetic trace generation is considered
a promising alternative to real-world traces. This paper proposes to train a large
language model (LLM) to generate synthetic computer system traces, specifically
microservice call graphs. To capture hierarchical structures and implicit constraints
in traces, we fine-tune LLMs to generate each layer recursively, making call graph
generation a sequence of easier steps. To allow the simulation of uncommon
situations and further enforce learning constraints in traces, we apply additional
instruction tuning steps to align our model with the desired trace features. Our
evaluation results show that our model can generate diverse traces under various
conditions and outperform existing methods in accuracy and validity. We also
demonstrate the utility of our model with two downstream tasks that predict trace
features and infill missing data for given partial traces.

1 Introduction

Computer system traces, which document hardware or software events during operations, are vital
for analyzing complex systems and optimizing resource management. However, obtaining real-world
traces is often hindered by privacy concerns and their general unavailability. As an alternative,
synthetic traces provide limitless size and variety, offering significant advantages for testing and
analysis, including the ability to simulate challenging conditions like stress-testing environments.
While recent advances in generative machine learning, including LSTMs [35], GANs [7], and
diffusion models [9} [38]], have facilitated the creation of realistic synthetic traces, these methods
typically generate only specific fields, such as request numbers or resource types [2]], or are restricted
to certain lengths, like network packets [[14}48].

We argue for the use of Large Language Models (LLMs), transformer-based [41] neural networks
pre-trained autoregressively on large and diverse text datasets [4,[39]], to generate synthetic traces.
It has been shown that LL.Ms can be readily adapted to model a variety of domains besides natural
language, such as protein sequences [34], code [32], and tabular data [3]. LLMs can produce outputs
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Figure 1: A simple social network application consists of eight microservices [12]]. Each user request triggers
a sequence of microservice calls, forming a microservice call graph. The red lines represent the microservice
call graph for a user request. Microservice call graphs are commonly logged in a tabular format, as shown in
the figure on the right. Each row in the table represents a communication between two microservices, with the
details of the communication logged as features in the columns.

that are well-aligned with user inputs in several flexible ways such as fine-tuning model weights
[28}143], and can generalize to new user inputs at inference [3,|33[]. Thus, LLMs have the potential to
generate synthetic traces that accurately model the structure of traces while following user prompts.

Despite their potential, using LLMs for synthetic trace generation presents significant challenges.
Traces are often logged in a tabular format and follow an underlying data structure such as a graph,
meaning it is non-trivial to represent valid traces as text sequences, which is the format best suitable
for modern autoregressive LLMs. Moreover, there are often implicit constraints in trace data that
rely on relationships between multiple trace features. For example, a software application’s start
time must be earlier than the start time of all the child processes it spawns; similarly, the parent
application’s end time must be later than the end time of its children.

In this paper, we show how general-purpose LLMs can be adapted to generate synthetic system traces.
We focus specifically on microservice call graphs, a special class of trace with a directed acyclic
graph (DAG) structure. One of our key innovations is to generate complete call graphs by recursively
generating subgraphs, or layers. This approach allows the model to break down the complex task of
reasoning about hierarchical graph structures and constraints into multiple easier tasks. We pre-train
our model with the next token prediction on call graphs, then perform supervised fine-tuning to
align the model output with user-requested attributes. During fine-tuning, we train the model to
explicitly generate a series of intermediate reasoning steps. These steps appear between recursive
layer generation calls and make the model perform simple arithmetic and logical calculations to check
its own progress, improving the model’s ability to adhere to structural and user-defined constraints.

We demonstrate the effectiveness of our approach by fine-tuning Llama-2 7B [39] with our method
on microservice trace data and performing a series of evaluations. Our results demonstrate that the
proposed recursive generation and intermediate reasoning steps improve the LLM’s ability to produce
valid outputs for both complex (i.e., deep and wide) and simple call graph structures. When compared
to traces from a learned generative model baseline and a probabilistic model handcrafted by an expert,
synthetic traces produced by our model more closely match the distribution of real traces. We further
show that our fine-tuned model performs well when used for real-world downstream tasks.

We summarize our key contributions below:

e We introduce a novel method for using LLMs to create valid synthetic microservice traces. To
ensure that the complex structural constraints of valid call graphs are respected, we recursively
generate layers of subgraphs along with instructions for subsequent layers. We also train the LLM
to describe the generated layers with intermediate instructions.

e We show that recursive generation and intermediate instructions improve the validity of synthetic
traces. Also, synthetic traces generated by our model are more realistic regarding distribution
similarities than those from a baseline generative model and a handcrafted expert model.

e Our model can generalize to unseen combinations of user-requested attributes at inference. Also,
our model can be further trained to perform key downstream tasks such as infilling missing data.

2 Background

Microservice Call Graphs. In modern software architecture, an application is typically constructed
as a constellation of multiple microservices [6, 25 [12], each with specific functionalities and de-
pendencies on one another. When users interact with these applications, for instance, by sending



HTTP requests to web servers, a complex sequence of communications among these microservices is
triggered. Thus, a user request induces a microservice call graph, which maps the control/data flow
and dependencies among the microservices involved in fulfilling the user’s request.

is an example of a social network application deployed with several microservices (8 in
total). In the figure, the red arrows indicate communications between microservices involved in
processing the user’s request; these form a microservice call graph with four microservices. The
vertices of the graph correspond to microservices (or the client), while the edges correspond to API
calls invoking the microservices. Each edge originates at the requesting microservice and terminates
at the target microservice. Note that some edges are not part of the call graph as the corresponding
microservices are not invoked in processing this particular request.

Each call graph can be represented as a tabular log trace with a textual description of the features of
each API call (i.e., edges), including the source and destination of the request, type of request (e.g.,
HTTP and RPC), and start/finish time. As call graphs have a hierarchical structure, microservices
should appear in a specific order to maintain the parent-child relationships. Moreover, the start and
end times of each call should be consistent with each other: (1) the start time of a microservice should
be smaller than the finish time, and (2) the parent-child relationships should be honored, i.e., the
parent’s start time should be smaller than child’s, and parent’s finish time should be larger than the
child’s. The IDs within a call graph (dot-decimal numbers provided for each call) should also be
hierarchically connected to form a DAG structure.

Synthetic Trace Generation using Machine Learning. Microservice traces encapsulate the
interaction dynamics of all services running on a given cluster of machines over a period, so the
analysis of the traces plays a pivotal role in improving the performance and reliability of services.
Representative use cases include critical path analysis [S0], anomaly detection [45], root cause
analysis [[13]], and cluster management optimization [31} 26]. Unfortunately, access to such traces
remains challenging due to business and privacy concerns.

Given the importance and limited availability of public computer system traces, including microser-
vice traces, several recent studies have explored generative models for synthetic trace generation.
[20L 48l 14] leverage GAN [7] and diffusion [9, 38] models to generate network packet traces,
while [2]] uses LSTMs [35] to generate virtual machine workloads. Even though the generative
models have shown effectiveness in each domain, the methods can be used only for predicting specific
fields or generating fixed-length traces. These methods do not apply to generating microservice call
graphs because they cannot handle the variable lengths and hierarchical structures of the call graphs.

3 Problem Formulation

Our goal is to train a generative model to generate synthetic microservice traces, specifically call
graphs. We want to allow end-users to simulate various scenarios by conditioning the model’s output
on user-requested attributes. Given the limitations of existing trace generation approaches, we turn
to LLMs, which are transformer-based [41] models with billions of parameters. We initialize our
model from a general-purpose LLM pre-trained on a large and diverse text dataset, as these models
have shown effectiveness when adapted for specialized domains such as proteins [34], code [32], and
tabular data [3]]. LLMs accept variable-length inputs and can be conditioned in a variety of arbitrary
manners, including natural language prompting [28]] and structured input sequences [3|.

Given a dataset of call graphs {X1,Xao,..., Xy}, we want to learn the distribution p(X) of the
nodes and edges within call graphs. Pre-trained LLMs expect sequences of text as input, which the
model’s tokenizer 7'(-) decomposes as a sequence [s1, S2, . . . , ¢|, where s; is a discrete token from
a fixed vocabulary V and sequence length ¢ can vary between inputs. Therefore, we need to encode
each call graph X into a text-based representation t. Our objective is to learn p(t) with our model,
which is equivalent to learning p(X) given that we can recover a call graph from its text encoding.

Throughout this paper, we treat autoregressive language models, which factorize p(t) as the product

of conditional probabilities over token sequence T'(t) = [s1, S2, .. ., S¢]:
¢
p(t): Hp(3k|81,82,...75k71). (1)
k=1



The model is trained to predict the next token given the sequence of preceding tokens. To generate
call graphs based on user input, we condition the model distribution:

£

p(tlc) = H P(Skls1, 82,y Sk—1,57,8%, -, 5p). 2)
k=1
Here, c is an additional text-based prompt from the user, tokenized as T'(c) = [s{, 55, . - . , 55| where

s5 is a token from the same fixed vocabulary V.

4 Method

This section presents our approach for training LLMs to generate microservice call graphs. First, we
describe how we encode call graphs, stored as tabular data, into a text format that can be tokenized
and processed by the LLM. Then, we detail a novel approach to improve the model’s generation of
complex call graph structures. We decompose the generation task into multiple subgraph generation
tasks and train the model to recursively generate subgraph instructions to condition its own output.
Finally, we give an overview of our two-stage training process, which consists of pre-training to learn
the data distribution, followed by instruction fine-tuning to improve user-controlled generation.

4.1 Encoding Call Graphs as Text

Before training our language model, call graphs must be encoded into text-based representations. As
detailed in[§2]and shown in microservice call graphs are initially in a tabular format, with
rows representing communications between microservices and columns detailing features for each
edge. Our encoding process is meticulously designed to preserve the integrity of the call graph’s
structure and the specific constraints dictated by edge features, following the method described by
[3]. This method involves representing features in a natural language format, which leverages the
LLM’s pre-training on diverse datasets and requires minimal preprocessing. Additionally, we encode
attributes of the overall call graph to serve as conditioning information for the model.

Edge Features. Tabular call graph X has m columns of features with textual names { f1, f2, ..., fm}
and n rows of edges {x1,X2,...,X,}. We denote the value of feature j € {1,...,m} for
edge i € {1,...,n} as v;;. We encode each edge x; as a text sequence t; = [ti1,ti2,...,tim),
where t;; is a description of the j-th feature with the format t;; = [¢(f;),vi;]. Here, ¢(f)

encodes feature name f into a text template with a subject-predicate structure to provide a nat-
ural language description of feature value v;;. For instance, the encoding for edge 1 in
would be [Edge ID is 0, Source is Client, Destination is Front end, Type
is HTTP, Communication starts at O ms, Communication finishes at 24 ms]. We
encode tabular call graph X to the equivalent text-based representation t = [t1, to, ..., t,], formed
as a sequence of the text-encoded edges t;. We note that the structure and constraints of the call
graph only depend on the feature values and are invariant to the specific feature order. Therefore,
during training, we randomly shuffle the order of the features within each edge as in [3]] to remove
any spurious associations that arise from position information.

Call Graph Attributes. Apart from individual edges, the overall call graph can also be described by
attributes, including the maximum depth, the total number of edges, and the total communication
latency. These attributes are useful for summarizing the complex interactions between edges, and can
be fed to the model as a prompt (e.g., by an end-user) to condition call graph generation. Let call

graph X have r attributes with names {a1, as, . .., a,} and corresponding values {wy, ws, ..., w, }.
We encode the attributes as a text sequence ¢ = [c1, 2, . . ., ¢;|, where ¢; is a description of the j-th
attribute with the format ¢; = [a;, “ : 7, w;]. See the Conditions shown in red in [Figure 2|for a

simplified example of text-encoded call graph attributes. Similar to the edge features, we randomly
shuffle graph attributes during training. We additionally drop each attribute independently with
probability pg,..p to allow flexible prompting with arbitrary subsets of attributes.

4.2 Recursive Generation

To handle complex structures, we propose to break down the task of generating a call graph based
on a prompt into a series of recursive layer generation tasks. Starting from the initial prompt c, the
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Figure 2: Overview of the recursive generation method with a simplified example. Layer 2 uses conditions (e.g.,
source node, caller, the number of edges) generated by Layer I. Using the conditions, the model generates two
edges in Layer 2 with destinations to Authentication and Feed respectively, and next layer conditions starting
from the Feed microservice. The recursion continues until all the edges in Layer 3 are generated.

task for each layer is to generate the edges originating from the Start Node specified in the prompt.
We also generate a new prompt for the next layer based on the previous layer prompt and the edges
generated in the current layer. This new prompt is then re-used to condition the model’s output for
the next layer. The recursive process continues until the requested attributes c are satisfied.

Formally, for an encoded call graph t = [t;, ta,. .., t,], we partition the edges t; into a sequence of
layers [t!',t2,...,t!], where | < n. Each layer is comprised of a sequence of edges that share the
same parent (i.e., source) node, and no two edges are shared by layers. For call graph conditions ¢
that describe t, we introduce layer conditions ¢/, j € {1,2,...,] + 1}. Layer condition ¢/ encodes
the attributes of the remaining portion of the call graph after the sequence of layers [t!,t2, ... t/}]
has been generated, and we define ¢! := ¢ and c/*! := (). We decompose the conditional call graph
distribution as a chain of conditional layer distributions:

l

H M "), 3)

In other words, the model predicts call graphs from user prompts iteratively layer-by-layer. For layer
k the model takes conditions c¥ as input and produces the sequence of edges t* followed by the
conditions c¥*! of the next layer. The model-generated conditions c**! are then re-used as inputs to
predict the next layer, k + 1. [Figure 2]illustrates an example of a recursively generated call graph.

Intermediate Instructions. We find that the model often has trouble generating consistent and
correct next layer conditions ¢! based on the current layer edges t* and conditions c*. For instance,
the conditions will violate physical constraints by requesting a layer that has higher latency than
the overall call graph. Inspired by recent work demonstrating that LLM ability improves when
explicitly forced to reason step-by-step [44}27], we propose including a series of natural language
reasoning steps that reinforce the model’s ability to adhere to constraints. For example, we include a
step-by-step calculation to find the number of remaining edges based on the Num Edges attribute in
c* and the number of edges generated in t*. We include these intermediate instructions immediately
before the next layer conditions c**'. We give an example of these reasoning steps in

4.3 Training

Pre-Training. We pre-train the model on text-encoded call graphs using next-token prediction. The
purpose of this stage is to adapt the general-purpose LLM, which was previously trained to model
text sequences mostly consisting of natural language, to the more specialized domain of microservice
call graphs. We follow the recursive scheme outlined in[§4.2] leaving out intermediate instructions to
focus mainly on modeling call graph structure. The model learns to generate the layer conditions ¢/
followed by the layer edges t’/ sequentially layer-by-layer for each training sample. A pre-training
example is shown in[§A.3]
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Figure 3: Call graph generation accuracy with varying (a) edges and (b) depth in prompt using greedy sampling.
(c) shows the accuracy with varying temperature parameters. Accuracy measures the fraction of generated
traces that are valid and follow the initial instructions. As shown, both recursive generation and intermediate
instructions help to increase the validity of the synthetic traces.

Instruction Tuning. We perform supervised fine-tuning after pre-training to improve the model’s
ability to generate call graphs following user instructions. We again follow the recursive scheme from
[§4.2] this time including the intermediate instructions. Different from pre-training, the model does
not predict the initial call graph attributes c (equivalent to the first layer conditions c'), which are
now treated as a fixed prompt. The user can supply additional natural language instructions for the
model, and in[§5.3] we provide results for two types of additional instruction. We further supplement
the instructions with additional prompts, which can be programmatically generated from a template
based on the user-requested attributes, to aid the model reasoning’s abilities, as detailed in@}

5 Evaluation

We evaluate our synthetic trace generation method across four dimensions: structured reasoning,
distribution similarity, instruction-following capabilities, and downstream task performance. We
initialize our model from Llama-2 7B [39] and train with LoRA [10] on 1.36 million microservice
call graph samples from the Alibaba v2022 dataset [25], corresponding to 1.1B tokens. We reserve
10% of these samples for validation. Instruction tuning datasets were created by randomly selecting
5% of the training graphs, reformatted for instruction tuning. The training lasted four epochs, using a
temperature of 0.8 and top-K of 50 for trace generation, unless otherwise specified. Further details on

data preprocessing and training hyperparameters are provided in

5.1 Structured Reasoning with Recursive Generation

This experiment demonstrates how recursive generation enhances LLMs’ ability to accurately con-
struct microservice call graphs. We evaluate the model by generating traces with specified num_edges
and depth, comparing these to their corresponding requested values. A trace is deemed accurate if
it correctly matches the specified num_edges and depth and adheres to all structural constraints,
such as valid DAG formations and appropriate start/finish times for communications, detailed in
We conducted 50 generations for each (num_edges, depth) pair across ranges of 1 <
num_edges < 30 and 1 < depth < 6, assessing the accuracy of our model against the baseline.

Baseline. We compare the recursive generation method with a Llama-2 7B model fine-tuned on the
tabular data format [3]] of call graph traces. At the beginning of each training sample, we include
num_edges and depth so that we can specify the desired configuration to the model. We keep the
same training environments along with the number of training tokens. During generation, the baseline
generates all the edges of a call graph in one sequence for each instruction.

Results. [Figure 3a] and [Figure 3b| present the accuracy of call graph generations across varying
numbers of edges and depths. Generally, as complexity increases (i.e., more edges or greater depth),
the baseline model’s accuracy decreases significantly—dropping below 25% for edges greater than 15
and nearing zero for depths above four. In contrast, the recursive generation model maintains higher
accuracies, approximately 30% and 35%, respectively. This improved performance is attributed to
the model breaking down complex generation tasks into simpler, more manageable sub-tasks.

illustrates how accuracy varies with the temperature parameter during decoding. Both
models show decreased performance as the temperature increases, but the recursive model consistently
outperforms the baseline, maintaining about 10% higher accuracy even at a temperature of 1.
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Further, instruction tuning enhances model accuracy—from 23% to 36%—by directing the model to
adhere to specific generation instructions, such as the number of edges per layer, which are outlined
in[§A73] Notably, removing the intermediate instructions during instruction tuning results in an
approximate 13% decrease in accuracy across all temperatures, as shown in

5.2 Similarity between Real and Synthetic Traces

To evaluate the quality of synthetic traces, we compare similarities between real traces from the
training dataset and synthetic ones. We generate SOK call graph traces using prompts generated by
the validation datasets and compare to the call graphs in the validation dataset.

Baselines. We compare the following synthetic trace generation methods:

e Probabilistic model: Probabilistic model based microservice call graph generators by Al-
ibaba [24]]. The model is designed to follow the random distribution of different statistics, such as
communication types and the number of children per depth, and does not generate any time-related
fields (e.g., communication finish time).

e TVAE [46]: Tabular data generative model using VAE [7]. We choose TVAE as a baseline since
the model typically performs better in generating tabular data than other GAN [[7] models as shown
in [3]]. Since tabular data cannot be used to generate traces, we use the baseline only to compare
distributions of generated edge attributes. Also, to limit the training data size, we randomly choose
100k training samples from the trace dataset and use SDV [30] to train.

We omit similarity comparison results of the baseline from[§5.1]since it shows similar results with
our method as both use the same LLM architecture to learn distributions of call graph attributes.

Distribution of Popular Calls. Realistic synthetic traces should mirror real-world communication
patterns. To assess this, we analyze the distribution of calls, defined by the attributes (Source,
Destination, Communication type). illustrates the distributions of the 100 most
popular calls generated by our method and the baselines, limited to the top 30 due to space constraints.

The KL divergence for traces generated by our model is 0.16, indicating close similarity to the
training data, whereas the probabilistic model’s divergence is significantly higher at 3.84, due to its
random selection processes. TVAE shows an intermediate divergence of 0.74, which is better than
the probabilistic model but still less accurate than our method in capturing popular call distributions.

Heavy-hitter Prediction. The capability to generate heavy-hitter microservices—defined as top-K
microservices triggered in a sequence of call graphs—is critical for tasks such as resource optimization
and anomaly detection in microservice management. In this experiment, we select 1K traces from the
validation dataset and create instructions consisting of a service ID and call graph attributes such as
depth and the number of edges. These instructions guide the synthetic trace generation for both the
baseline and our models. We evaluate the accuracy by comparing the top- K microservices between
the synthetic and validation traces over 20 runs.

illustrates the accuracy for varying K values, ranging from 10 to 500. Our method
demonstrates robust performance, maintaining over 90% accuracy for K < 50 and 65% at K=500.
In contrast, the probabilistic model starts at 59% accuracy for K=10 and declines to 23% at K=500,
showcasing our method’s capability to capture and replicate heavy-hitter dynamics in synthetic traces.



Table 1: Instruction-following accuracy (%). Table 2: Downstream task accuracy (%).

Prompt Type  w/inst.  w/o inst. Task Llama-27B  Ours

High latency 66.9 20.2 _ Prediction 60.6 76.8

Uncommon communication 82.2 30.2 Infilling an attribute 41.0 70.9
Combined 59.3 40.3 Infilling an edge 24.3 66.2

5.3 Instruction-following Capability

Enabling users to specify desired characteristics of synthetic data is crucial for trace generators. We
assess our instruction-tuned model’s capacity to reflect user-requested attributes in the generated
traces accurately. We evaluate the model’s ability to produce call graphs featuring specific attributes
(high latency and uncommon communications). Additionally, we explore the model’s performance
when prompted with a combination of these attributes not present in the training data.

When constructing the instruction tuning training datasets, we embed specific instructions to guide
the generation of call graphs:

e High Latency: Instructions specify that call graphs should exhibit latencies above the 90th
percentile (p90) of the training dataset’s latency distribution, which varies by service. For example,
the instruction might read: Build a call graph with high latency.

e Uncommon Communications: Instructions indicate that the call graph layer should include
a communication occurring in less than 10% of the training data. An instruction example is:
Include an edge from (SRC) to (DEST) with (TYPE) communication type.

We intentionally avoid combining these specific instructions in training samples to test the model’s
response to novel instruction combinations during inference.

Results. presents the instruction-following accuracy for high latency and uncommon
communication. We assessed this by filtering 1K validation instructions to see how many generated
call graphs met the defined criteria (e.g., exceeding p90 latency). We also compared these results
against outputs generated without specific instructions to evaluate the impact of tailored prompts on
model performance.

Additionally, we examine the model’s performance when both instructions are combined in prompts, a
scenario not covered in the training data. The model’s ability to satisfy both conditions simultaneously,
despite not being explicitly trained to do so, is detailed in the last row of Higher accuracy in
scenarios without specific instructions often results from inherent biases in attributes like service ID
or the number of edges, which may align with the desired user outcomes.

5.4 Downstream Tasks

We extend our evaluation beyond generating synthetic traces, demonstrating the utility of our model
in performing downstream tasks related to microservice traces. We focus on scenarios where partial
information from distributed environment traces is available, emphasizing the challenges posed by
incomplete data. This section compares our fine-tuned model with the standard Llama-2 7B, which
lacks specific training on call graph data, to highlight the importance of domain-specific training.

Predicting Uncommon Communication Patterns. A key task is predicting uncommon communica-
tion patterns based on the first 10 lines of a trace. We train the original Llama model and our adapted
model for this binary classification task on 15K samples. Each sample’s prompt comprised the first
10 edges of a real trace, with binary labels indicating the presence of uncommon communication
patterns in the subsequent trace sections.

Results, detailed in the first row of indicate that the original Llama model achieves only
60.6% accuracy, suggesting insufficient training for recognizing uncommon patterns. In contrast, our
model achieves 76.8% accuracy, demonstrating its enhanced capability to interpret and predict based
on partial trace data.

Infilling Missing Data. Missing data is common in large-scale trace logging, such as in Alibaba’s
microservice call graphs, where 67% of traces contain missing values [11]]. This task focuses on
fine-tuning our model to accurately infill missing data in microservice call graphs, considering partial



information. Specifically, we conduct two separate experiments on infilling (1) a missing attribute
and (2) a missing call connecting two layers.

In the first experiment, we construct a training dataset with 1.2K questions, each containing a
sequence of edges with one attribute marked as [MISSING]. The missing value is the unknown
ground truth for prediction, so these are multi-class classification problems. Attributes targeted
include communication type (e.g., HTTP, RPC) or destination microservice. We evaluate the model
on a 6K-sample test dataset, where our model demonstrated over 70% accuracy in predicting the
correct attributes, significantly outperforming the baseline Llama-2 model’s accuracy by about 30%

as reported in the second row of

The second experiment’s dataset comprises 1K samples, each representing a pair of parent and child
layers with a missing connecting edge tagged as [MISSING]. After training, we test both models on
5K test cases to generate the correct edge, ensuring the finish time matched or exceeded the start time.
The last row of shows that while the original Llama model scored only 24% accuracy, our
model maintained a high accuracy of 66%, underscoring its robustness in more complex tasks.

These experiments demonstrate that the capabilities of our trace pre-trained model enable it to effec-
tively handle infilling tasks with additional fine-tuning, even when facing complex data scenarios.

6 Related Work

Adapting LLMs for Specific Domains. Pre-trained LLMs are increasingly adapted for specialized
domains due to their vast, diverse training datasets, which enable broad generalization capabilities.
Examples include fine-tuning LLMs for programming [32], quantitative reasoning [17]], healthcare
[37], and semiconductor manufacturing [22]]. Our paper is the first effort to apply this approach to the
domain of computer system traces, which includes data with specific structures and constraints and
focuses on generating synthetic data through fine-tuning.

Making Language Models Follow Instructions. Recent advancements have focused on enhancing
LLMs’ ability to follow instructions through prompting and prompt-tuning [19} [36 (15} 44]] and
instruction tuning [28| 143} (5, 133]]. These two sets of methods are relevant to our setting since they
augment powerful pre-trained LLMs (with or without updating the model weights) to improve
their performance on new tasks. Unlike [27], which employs transformer models for task-specific
performance enhancements, our approach seeks to refine output expressiveness within set prompts,
aiming for greater fidelity in synthetic data production.

Multi-step Reasoning with LLMs. Iterating with LLMs over multiple steps is an effective strategy
to solve complex problems. For instance, [47] suggests a tree-of-thoughts reasoning technique to
solve problems by decomposing into smaller thoughts and letting language models explore diverse
reasoning paths over different thoughts. To leverage the external knowledge outside of LLMs, [29, [1]
propose to trigger tools during LLM inferences, while [40] interleaves retrieval with LLM inferences
to solve multi-step question-answering. Multi-step reasoning is also useful to handle long-context
scenarios by summarizing iteratively [42] and diving into subproblems [[16]. In contrast to the
above approaches, our work learns to generate prompts with specific structures and constraints for
generating subsequent layers.

7 Limitations

While the recursive generation method shows advantages over generating an entire call graph trace
at once in terms of correctly generating call graph structures, one of the major drawbacks is that
previously generated edges are dropped, since we generate a call graph in a sequence of multiple
layers, where only conditioning information from the previous layer is passed into the prompts of
the next layer. While dropping previously generated results does not affect the outputs much in the
case of microservice call graph generation (since microservices in direct neighborhoods influence
each other the most [49]), we believe that providing past information, such as previous layers and
even a time series of call graph traces, would be helpful. Furthermore, our method uses manually
constructed instruction templates, which may lead to suboptimal generation quality, as we are not
using the full potential of language models pre-trained with trillions of tokens [39]. Following the



methods of [21} 8 [18]], we believe that diversifying instructions using LLM-generated output is a
potential method to improve the ability of LLMs to follow user intentions.

8 Conclusion

This paper presents a training method for pre-trained LLMs tailored for generating microservice
trace graphs through a recursive call graph generation scheme complemented by instruction tuning
with intermediate instructions. Our model demonstrates superior performance in generating accurate
and valid call graphs and shows better distribution similarity compared to baseline models. Our
evaluation results highlight the effectiveness of instruction tuning in refining the generation of call
graphs according to user-specified features, and reveal the potential for using our model in various
downstream tasks, such as prediction and data infilling, by further training the model. While this paper
focuses primarily on microservice call graphs, our approach holds promise for broader applicability
to other types of computer system traces with similar structural characteristics.
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A Training Details

A.1 Training Setup

We train all models with 4x A100 80GB GPUs in our cluster with the hyperparameters described
in[Table 3] We apply LoRA ([[10]) adapters to query and key projection matrices of attention layers
with rank = 8, alpha = 16, and dropout = 0.1. For the downstream task training in [§5.4] we
freeze the backbone model and only train the last classification layer for the prediction task. For the
infilling downstream task, we use LoRA adapters with the same configuration as mentioned earlier.

A.2 Training Data Preprocessing

From the Alibaba microservice v2022 traces [25]], we use the first-hour call graph traces as our
training data. The traces are collections of API calls, where each API call includes communication
information between the two microservices. Note that the dataset anonymizes the service and
microservice names. Service ID is a nine-digit number starting with the prefix "S_" instead of using
areal service name (e.g., social network), and microservice is a five-digit number starting with the
prefix "MS_". We construct call graphs using the trace ID field (i.e., API calls with the same
trace ID belong to one call graph). When constructing call graphs, we remove calls with missing
information (e.g., destination microservice IDs are unknown) and remove call graphs that are not
connected (e.g., missing edges). To remove redundancy, we filter out call graphs that have the same
structure and fields (e.g., service ID, latency) for all API calls. The distributions of training data after

removing redundancy are shown in [Figure 6]

A.3 Training Data Examples

From the call graph traces, we create text-based representations of call graphs as described in[§4.1]
First of all, is a training data example of converting a call graph into a tabular data format,
which is the baseline in[§5.1] At the beginning, we include high-level information about the call
graph including service ID, the number of edges, and depth of the call graph. Each line inside the
<edges> block corresponds to a call in a call graph. 6 fields exist for each call including the edge ID,
source/destination microservices, communication type, and communication start/finish time.

shows an example training data sample for recursive generation as described in[§4.2} Each
sample consists of a sequence of layers, where each layer includes the edges and the conditions
for the next layers. At the beginning of each layer, we provide high-level information to explain
connections with the previous layers (e.g., start_node, caller), structure in the call graph (e.g.,
remaining_depth, num_edges, start_edge_id), and time-related information (e.g., latency,
start_communication_at). Note that the number of fields in each edge is reduced from 6 to 5
since the edges share the same start node. Also, the edge ID field is an integer, not a dot-decimal
number. For each next layer, the condition is described in each <subgraph> block starting with the
edge ID to be extended.

is an example of instruction-tuning data. The instruction starts with a system prompt
followed by conditions as in[Figure 8] We further explain the condition in natural language formats
along with user-requested features as studied in[§5.3] In the output section, we include Chain-of-
Thought scratchpads at the end of <edges> block and at the beginning of <subgraph> blocks, which
elaborate on the number of edges to generate and constraints of subgraph conditions. For instance,
the scratchpad includes descriptions regarding the depth requirement to let LLMs understand better
that the depth field should be decreased by 1 from the current layer’s depth.

As described in[§4.T} we drop each call graph attribute randomly with probability pg,op. We set parop
to 0.9 for all attributes except for the service ID field, which is always kept (pgrop = 1), to ensure
minimal conditioning.

B Constraints in Call Graph Layers

In this section, we describe constraints to be met for each generated call graph layer to be correct.
First of all, the generation results are considered invalid if the output does not have the valid format
with <edges> and <subgraph> tags.
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Figure 6: Training data distribution after preprocessing steps.
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num_edges:3/id:S_058367691/max_depth:2
<edges>

(source is USER,communication finishes at 2 milliseconds,communication starts at 0 milliseconds,type is rpc,destination is MS_55040,edge_id is 0)
(communication starts at 1 milliseconds, source is MS_55040,communication finishes at 1 milliseconds,destination is MS_27421,edge_id is 1,type is db)
(communication finishes at 2 milliseconds,type is db,communication starts at 1 milliseconds,destination is MS_73328, source is MS_55040 ,edge_id is 2)
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Figure 7: A training data sample of a call graph with 3 edges represented in tabular format.
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—| num_current_edges:1/num_subgraphs:1/num_edges:3/start_communication_at:0/id:S_058367691/remaining_depth:1/
start_edge_id:0/start_node:USER

<layer>

<edges>

(communication finishes at 2 milliseconds,communication starts at 0 milliseconds,type is rpc,destination is MS_55040,edge_id is 0)
o - | </edges>

<subgraph of edge_id 0>
latency:2/start_node:MS_55040/start_edge_id:1/num_subgraphs:0/num_current_edges:2/id:S_058367691/num_edges:2/
remaining_depth:0/start_communication_at:1/caller:USER

</subgraph>

=| </layer>

—| start_edge_id:1/id:S_058367691/latency:2/num_subgraphs:0/num_edges:2/remaining_depth:0/start_communication_at:1/
num_current_edges:2/start_node:MS_55040/caller:USER
<layer>

<edges>
e "1 | (communication starts at 1 milliseconds,communication finishes at 1 milliseconds,destination is MS_27421,edge_id is 1,type is db)
(communication finishes at 2 milliseconds,type is db,communication starts at 1 milliseconds,destination is MS_73328,edge_id is 2)
</edges>
L| </layer>

Figure 8: A training data sample of a call graph with 3 edges for recursive generation.
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Instruction

You are a trace generator that creates traces based on given requirements.

Requirements:
start_communication_at:0/start_node:USER/remaining_depth:2/num_current_edges:1/num_edges:4/latency:12/id:S_032647104
Conditions:

In each edge, communication start time should NOT be greater than latency 12 milliseconds

Generate subgraph instructions if necessary

the first start_communication_at should be requirement's start_communication_at 0

Also, communication should finish before latency 12 milliseconds

copy caller from requirement's start_node:USER

generate 1 edges following num_current_edges

Output
p

<layer> A
<edges>

(edge_id is 0,type is http,communication starts at 0 milliseconds,destination is MS_57649,communication finishes at 12 milliseconds)
</edges>

num generated edges = the last edge id - the firstedgeid + 1=0-0+1=1

1 edges generated out of num_edges:4

num_remaining_edges = num_edges:4 - generated:1 = 3

generate subgraphs of edge:0

Subgraph constraints:

remaining_depth should be the requirement's remaining_depth:2 - 1 =1
num_edges <= num_remaining_edges:3

copy start_node from edge 0 destination: MS_57649

<subgraph of edge_id 0>
remaining_depth:1/start_edge_id:1/num_edges:3/id:S_032647104/latency:12/num_subgraphs:1/num_current_edges:2/
start_node:MS_57649/start_communication_at:1/caller:USER
</subgraph>

now, num_remaining_edges is 3-3 =0

finish generation

\_</layer>

Figure 9: A training data sample of a call graph layer for instruction-tuning.

Table 3: Training setup and hyperparameters.

Model Hyperparameter Value

Optimizer AdamW ([23])

Pre-Training & Instruction Tuning Learning rate 3e-4 with cosine scheduler
Batch size 64
Gradient clipping 1.0
Optimizer AdamW

Downstream Task Fine-tuning Learning rate le-4 with cosine scheduler

Batch size 2

Gradient clipping 1.0

Edges. For each edge, we check the following conditions. First of all, each edge should include the
5 fields: edge ID, destination, communication type, and communication start/finish time. Secondly,
we check whether the right number of edges are generated as described in the condition. Third, the
communication start time should be equal to or greater than the communication start time described
in the condition, and should not be greater than the communication finish time of the edge. Lastly,
the communication finish time should be equal to or less than the latency field in the condition.

Next Layer Conditions. For the next layer conditions, we first check whether the next layer
conditions should be generated or not. If the remaining depth field in the instruction is O or the
number of edges that need to be generated is 0, no <subgraph> blocks should be generated.

Then, we check the validity of each field in the next layer conditions. First of all, the edge ID inside
the <subgraph> block should be found in the edges generated in the current layer. For the depth, the
remaining depth field should be less than the remaining depth of the instruction. Additionally, at least
one of the resulting subgraphs must have a depth that is reduced by one compared to the original
graph. For the start node and caller fields, they should be copied from the destination from
the parent edge and the start node from the instructions, respectively. Lastly, we check the latency
and communication start time by comparing the values to those of the parent edge. The latency of a
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child layer should not be greater than the communication finish time of the parent edge. Also, the
communication start time of a child layer should not be less than the communication start time of the
parent edge.

After generating both edges and the next conditions, we check if the sum of the number of edges
matches the number of edges in the instruction.
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