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We propose a distributed pre-training framework
that minimizes the pre-training overhead in subset
training.

We leverage model-soup-inspired ensembling at
Initialization with aggressive augmentation and
data-based sparsity to efficiently provide stable
and robust gradients for subset selection
algorithms.

Gradient-based Subset Training

» With the emergence of billion-parameter-scale
models, dataset sizes have also increased
accordingly.

» To accelerate training with large-scale datasets,
subset training got attention. Using a carefully
selected subset, we can train faster without
compromising accuracy.

» Recently proposed subset selection algorithms use
the initial gradient after pretraining as input to the
algorithms.
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» 10 make it scalable so it can run in a distributed environment with minimal communication costs. To do

that, in our design,
* Workers do not synchronize nor communicate during the pre-training.

 We do not ship the full dataset to each worker to reduce communication costs and local training costs

at each worker.

Our Method

» To meet the quality of the pre-trained model, we provide robust and reliable initial gradients for subset

selection algorithms.

» Our Method
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» Starting from 6, , we distribute the initial model to different workers with their own random subset that
does not overlap each other.

» Each worker do local training with its own set while not communicating with other workers. This can be

run in parallel as our workers don’'t need any synchronization.

» Once local training is done, all models (6,, 64, ...

» Data Augmentation

,0,_1) are aggregated with model averaging.

« Since we are using very limited samples for local training, we leverage random augmentation with
stronger magnitude, to mitigate overfitting (14 policies, with magnitude 9).
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Experiments

» Top-1 Accuracy vs. Amount of data used for the

training
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» Low Fraction Data Improvement

Data Fraction Glister This work  Improvement
1% 2104415 4750317 +20.45%

5% 51.64+2.77 59.30+1.9 +7.66%

10% 62.75+2.6 67.74+1.8 +4.99%

20% 64.58+4.6 75.65+1.9 +11.07%

» End-to-end Speed Up
« 2.8x speedup in end-to-end training.
« 15x reduction in pre-training time.

« Compared to full training dataset, we reduced
87% while not compromising the accuracy.

Pre-training Tax

To get stable and robust gradients, there is a pre-
training process with a full dataset, which has non-

negligible overhead.

In prior works, it took 15-40 epochs, which
corresponds to 20%-40% of the end-to-end training

time.

» We define this pre-training overhead as a pre-
fraining tax and aim to reduce the pre-training tax
In a principled, scalable, and resource-efficient

mannetr.

> Sparsity

 We apply data-based sparsity as a regularizer to reduce overfitting while increasing model
heterogeneity. We use one-shot magnitude pruning due to its simplicity and low overhead.

» Model Merging Method
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» Ablation Study

» Model Pruning Method
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