

Summary

- We propose a distributed pre-training framework that minimizes the pre-training overhead in subset training.
- We leverage model-soup-inspired ensembling at *initialization* with aggressive augmentation and data-based sparsity to efficiently provide stable and robust gradients for subset selection algorithms.

Gradient-based Subset Training

- > With the emergence of billion-parameter-scale models, dataset sizes have also increased accordingly.
- \succ To accelerate training with large-scale datasets, subset training got attention. Using a carefully selected subset, we can train faster without compromising accuracy.
- Recently proposed subset selection algorithms use the initial gradient after pretraining as input to the algorithms.

Pre-training Tax

- To get stable and robust gradients, there is a pretraining process with a full dataset, which has nonnegligible overhead.
- In prior works, it took 15-40 epochs, which corresponds to 20%-40% of the end-to-end training time.
- We define this pre-training overhead as a pretraining tax and aim to reduce the pre-training tax in a principled, scalable, and resource-efficient manner

Lowering the Pre-training Tax for Gradient-based Subset Training: A Lightweight Distributed Training Toolkit Yeonju Ro, Zhangyang "Atlas" Wang, Vijay Chidambaram, Aditya Akella The University of Texas at Austin

- that, in our design,
- at each worker.
- selection algorithms.
- Our Method

- does not overlap each other.

- Data Augmentation
- > Sparsity

Ablation Study

	LOW FRACTION (10%)				
Method	Resnet18	Resnet18	WRN28-10	WRN50-2	
	CIFAR10	IMAGENET	CIFAR100	IMAGENET	
FULL ACC	95.4	67.7	80.4	76.5	
0	60.7 ± 5.1	45.0 ± 0.2	38.6 ± 1.0	47.5 ± 0.7	
0 + 0	62.2 ± 3.6	45.2 ± 0.2	38.7 ± 0.9	48.2 ± 0.5	
0 + 0	66.3 ± 2.1	46.2 ± 0.1	43.9 ± 0.4	48.9 ± 0.1	
0 + 2 + 3	68.5 ± 1.1	46.4 ± 0.2	45.1 ± 0.3	49.4 ± 0.2	
A MODEL MEDGING A MODEL DDUN					

Fraction	Glister	This work	Improvement
1%	27.04±1.3	47.50 ± 1.7	+20.45%
5%	51.64 ± 2.7	59.30 ± 1.9	+7.66%
10%	62.75±2.6	67.74 ± 1.8	+4.99%
20%	$64.58 {\pm} 4.6$	75.65 ± 1.9	+11.07%

CTION	10%	20%	30%	40%	50%
MERGING, ALL	68.05%	78.53%	85.76%	87.74%	89.92%
MERGING, GREEDY	69.50%	79.39%	88.70%	89.25%	91.18%

ACTION	10%	20%	30%	40%	50%
Pruning JDE-BASED	63.76% 62.51% 66.01%	69.48% 72.81% 77.62%	78.25% 78.62% 84.21%	83.02% 83.13% 86.59%	86.76% 87.13% 88.65%