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Three requirements of online cloud services

2

• [R1] Minimize request tail latency
o ~10s microsecond tail latency.

• [R2] Enforce appropriate request prioritization
o Requests have varying importance and SLO.

• [R3] Maximize CPU efficiency with interference management
o Pack multiple applications while mitigating interference between them.



Intra-server orchestration is necessary 

3

Load Balancing

[R1]

Request Scheduling

[R2]

CPU Allocation

[R3] 



Intra-server orchestration is necessary 

4

Load Balancing

[R1]

Network 

Requests

…Cpu 0 Cpu 1 Cpu X

Worker Cores

Request Scheduling

[R2]

CPU Allocation

[R3] 



Intra-server orchestration is necessary 

4

Load Balancing

[R1]

Network 

Requests

…Cpu 0 Cpu 1 Cpu X

Worker Cores

Request Scheduling

[R2]

CPU Allocation

[R3] 



Intra-server orchestration is necessary 

5

Request Scheduling

[R2]

Network 

Requests

…Cpu 0 Cpu 1 Cpu X

Worker Cores

Service A 

SLO = 10us

Service B 

SLO = 10ms

Cpu 0

Service A + B’s 

Worker Cores

Load Balancing

[R1]

CPU Allocation

[R3] 



Intra-server orchestration is necessary 

5

Request Scheduling

[R2]

Network 

Requests

…Cpu 0 Cpu 1 Cpu X

Worker Cores

Service A 

SLO = 10us

Service B 

SLO = 10ms

Cpu 0

Service A + B’s 

Worker Cores

Load Balancing

[R1]

CPU Allocation

[R3] 



Intra-server orchestration is necessary 

6

CPU Allocation

[R3] 

Network 

Requests

…Cpu 0 Cpu 1 Cpu X

Worker Cores Service A’s

Core

Service B’s 

Core

Cpu 0 Cpu 1 Cpu 3 Cpu 4

Cpu 2

Cpu 0

Service A + B’s 

Worker Cores

Request Scheduling

[R2]

Load Balancing

[R1]

Service A 

SLO = 10us

Service B 

SLO = 10ms



Intra-server orchestration is necessary 

7

Network 

Requests

…Cpu 0 Cpu 1 Cpu X

Worker Cores Service A’s

Core

Service B’s 

Core

Cpu 0 Cpu 1 Cpu 3 Cpu 4

Cpu 2

CPU Allocation

[R3] 

Load Balancing

[R1]

Cpu 0

Service A + B’s 

Worker Cores

Request Scheduling

[R2]

Service A 

SLO = 10us

Service B 

SLO = 10ms



Use centralzied CPU cores to make the 

centralized scheduling/load balancing/CPU 

allocation decisions [Shinjuku@NSDI’19, Caladan@OSDI’20].
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NIC-driven hardware orchestration
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Modern NICs offer three opportunities:

• Centralized: All network requests must pass 

through the NIC.

• Scalability: NIC accelerators can be designed to 

operate at line rate.

• Minimal Host CPU Overhead: Offloading frees up 

host cores.



Ringleader Overview:

● Ringleader is a new NIC architecture that 

utilizes novel hardware offloads to perform 

centralized orchestration.

○ Load balancing offload. 

○ Scheduling offload.

○ NIC-assisted CPU allocation.
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Design questions of offloading scheduling and load balancing

Q1: What should be the division of labor between the host and 
NIC?

Q2: How to coordinate orchestration between the NIC and host 
components?

Q3: How to design the hardware to achieve efficient and high-
performance offload?
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Q1: Division of labor between the host and NIC

A naïve way: offload all aspects onto the 

NIC hardware.
● Centralized on-NIC request buffer.

12

HW Sche

HW LB

R
e

q
u

e
s

t 

B
u

ffe
r

core 1 core 2 core 3 core 4



Q1: Division of labor between the host and NIC

A naïve way: offload all aspects onto the 

NIC hardware.
● Centralized on-NIC request buffer.

Given the PCIe delay:
● Small per-core buffer to hide the PCIe latency.

12

HW Sche

HW LB

R
e

q
u

e
s

t 

B
u

ffe
r

core 1 core 2 core 3 core 4



Q1: Division of labor between the host and NIC

A naïve way: offload all aspects onto the 

NIC hardware.
● Centralized on-NIC request buffer.

Given the PCIe delay:
● Small per-core buffer to hide the PCIe latency.

● Problem: HoL blocking inside the per-core 

buffer.

12

HW Sche

HW LB

R
e

q
u

e
s

t 

B
u

ffe
r

core 1 core 2 core 3 core 4



Service A’s Prio = Hi

Service B’s Prio = Lo

Service A + B

Q1: Division of labor between the host and NIC

A naïve way: offload all aspects onto the 

NIC hardware.
● Centralized on-NIC request buffer.

Given the PCIe delay:
● Small per-core buffer to hide the PCIe latency.

● Problem: HoL blocking inside the per-core 

buffer.

12

HW Sche

HW LB

R
e

q
u

e
s

t 

B
u

ffe
r

core 1 core 2 core 3 core 4



Service A’s Prio = Hi

Service B’s Prio = Lo

Service A + B

Q1: Division of labor between the host and NIC

A naïve way: offload all aspects onto the 

NIC hardware.
● Centralized on-NIC request buffer.

Given the PCIe delay:
● Small per-core buffer to hide the PCIe latency.

● Problem: HoL blocking inside the per-core 

buffer.

12

HW Sche

HW LB

R
e

q
u

e
s

t 

B
u

ffe
r

core 1 core 2 core 3 core 4



Service A’s Prio = Hi

Service B’s Prio = Lo

Service A + B

Q1: Division of labor between the host and NIC

A naïve way: offload all aspects onto the 

NIC hardware.
● Centralized on-NIC request buffer.

Given the PCIe delay:
● Small per-core buffer to hide the PCIe latency.

● Problem: HoL blocking inside the per-core 

buffer.

12

HW Sche

HW LB

R
e

q
u

e
s

t 

B
u

ffe
r

core 1 core 2 core 3 core 4

HoL Blocking!



Solution: Divide the scheduling function

Onload part of the scheduling function 
into host cores using shallow priority 
queues.
● Priority queue
● Shallow queue
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Q2: Coordination between the software scheduler and the 
NIC load balancer

A naïve load balancer: Join-Bounded-Shortest-
Queue [nanoPU@OSDI’21, Racksched @OSDI’20]

● JBSQ(N) steers to the core which has the minimal 
queue length, and each host queue has a maximum 
depth of N packets.

Problem: JBSQ fails because it ignores the 
software scheduler’s behavior!

14

core 1 core 2 core 3 core 4

SW Sche SW Sche SW Sche SW Sche



HW Load Balancer

(JBSQ(4))

core 2core 1

Service A’s Prio = Hi

Service B’s Prio = Lo

Q2: Coordination between the software scheduler and the 
NIC load balancer

15

A naïve load balancer: Join-Bounded-Shortest-
Queue [nanoPU@OSDI’21, Racksched @OSDI’20]

● JBSQ(N) steers to the core which has the minimal 
queue length, and each host queue has a maximum 
depth of N packets.

Problem: JBSQ fails because it ignores the 
software scheduler’s behavior!



HW Load Balancer

(JBSQ(4))

core 2core 1

Service A’s Prio = Hi

Service B’s Prio = Lo

Q2: Coordination between the software scheduler and the 
NIC load balancer

15

A naïve load balancer: Join-Bounded-Shortest-
Queue [nanoPU@OSDI’21, Racksched @OSDI’20]

● JBSQ(N) steers to the core which has the minimal 
queue length, and each host queue has a maximum 
depth of N packets.

Problem: JBSQ fails because it ignores the 
software scheduler’s behavior!



𝑅𝑎𝑛𝑘 𝐴 . 𝑐𝑜𝑟𝑒𝐶 = 

𝑋.𝑝𝑟𝑖≥𝐴.𝑝𝑟𝑖

𝑄𝑢𝑒𝑢𝑒 𝑋 . 𝑐𝑜𝑟𝑒𝐶 + λ ∗ 

𝑋.𝑝𝑟𝑖<𝐴.𝑝𝑟𝑖

𝑄𝑢𝑒𝑢𝑒 𝑋 . 𝑐𝑜𝑟𝑒𝐶

Load Balancing with Join-Bounded-Smallest-Rank-Queue:

JBSRQ(N): steer to the core which has the minimal rank, and each host 
queue has a maximum rank of N.

[Insight 1] rank is contributed by same/higher priority requests.

Insight 1
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Load Balancing with Join-Bounded-Smallest-Rank-Queue:

JBSRQ(N): steer to the core which has the minimal rank, and each host 
queue has a maximum rank of N.

[Insight 1] rank is contributed by same/higher priority requests.

[Insight 2] rank is contributed less by lower priority requests.

Insight 1 Insight 2

λ is a constant factor between 0 and 1.
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JBSRQ Examples:
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JBSRQ cooperates with the host priority queue 

and achieves optimal for both Hi/Lo priority requests! 

Service A’s Prio = Hi

Service B’s Prio = Lo

λ = 0.2
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Q3: Architecture of the on-NIC load balancer and scheduler

● Hardware request scheduler :
○ A hardware priority queue sorts services 

and dequeues the frontmost service.
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Q3: Architecture of the on-NIC load balancer and scheduler

● Hardware request scheduler :
○ A hardware priority queue sorts services 

and dequeues the frontmost service.

● Hardware load balancer:
○ Find the service-to-core mapping.
○ Calculate rank.
○ Find the minimal ranked core. 
○ If that core’s rank < N, dispatch this 

request to that core.
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request that cannot be dispatched by the 
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Non-blocking interface between the on-NIC load balancer and 
scheduler

Interface: Eligibility Mask

Eligibility of a service: cores running this 
service have at least one core with a rank 
smaller than the bound.

The hardware scheduler dequeues the front-
most eligible element.
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More details in our paper

● NIC-assisted CPU reallocation.
○ NIC generates reallocation hints at very fine granularity (e.g., every 5 us).

● Low overhead NIC-host metadata communication.
○ ~50M messages per second through MMIO.
○ Further decrease the overhead through adaptive inlining.
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Implementation

● 100G FPGA prototype of the Ringleader NIC: implemented in 4K lines of Verilog code. 

Run at100G, use a 250 MHz frequency.

● User space NIC driver: implemented in 1.5K lines of C code and provides a DPDK-like 

kernel-bypass access to the NIC.

● Integrate with the Datapath OS: we integrated our NIC driver with the Demikernel libOS 

using 800 lines of Rust.
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Evaluation

Workloads:

○ Synthetic benchmark with different service time distributions.

○ RocksDB in-memory database.

Baselines:

○ Shinjuku (NSDI'19): software-based centralized request load balancing and 

scheduling.

○ Caladan (OSDI'20): software-based fast CPU reallocation.

○ RSS: NIC RSS to spread requests to cores using random hash.
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Q1: How Ringleader’s design decision contributes to 
its overall performance
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Q1: How Ringleader’s design decision contributes to 
its overall performance

Takeaways: Software priority queues, 

JBSRQ, and the eligibility mask ensure that 

Ringleader can achieve effective 

orchestration.
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Q2: How does Ringleader compared to the CPU-
based orchestration

Takeaways: Ringleader achieves better performance 

and scalability than the software-based approach!
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Conclusion

• RingLeader offloads orchestration through a 

new load balancing algorithm and scheduler, 

as well as a new OS/NIC interface.

• Experiments on a 100 Gbps FPGA NIC show 

that RingLeader offers good tail latency and 

high throughput.
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https://github.com/utnslab/RingleaderNIC
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