
APRIL 2023, NSDI’23

Jiaxin Lin, Adney Cardoza, Tarannum Khan, Yeonju Ro, Brent E. Stephens,

Hassan Wassel and Aditya Akella

Ringleader: Efficiently Offloading 
Intra-Server Orchestration to NICs



Three requirements of online cloud services

2

• [R1] Minimize request tail latency
o ~10s microsecond tail latency.

• [R2] Enforce appropriate request prioritization
o Requests have varying importance and SLO.

• [R3] Maximize CPU efficiency with interference management
o Pack multiple applications while mitigating interference between them.



Intra-server orchestration is necessary 

3

Load Balancing

[R1]

Request Scheduling

[R2]

CPU Allocation

[R3] 



Intra-server orchestration is necessary 

4

Load Balancing

[R1]

Network 

Requests

…Cpu 0 Cpu 1 Cpu X

Worker Cores

Request Scheduling

[R2]

CPU Allocation

[R3] 



Intra-server orchestration is necessary 

4

Load Balancing

[R1]

Network 

Requests

…Cpu 0 Cpu 1 Cpu X

Worker Cores

Request Scheduling

[R2]

CPU Allocation

[R3] 



Intra-server orchestration is necessary 

5

Request Scheduling

[R2]

Network 

Requests

…Cpu 0 Cpu 1 Cpu X

Worker Cores

Service A 

SLO = 10us

Service B 

SLO = 10ms

Cpu 0

Service A + B’s 

Worker Cores

Load Balancing

[R1]

CPU Allocation

[R3] 



Intra-server orchestration is necessary 

5

Request Scheduling

[R2]

Network 

Requests

…Cpu 0 Cpu 1 Cpu X

Worker Cores

Service A 

SLO = 10us

Service B 

SLO = 10ms

Cpu 0

Service A + B’s 

Worker Cores

Load Balancing

[R1]

CPU Allocation

[R3] 



Intra-server orchestration is necessary 

6

CPU Allocation

[R3] 

Network 

Requests

…Cpu 0 Cpu 1 Cpu X

Worker Cores Service A’s

Core

Service B’s 

Core

Cpu 0 Cpu 1 Cpu 3 Cpu 4

Cpu 2

Cpu 0

Service A + B’s 

Worker Cores

Request Scheduling

[R2]

Load Balancing

[R1]

Service A 

SLO = 10us

Service B 

SLO = 10ms



Intra-server orchestration is necessary 

7

Network 

Requests

…Cpu 0 Cpu 1 Cpu X

Worker Cores Service A’s

Core

Service B’s 

Core

Cpu 0 Cpu 1 Cpu 3 Cpu 4

Cpu 2

CPU Allocation

[R3] 

Load Balancing

[R1]

Cpu 0

Service A + B’s 

Worker Cores

Request Scheduling

[R2]

Service A 

SLO = 10us

Service B 

SLO = 10ms



Use centralzied CPU cores to make the 

centralized scheduling/load balancing/CPU 

allocation decisions [Shinjuku@NSDI’19, Caladan@OSDI’20].

8

Load 

Balancing

LB Alloc

Realloc

Sche

Scheduling

NIC

Host

core 1 core 2 core 3 core 4

Intra-server Orchestration Today



Use centralzied CPU cores to make the 

centralized scheduling/load balancing/CPU 

allocation decisions [Shinjuku@NSDI’19, Caladan@OSDI’20].

● Advantage: 

○ The centralized approach provides optimal 

performance.

8

Load 

Balancing

LB Alloc

Realloc

Sche

Scheduling

NIC

Host

core 1 core 2 core 3 core 4

Intra-server Orchestration Today



Use centralzied CPU cores to make the 

centralized scheduling/load balancing/CPU 

allocation decisions [Shinjuku@NSDI’19, Caladan@OSDI’20].

● Advantage: 

○ The centralized approach provides optimal 

performance.

● Problems: 

○ Wasted cores.

○ Limited scalability.

8

Load 

Balancing

LB Alloc

Realloc

Sche

Scheduling

NIC

Host

core 1 core 2 core 3 core 4

Intra-server Orchestration Today



Use centralzied CPU cores to make the 

centralized scheduling/load balancing/CPU 

allocation decisions [Shinjuku@NSDI’19, Caladan@OSDI’20].

● Advantage: 

○ The centralized approach provides optimal 

performance.

● Problems: 

○ Wasted cores.

○ Limited scalability.

8

Is it possible to achieve scalable centralized intra-server orchestration 

with minimal CPU overhead? 

Load 

Balancing

LB Alloc

Realloc

Sche

Scheduling

NIC

Host

core 1 core 2 core 3 core 4

Intra-server Orchestration Today



NIC-driven hardware orchestration

9

Modern NICs offer three opportunities:

• Centralized: All network requests must pass 

through the NIC.

• Scalability: NIC accelerators can be designed to 

operate at line rate.

• Minimal Host CPU Overhead: Offloading frees up 

host cores.



Ringleader Overview:

● Ringleader is a new NIC architecture that 

utilizes novel hardware offloads to perform 

centralized orchestration.

○ Load balancing offload. 

○ Scheduling offload.

○ NIC-assisted CPU allocation.

10

NIC

L
o

a
d

 

M
o

n
ito

r

Realloc

Hints

core 1 core 2 core 3 core 4

HW Sche

HW LB



Datapath 

OS

Buf. Mgmt Core AllocNet.Trans

Ringleader Overview:

● Ringleader is a new NIC architecture that 

utilizes novel hardware offloads to perform 

centralized orchestration.

○ Load balancing offload. 

○ Scheduling offload.

○ NIC-assisted CPU allocation.

● The host uses a Datapath OS to manage 

services.

10

NIC

L
o

a
d

 

M
o

n
ito

r

Realloc

Hints

core 1 core 2 core 3 core 4

HW Sche

HW LB



Datapath 

OS

Buf. Mgmt Core AllocNet.Trans

Ringleader Overview:

● Ringleader is a new NIC architecture that 

utilizes novel hardware offloads to perform 

centralized orchestration.

○ Load balancing offload. 

○ Scheduling offload.

○ NIC-assisted CPU allocation.

● The host uses a Datapath OS to manage 

services.

● A new Datapath OS-NIC interface.

10

NIC

L
o

a
d

 

M
o

n
ito

r

Realloc

Hints

core 1 core 2 core 3 core 4

HW Sche

HW LB

Interface



Datapath 

OS

Buf. Mgmt Core AllocNet.Trans

Ringleader Overview:

● Ringleader is a new NIC architecture that 

utilizes novel hardware offloads to perform 

centralized orchestration.

○ Load balancing offload. 

○ Scheduling offload.

○ NIC-assisted CPU allocation.

● The host uses a Datapath OS to manage 

services.

● A new Datapath OS-NIC interface.

10

NIC

L
o

a
d

 

M
o

n
ito

r

Realloc

Hints

core 1 core 2 core 3 core 4

HW Sche

HW LB

Interface



Design questions of offloading scheduling and load balancing

Q1: What should be the division of labor between the host and 
NIC?

Q2: How to coordinate orchestration between the NIC and host 
components?

Q3: How to design the hardware to achieve efficient and high-
performance offload?

11



Q1: Division of labor between the host and NIC

A naïve way: offload all aspects onto the 

NIC hardware.
● Centralized on-NIC request buffer.

12

HW Sche

HW LB

R
e

q
u

e
s

t 

B
u

ffe
r

core 1 core 2 core 3 core 4



Q1: Division of labor between the host and NIC

A naïve way: offload all aspects onto the 

NIC hardware.
● Centralized on-NIC request buffer.

Given the PCIe delay:
● Small per-core buffer to hide the PCIe latency.

12

HW Sche

HW LB

R
e

q
u

e
s

t 

B
u

ffe
r

core 1 core 2 core 3 core 4



Q1: Division of labor between the host and NIC

A naïve way: offload all aspects onto the 

NIC hardware.
● Centralized on-NIC request buffer.

Given the PCIe delay:
● Small per-core buffer to hide the PCIe latency.

● Problem: HoL blocking inside the per-core 

buffer.

12

HW Sche

HW LB

R
e

q
u

e
s

t 

B
u

ffe
r

core 1 core 2 core 3 core 4



Service A’s Prio = Hi

Service B’s Prio = Lo

Service A + B

Q1: Division of labor between the host and NIC

A naïve way: offload all aspects onto the 

NIC hardware.
● Centralized on-NIC request buffer.

Given the PCIe delay:
● Small per-core buffer to hide the PCIe latency.

● Problem: HoL blocking inside the per-core 

buffer.

12

HW Sche

HW LB

R
e

q
u

e
s

t 

B
u

ffe
r

core 1 core 2 core 3 core 4



Service A’s Prio = Hi

Service B’s Prio = Lo

Service A + B

Q1: Division of labor between the host and NIC

A naïve way: offload all aspects onto the 

NIC hardware.
● Centralized on-NIC request buffer.

Given the PCIe delay:
● Small per-core buffer to hide the PCIe latency.

● Problem: HoL blocking inside the per-core 

buffer.

12

HW Sche

HW LB

R
e

q
u

e
s

t 

B
u

ffe
r

core 1 core 2 core 3 core 4



Service A’s Prio = Hi

Service B’s Prio = Lo

Service A + B

Q1: Division of labor between the host and NIC

A naïve way: offload all aspects onto the 

NIC hardware.
● Centralized on-NIC request buffer.

Given the PCIe delay:
● Small per-core buffer to hide the PCIe latency.

● Problem: HoL blocking inside the per-core 

buffer.

12

HW Sche

HW LB

R
e

q
u

e
s

t 

B
u

ffe
r

core 1 core 2 core 3 core 4

HoL Blocking!



Solution: Divide the scheduling function

Onload part of the scheduling function 
into host cores using shallow priority 
queues.
● Priority queue
● Shallow queue

13

core 1 core 2 core 3 core 4

SW Sche SW Sche SW Sche SW ScheShallow 

Priority 

Queue

HW Sche

HW LB

R
e

q
u

e
s

t 

B
u

ffe
r



HW Sche

HW LB

R
e

q
u

e
s

t 

B
u

ffe
r

Q2: Coordination between the software scheduler and the 
NIC load balancer

A naïve load balancer: Join-Bounded-Shortest-
Queue [nanoPU@OSDI’21, Racksched @OSDI’20]

● JBSQ(N) steers to the core which has the minimal 
queue length, and each host queue has a maximum 
depth of N packets.

Problem: JBSQ fails because it ignores the 
software scheduler’s behavior!

14

core 1 core 2 core 3 core 4

SW Sche SW Sche SW Sche SW Sche



HW Load Balancer

(JBSQ(4))

core 2core 1

Service A’s Prio = Hi

Service B’s Prio = Lo

Q2: Coordination between the software scheduler and the 
NIC load balancer

15

A naïve load balancer: Join-Bounded-Shortest-
Queue [nanoPU@OSDI’21, Racksched @OSDI’20]

● JBSQ(N) steers to the core which has the minimal 
queue length, and each host queue has a maximum 
depth of N packets.

Problem: JBSQ fails because it ignores the 
software scheduler’s behavior!



HW Load Balancer

(JBSQ(4))

core 2core 1

Service A’s Prio = Hi

Service B’s Prio = Lo

Q2: Coordination between the software scheduler and the 
NIC load balancer

15

A naïve load balancer: Join-Bounded-Shortest-
Queue [nanoPU@OSDI’21, Racksched @OSDI’20]

● JBSQ(N) steers to the core which has the minimal 
queue length, and each host queue has a maximum 
depth of N packets.

Problem: JBSQ fails because it ignores the 
software scheduler’s behavior!



𝑅𝑎𝑛𝑘 𝐴 . 𝑐𝑜𝑟𝑒𝐶 = 

𝑋.𝑝𝑟𝑖≥𝐴.𝑝𝑟𝑖

𝑄𝑢𝑒𝑢𝑒 𝑋 . 𝑐𝑜𝑟𝑒𝐶 + λ ∗ 

𝑋.𝑝𝑟𝑖<𝐴.𝑝𝑟𝑖

𝑄𝑢𝑒𝑢𝑒 𝑋 . 𝑐𝑜𝑟𝑒𝐶

Load Balancing with Join-Bounded-Smallest-Rank-Queue:

JBSRQ(N): steer to the core which has the minimal rank, and each host 
queue has a maximum rank of N.

[Insight 1] rank is contributed by same/higher priority requests.

Insight 1

16



𝑅𝑎𝑛𝑘 𝐴 . 𝑐𝑜𝑟𝑒𝐶 = 

𝑋.𝑝𝑟𝑖≥𝐴.𝑝𝑟𝑖

𝑄𝑢𝑒𝑢𝑒 𝑋 . 𝑐𝑜𝑟𝑒𝐶 + λ ∗ 

𝑋.𝑝𝑟𝑖<𝐴.𝑝𝑟𝑖

𝑄𝑢𝑒𝑢𝑒 𝑋 . 𝑐𝑜𝑟𝑒𝐶

Load Balancing with Join-Bounded-Smallest-Rank-Queue:

JBSRQ(N): steer to the core which has the minimal rank, and each host 
queue has a maximum rank of N.

[Insight 1] rank is contributed by same/higher priority requests.

[Insight 2] rank is contributed less by lower priority requests.

Insight 1 Insight 2

λ is a constant factor between 0 and 1.

16



JBSRQ Examples:

17

JBSRQ cooperates with the host priority queue 

and achieves optimal for both Hi/Lo priority requests! 

Service A’s Prio = Hi

Service B’s Prio = Lo

λ = 0.2

Load Balancer

(JBSRQ(4))

Rank[A].1 = 1.4

Rank[A].2 = 2

core 2core 1

Load Balancer

(JBSRQ(4))

Rank[B].1 = 3

Rank[B].2 = 2

core 2core 1



HW 

Scheduler

HW 

Priority 

Queue

Q3: Architecture of the on-NIC load balancer and scheduler

● Hardware request scheduler :
○ A hardware priority queue sorts services 

and dequeues the frontmost service.

18

core 1 core 2 core 3 core 4

Service A Service B

Service A’s Prio = Hi

Service B’s Prio = Lo



HW Load 

Balancer

HW 

Scheduler

HW 

Priority 

Queue

Service 

Bit Mask

Q3: Architecture of the on-NIC load balancer and scheduler

● Hardware request scheduler :
○ A hardware priority queue sorts services 

and dequeues the frontmost service.

● Hardware load balancer:
○ Find the service-to-core mapping.
○ Calculate rank.
○ Find the minimal ranked core. 
○ If that core’s rank < N, dispatch this 

request to that core.

18

Rank 

Calculator

core 1 core 2 core 3 core 4

s1 1100

s2 0111

Reduce Tree 

“Find Min”

rank: [2, 2]

1,1,0,0

Service A Service B

Service A’s Prio = Hi

Service B’s Prio = Lo



HW Load 

Balancer

HW 

Scheduler

HW 

Priority 

Queue

Service 

Bit Mask

Q3: Architecture of the on-NIC load balancer and scheduler

● Hardware request scheduler :
○ A hardware priority queue sorts services 

and dequeues the frontmost service.

● Hardware load balancer:
○ Find the service-to-core mapping.
○ Calculate rank.
○ Find the minimal ranked core. 
○ If that core’s rank < N, dispatch this 

request to that core.

● Problem: the scheduler might schedule a 
request that cannot be dispatched by the 
JBSRQ.

18

Rank 

Calculator

core 1 core 2 core 3 core 4

s1 1100

s2 0111

Reduce Tree 

“Find Min”

rank: [2, 2]

1,1,0,0

Service A Service B

Service A’s Prio = Hi

Service B’s Prio = Lo



HW Load 

Balancer

HW 

Scheduler

HW 

Priority 

Queue

Service 

Bit Mask

Q3: Architecture of the on-NIC load balancer and scheduler

● Hardware request scheduler :
○ A hardware priority queue sorts services 

and dequeues the frontmost service.

● Hardware load balancer:
○ Find the service-to-core mapping.
○ Calculate rank.
○ Find the minimal ranked core. 
○ If that core’s rank < N, dispatch this 

request to that core.

● Problem: the scheduler might schedule a 
request that cannot be dispatched by the 
JBSRQ.

18

Rank 

Calculator

core 1 core 2 core 3 core 4

s1 1100

s2 0111

Reduce Tree 

“Find Min”

rank: [2, 2]

1,1,0,0

Service A Service B

Service A’s Prio = Hi

Service B’s Prio = Lo

Blocked!

N=2



HW 

Scheduler

HW Load 

Balancer

HW Priority 

Queue

Non-blocking interface between the on-NIC load balancer and 
scheduler

Interface: Eligibility Mask

Eligibility of a service: cores running this 
service have at least one core with a rank 
smaller than the bound.

The hardware scheduler dequeues the front-
most eligible element.

19

0 1

Eligibility Mask

Dequeue

Element



More details in our paper

● NIC-assisted CPU reallocation.
○ NIC generates reallocation hints at very fine granularity (e.g., every 5 us).

● Low overhead NIC-host metadata communication.
○ ~50M messages per second through MMIO.
○ Further decrease the overhead through adaptive inlining.

20



Implementation

● 100G FPGA prototype of the Ringleader NIC: implemented in 4K lines of Verilog code. 

Run at100G, use a 250 MHz frequency.

● User space NIC driver: implemented in 1.5K lines of C code and provides a DPDK-like 

kernel-bypass access to the NIC.

● Integrate with the Datapath OS: we integrated our NIC driver with the Demikernel libOS 

using 800 lines of Rust.

21



Evaluation

Workloads:

○ Synthetic benchmark with different service time distributions.

○ RocksDB in-memory database.

Baselines:

○ Shinjuku (NSDI'19): software-based centralized request load balancing and 

scheduling.

○ Caladan (OSDI'20): software-based fast CPU reallocation.

○ RSS: NIC RSS to spread requests to cores using random hash.

22



Q1: How Ringleader’s design decision contributes to 
its overall performance

23

20

40

60

80

100

120

0 1 2 3 4 5

H
ig

h
 P

ri
o

ri
ty

 R
e
q

u
e
s
t 

P
9
9
 T

a
il
 L

a
te

n
c
y
 (

μ
s
)

Total Offered Load (MRPS)

RingLeader JBSQ

No_elig_mask No_soft_prio

Better

B
e
tte

r



Q1: How Ringleader’s design decision contributes to 
its overall performance

23

20

40

60

80

100

120

0 1 2 3 4 5

H
ig

h
 P

ri
o

ri
ty

 R
e
q

u
e
s
t 

P
9
9
 T

a
il
 L

a
te

n
c
y
 (

μ
s
)

Total Offered Load (MRPS)

RingLeader JBSQ

No_elig_mask No_soft_prio

Better

B
e
tte

r

Remove Software Priority Queue: HoL bocking insides the host buffer. 



Q1: How Ringleader’s design decision contributes to 
its overall performance

23

20

40

60

80

100

120

0 1 2 3 4 5

H
ig

h
 P

ri
o

ri
ty

 R
e
q

u
e
s
t 

P
9
9
 T

a
il
 L

a
te

n
c
y
 (

μ
s
)

Total Offered Load (MRPS)

RingLeader JBSQ

No_elig_mask No_soft_prio

Better

B
e
tte

r

Disable JBSRQ: Suboptimal dispatching policy.



Q1: How Ringleader’s design decision contributes to 
its overall performance

23

20

40

60

80

100

120

0 1 2 3 4 5

H
ig

h
 P

ri
o

ri
ty

 R
e
q

u
e
s
t 

P
9
9
 T

a
il
 L

a
te

n
c
y
 (

μ
s
)

Total Offered Load (MRPS)

RingLeader JBSQ

No_elig_mask No_soft_prio

Better

B
e
tte

r

Disable eligibility mask: Hardware pipeline blocking.



Q1: How Ringleader’s design decision contributes to 
its overall performance

Takeaways: Software priority queues, 

JBSRQ, and the eligibility mask ensure that 

Ringleader can achieve effective 

orchestration.

23

20

40

60

80

100

120

0 1 2 3 4 5

H
ig

h
 P

ri
o

ri
ty

 R
e
q

u
e
s
t 

P
9
9
 T

a
il
 L

a
te

n
c
y
 (

μ
s
)

Total Offered Load (MRPS)

RingLeader JBSQ

No_elig_mask No_soft_prio

Better

B
e
tte

r



Q2: How does Ringleader compared to the CPU-
based orchestration

Takeaways: Ringleader achieves better performance 

and scalability than the software-based approach!

24

0

200

400

600

800

1000

1200

0 2 4 6L
o

 P
ri

o
 R

e
q

u
e
s

t 
P

9
9

 
T
a
il
 L

a
te

n
c
y
 (

μ
s
)

Total Offered Load (MRPS) 

Ringleader Shinjuku

0

40

80

120

160

0 1 2 3 4 5 6 7 8 9

H
ig

h
 P

ri
o

 R
e
q

u
e
s
t 

P
9
9
T
a
il
 L

a
te

n
c
y
 (

μ
s
)

Total Offered Load (MRPS) 

Ringleader Shinjuku

Better

B
e
tte

r

B
e
tte

r

Better

2.5x
1.5x



Conclusion

• RingLeader offloads orchestration through a 

new load balancing algorithm and scheduler, 

as well as a new OS/NIC interface.

• Experiments on a 100 Gbps FPGA NIC show 

that RingLeader offers good tail latency and 

high throughput.

25

https://github.com/utnslab/RingleaderNIC

mailto:https://github.com/utnslab/RingleaderNIC

	Default Section
	Slide 1
	Slide 2: Three requirements of online cloud services
	Slide 3: Intra-server orchestration is necessary 
	Slide 4: Intra-server orchestration is necessary 
	Slide 5: Intra-server orchestration is necessary 
	Slide 6: Intra-server orchestration is necessary 
	Slide 7: Intra-server orchestration is necessary 
	Slide 8: Intra-server orchestration is necessary 
	Slide 9: Intra-server orchestration is necessary 
	Slide 10: Intra-server Orchestration Today
	Slide 11: Intra-server Orchestration Today
	Slide 12: Intra-server Orchestration Today
	Slide 13: Intra-server Orchestration Today
	Slide 14: NIC-driven hardware orchestration
	Slide 15: Ringleader Overview:
	Slide 16: Ringleader Overview:
	Slide 17: Ringleader Overview:
	Slide 18: Ringleader Overview:
	Slide 19: Design questions of offloading scheduling and load balancing
	Slide 20: Q1: Division of labor between the host and NIC
	Slide 21: Q1: Division of labor between the host and NIC
	Slide 22: Q1: Division of labor between the host and NIC
	Slide 23: Q1: Division of labor between the host and NIC
	Slide 24: Q1: Division of labor between the host and NIC
	Slide 25: Q1: Division of labor between the host and NIC
	Slide 26: Solution: Divide the scheduling function
	Slide 27: Q2: Coordination between the software scheduler and the NIC load balancer
	Slide 28: Q2: Coordination between the software scheduler and the NIC load balancer
	Slide 29: Q2: Coordination between the software scheduler and the NIC load balancer
	Slide 30: Load Balancing with Join-Bounded-Smallest-Rank-Queue:
	Slide 31: Load Balancing with Join-Bounded-Smallest-Rank-Queue:
	Slide 32: JBSRQ Examples:
	Slide 33: Q3: Architecture of the on-NIC load balancer and scheduler
	Slide 34: Q3: Architecture of the on-NIC load balancer and scheduler
	Slide 35: Q3: Architecture of the on-NIC load balancer and scheduler
	Slide 36: Q3: Architecture of the on-NIC load balancer and scheduler
	Slide 37: Non-blocking interface between the on-NIC load balancer and scheduler
	Slide 38: More details in our paper
	Slide 39: Implementation 
	Slide 40: Evaluation
	Slide 41: Q1: How Ringleader’s design decision contributes to its overall performance
	Slide 42: Q1: How Ringleader’s design decision contributes to its overall performance
	Slide 43: Q1: How Ringleader’s design decision contributes to its overall performance
	Slide 44: Q1: How Ringleader’s design decision contributes to its overall performance
	Slide 45: Q1: How Ringleader’s design decision contributes to its overall performance
	Slide 46: Q2: How does Ringleader compared to the CPU-based orchestration
	Slide 47: Conclusion


