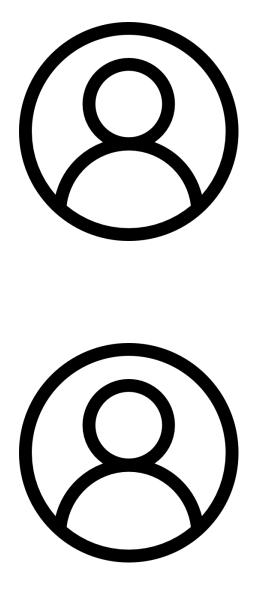
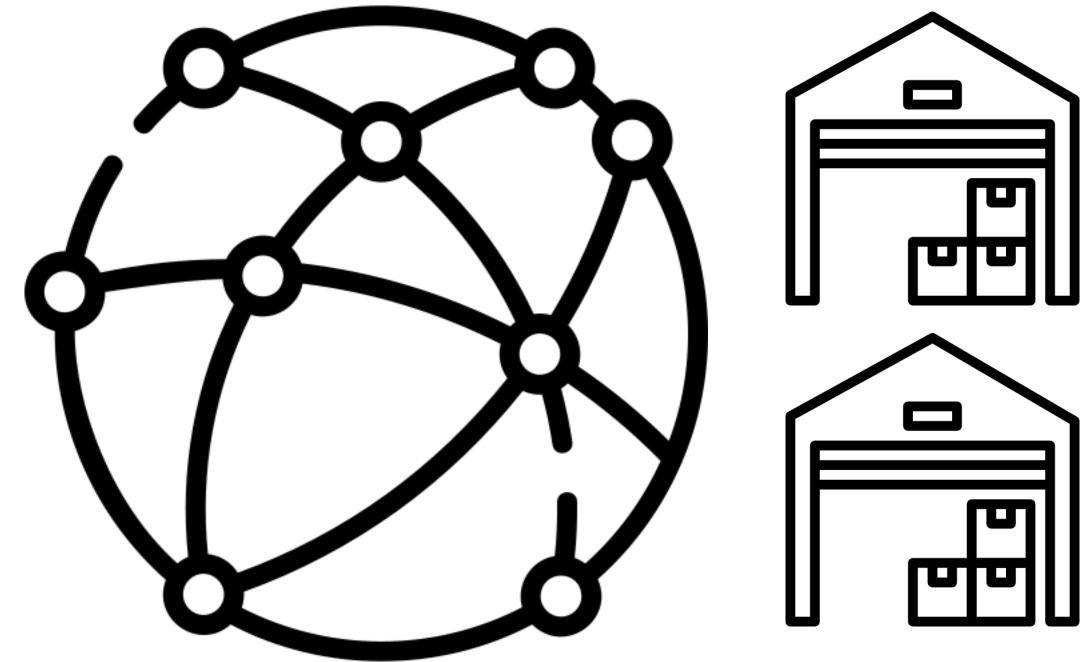
Darwin: Flexible Learning-based CDN Caching Jiavi Chen, Nihal Sharma, Tarannum Khan, Shu Liu, Brian Chang,

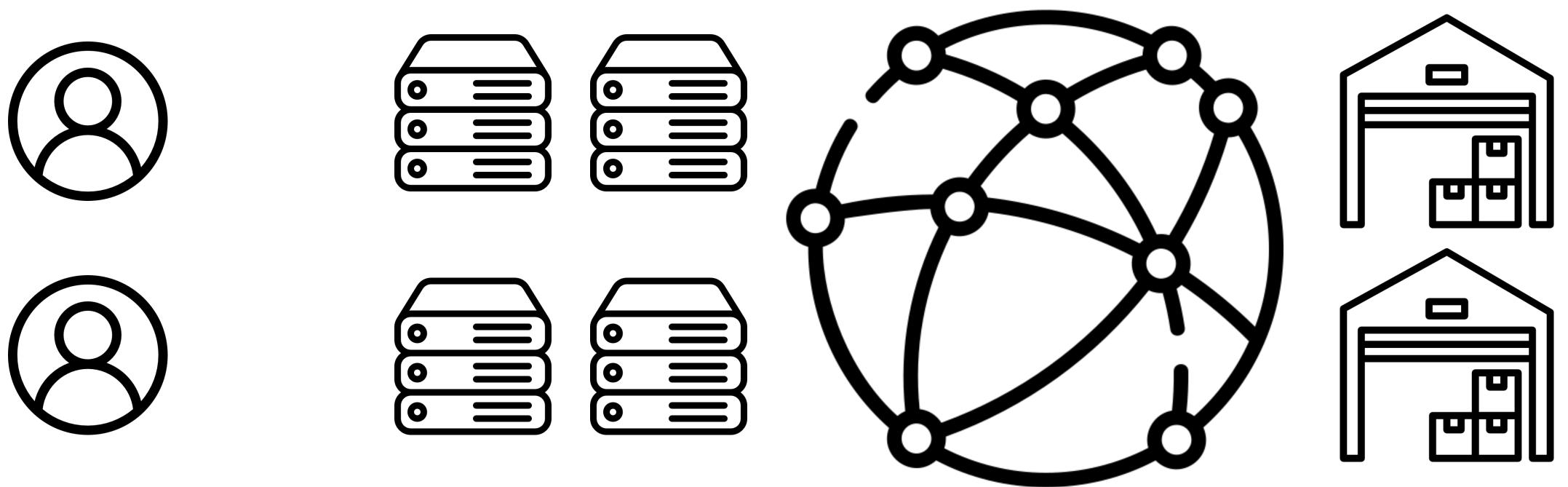
Aditya Akella, Sanjay Shakkottai, Ramesh K. Sitaraman

Sigcomm 2023, New York City



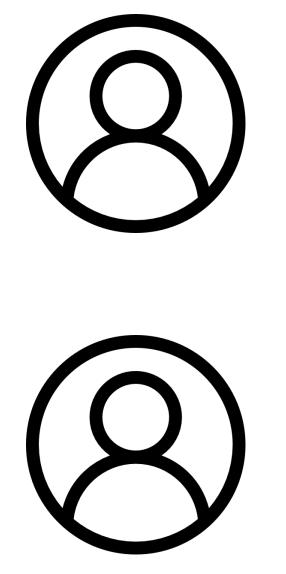
Users



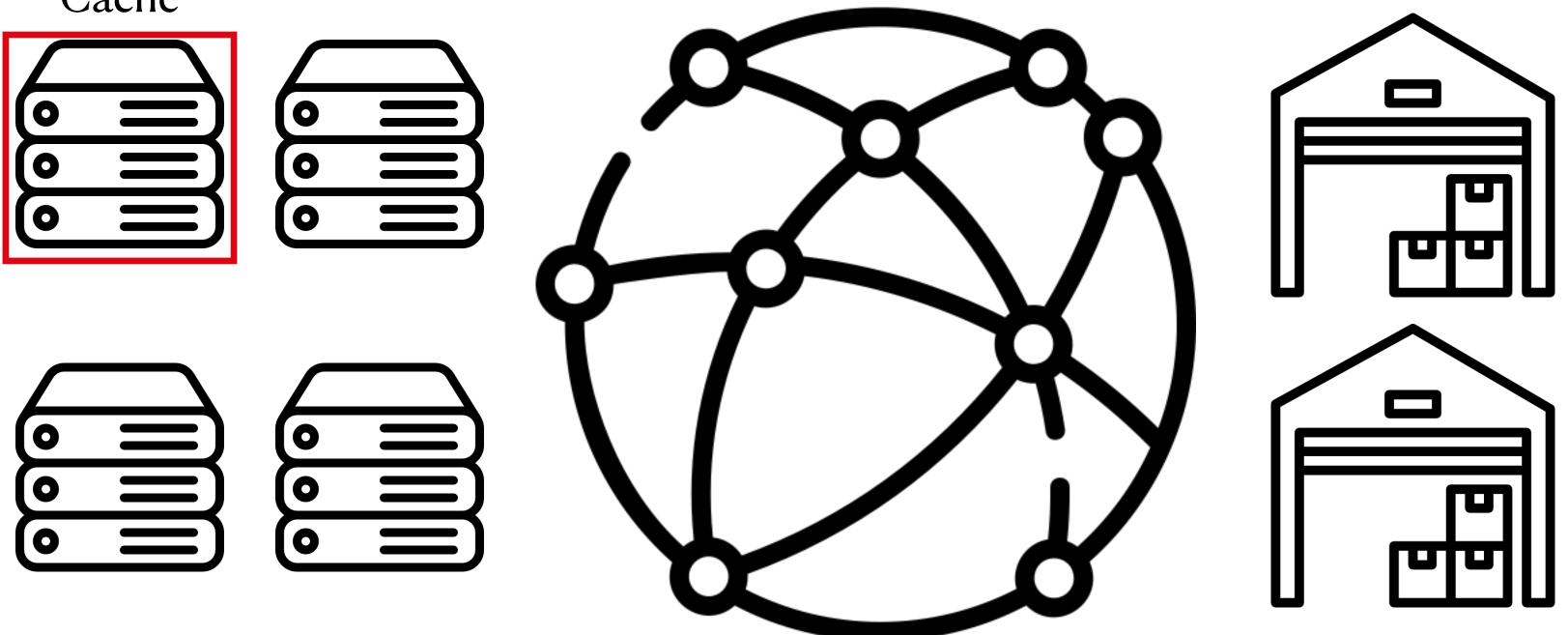


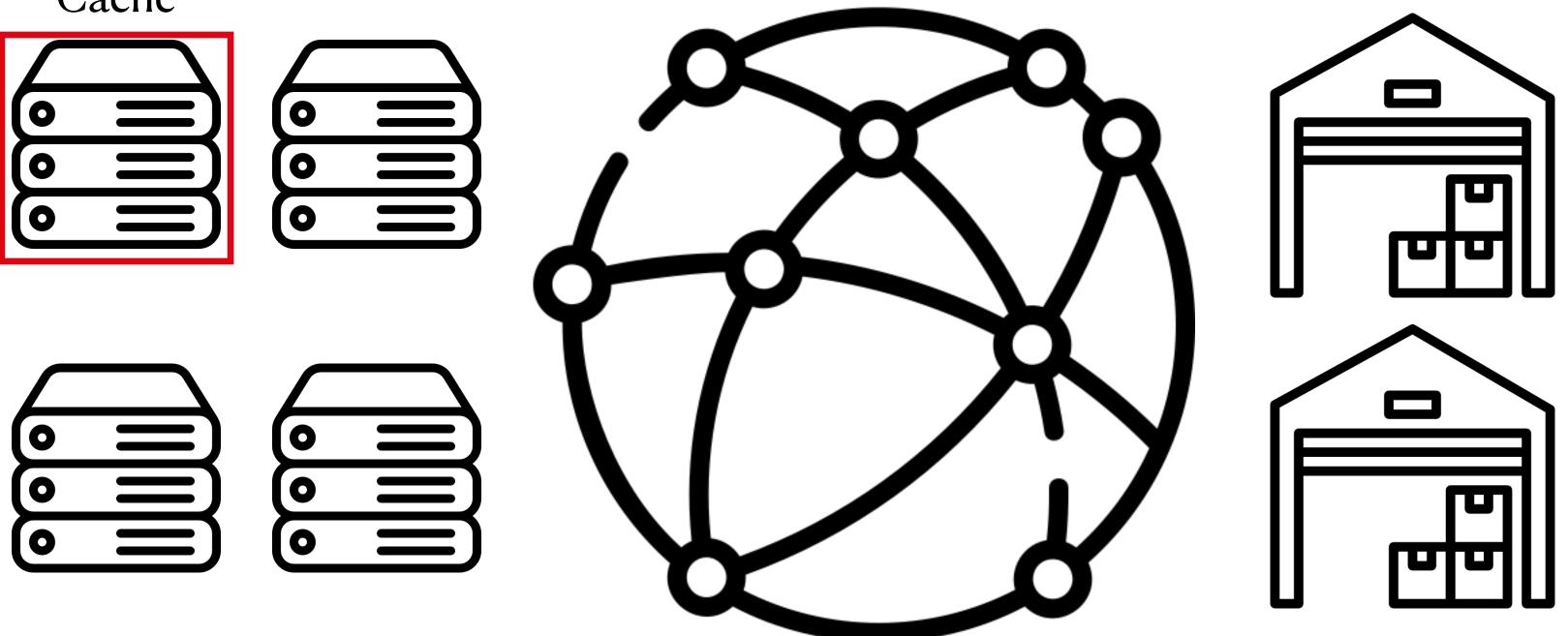
CDN Servers

Users



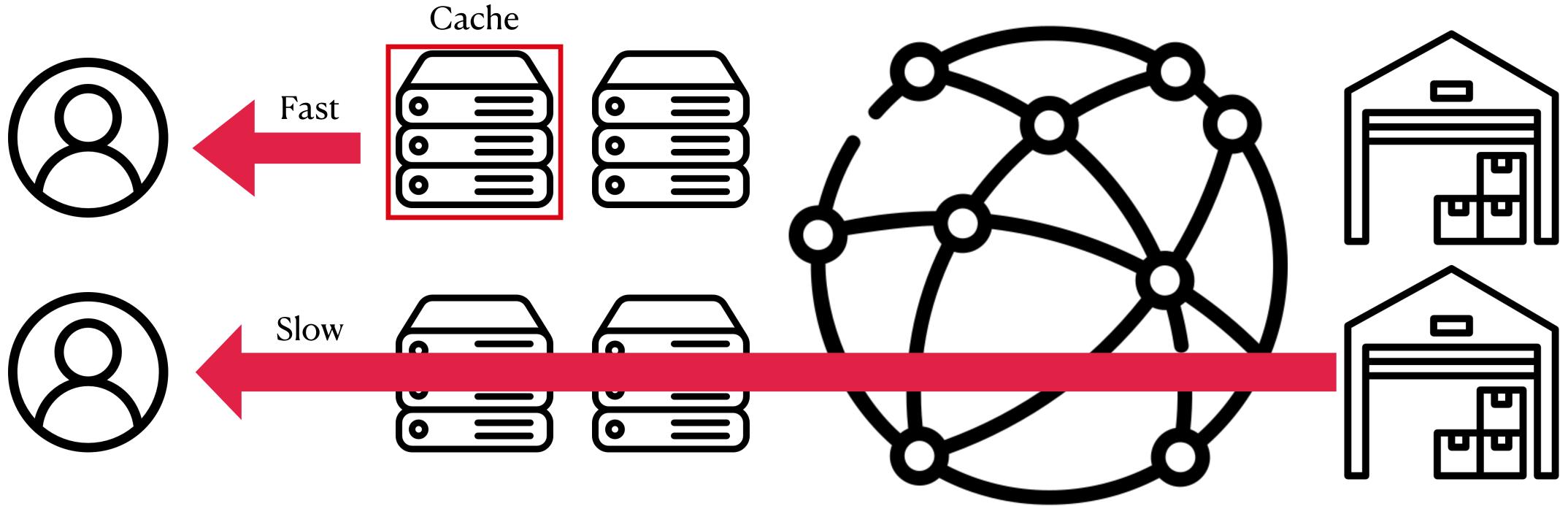
Cache





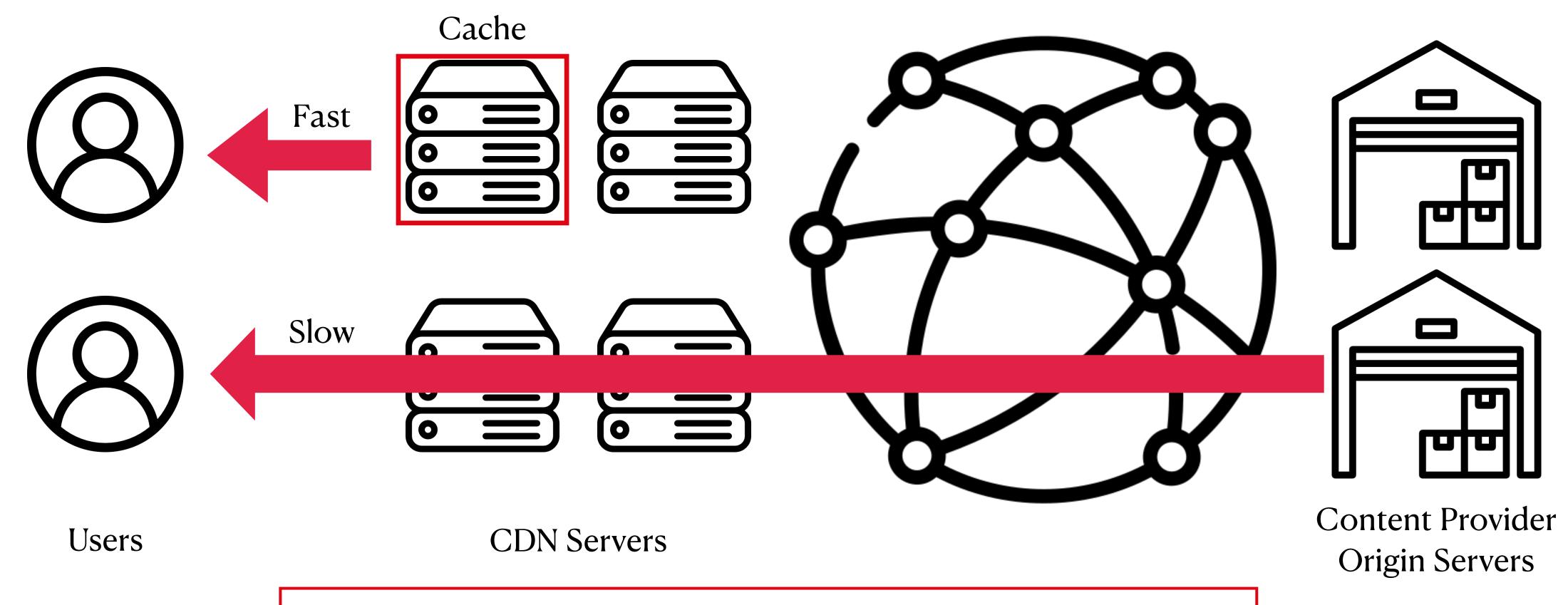
CDN Servers

Users



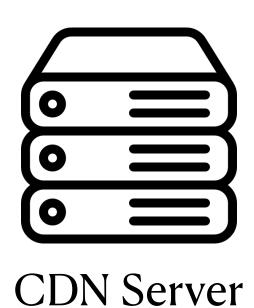
Users

CDN Servers



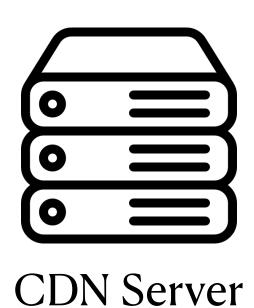
Cache management policies play an important role

Download Request



Requests

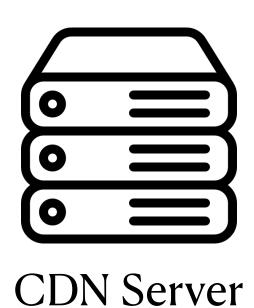
Download Request



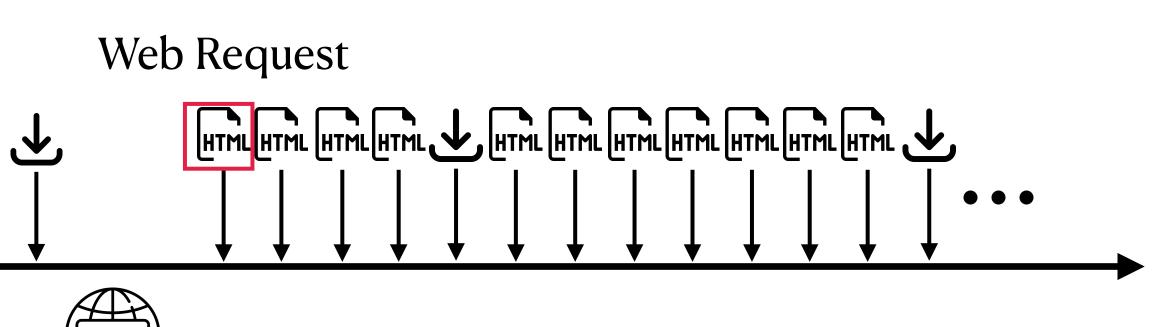
Requests



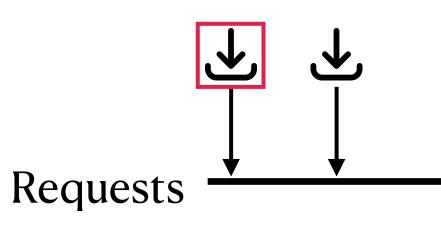
Download Request

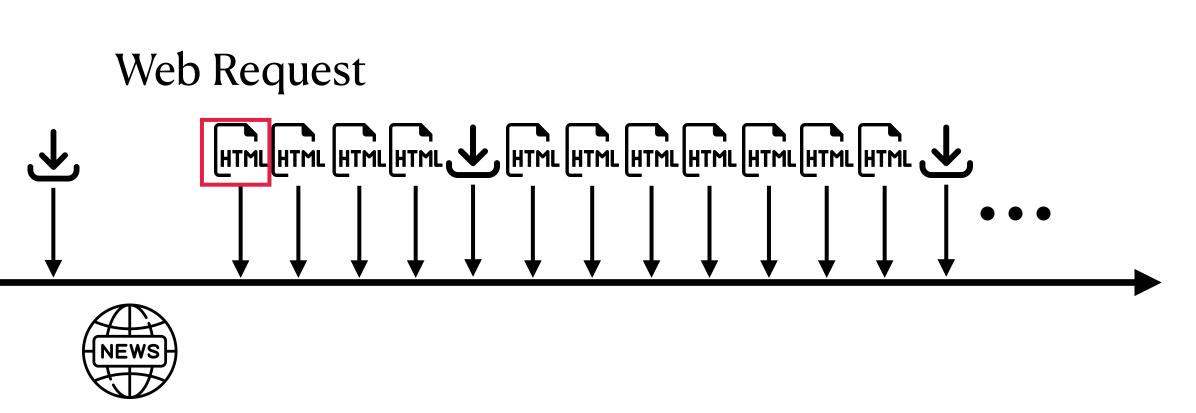


.≁ Requests

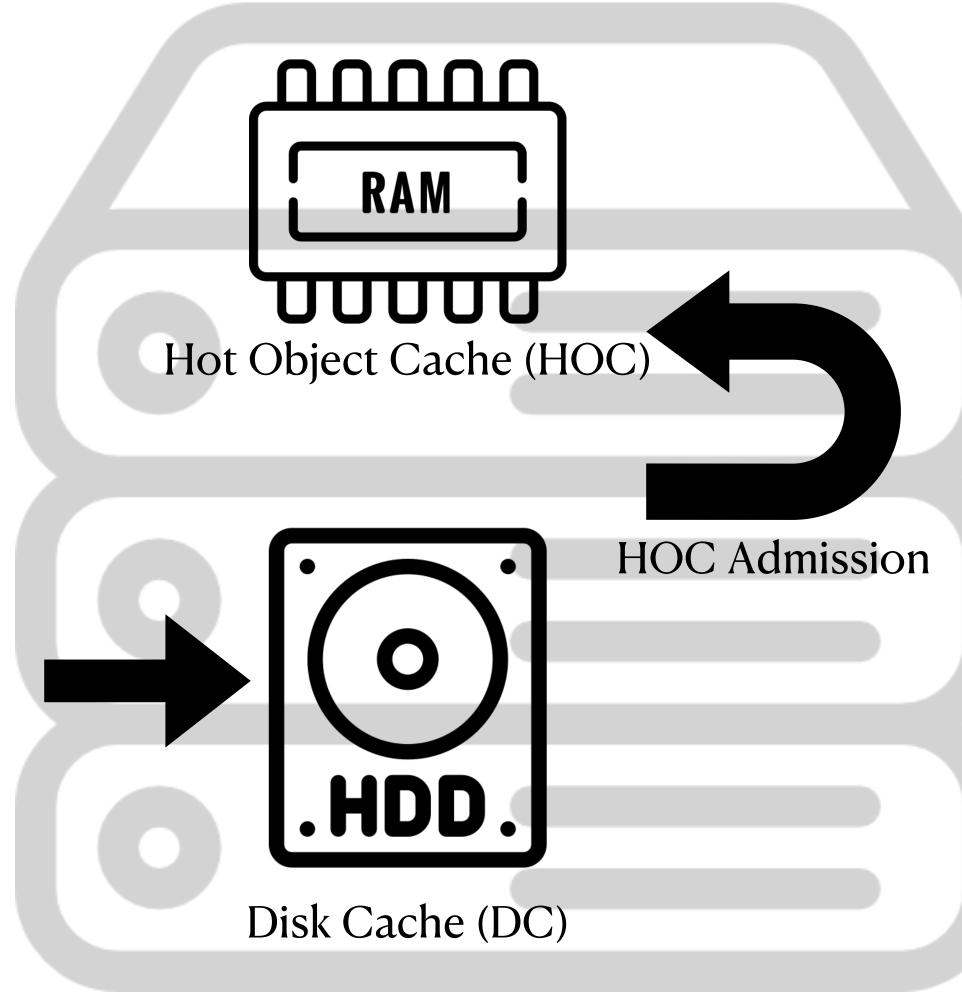


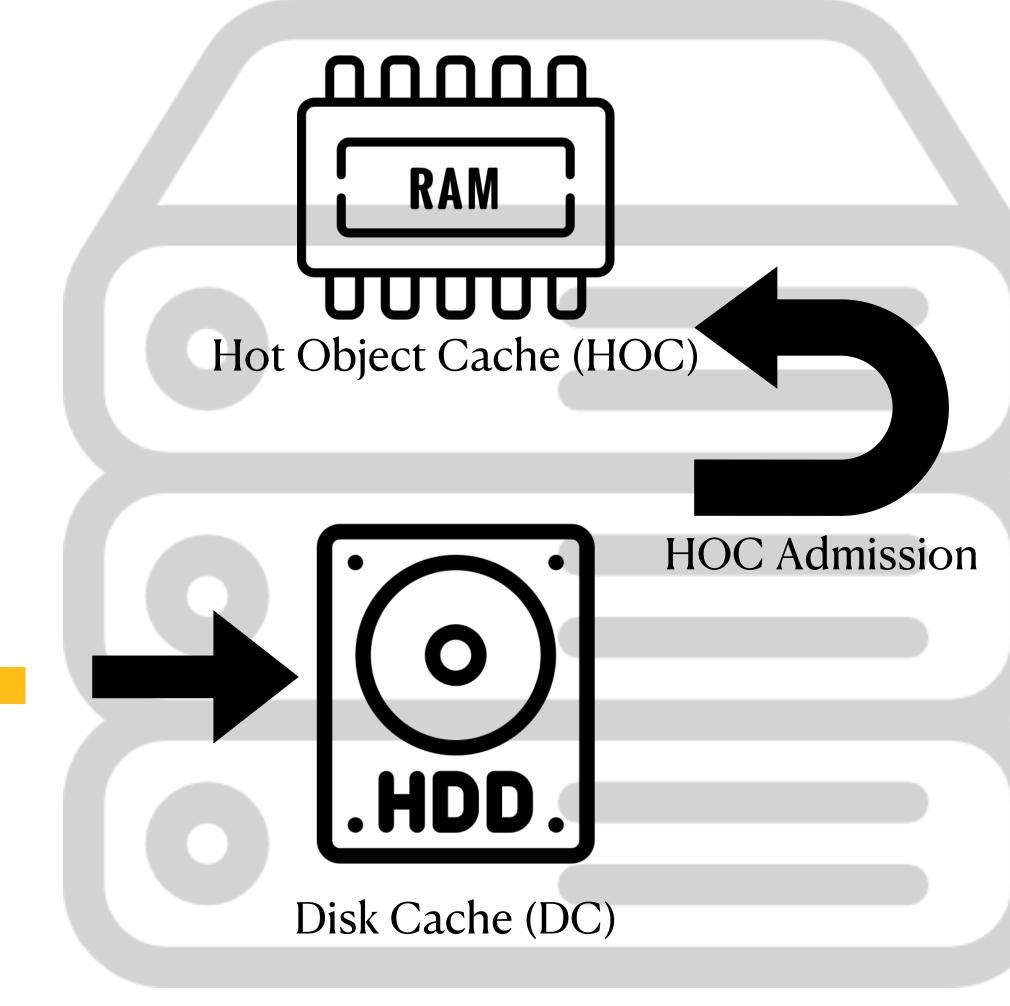
Download Request

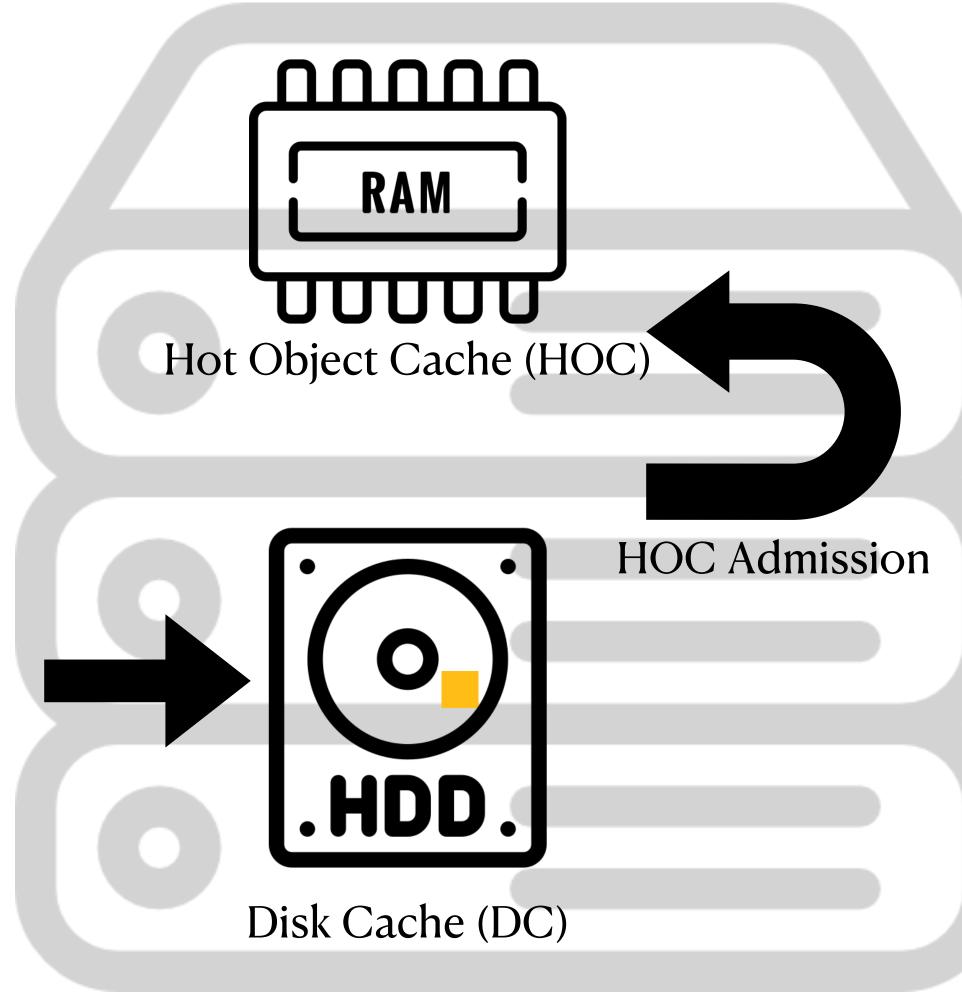


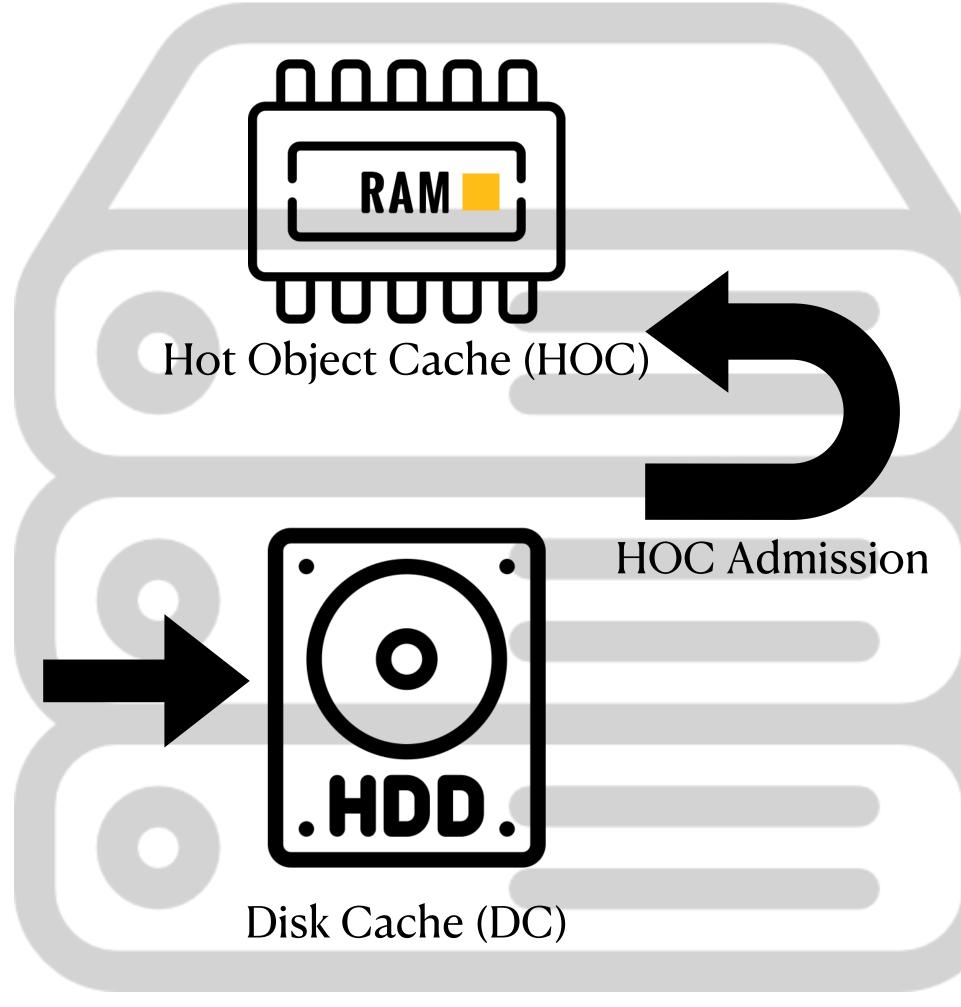


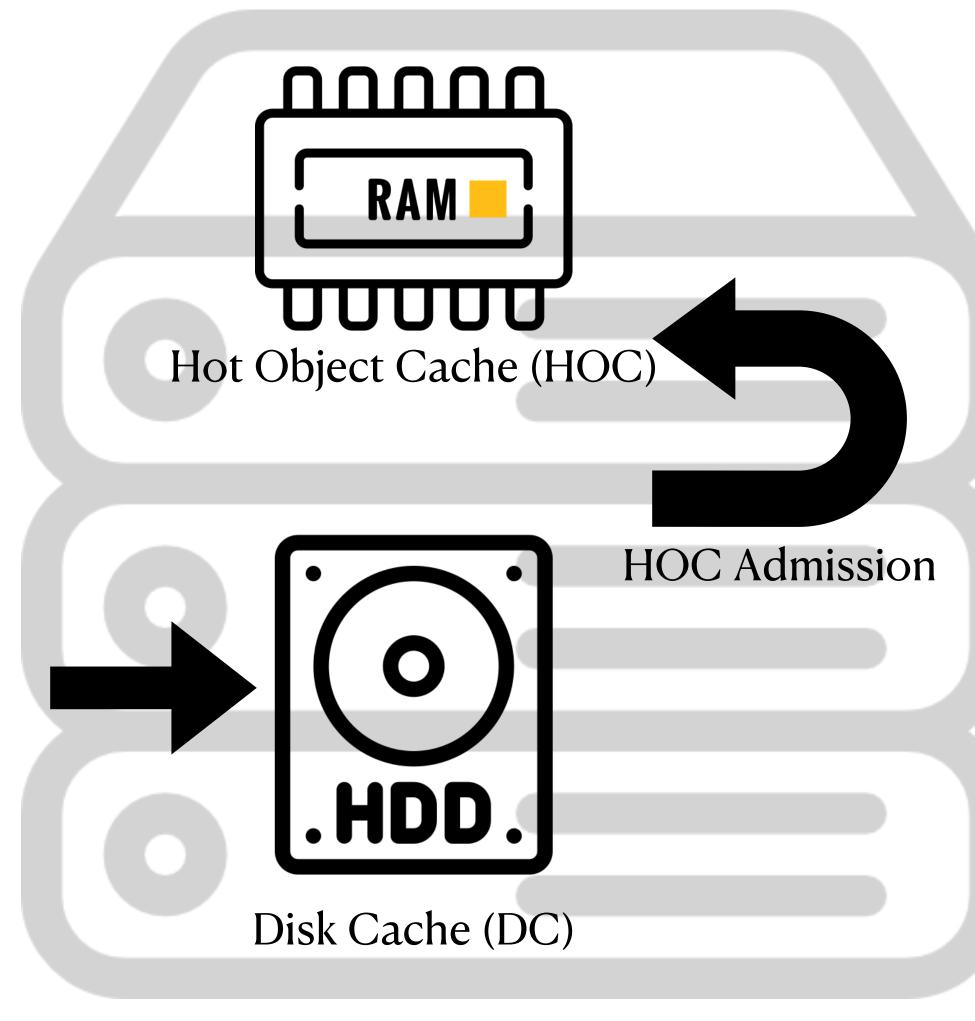
Are static cache management policies effective?





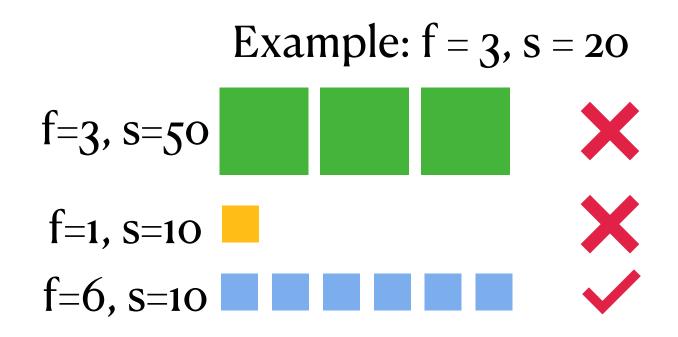


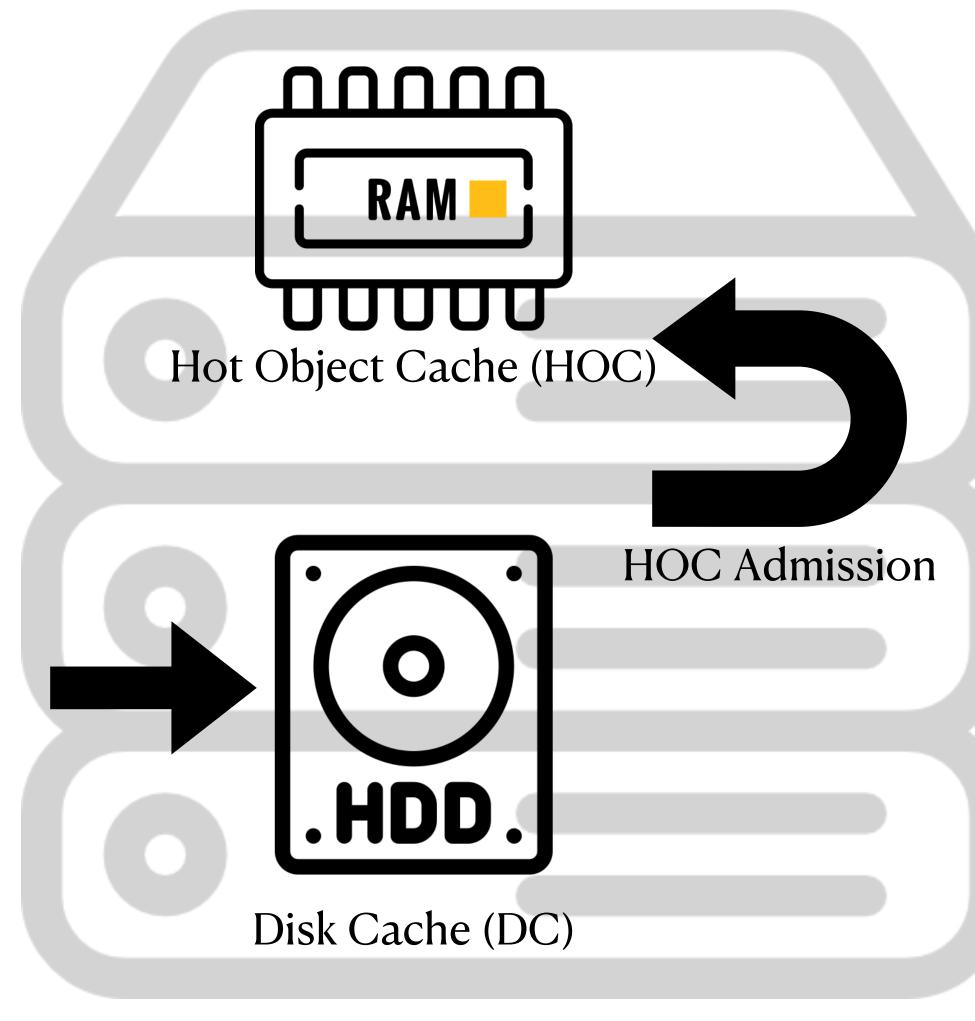




CDN Server

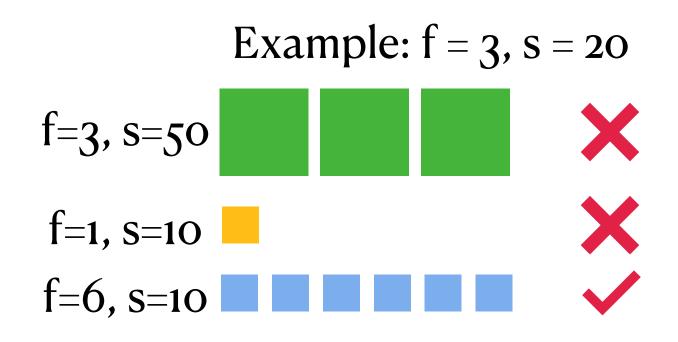
A common policy: frequency \geq f, size \leq s





CDN Server

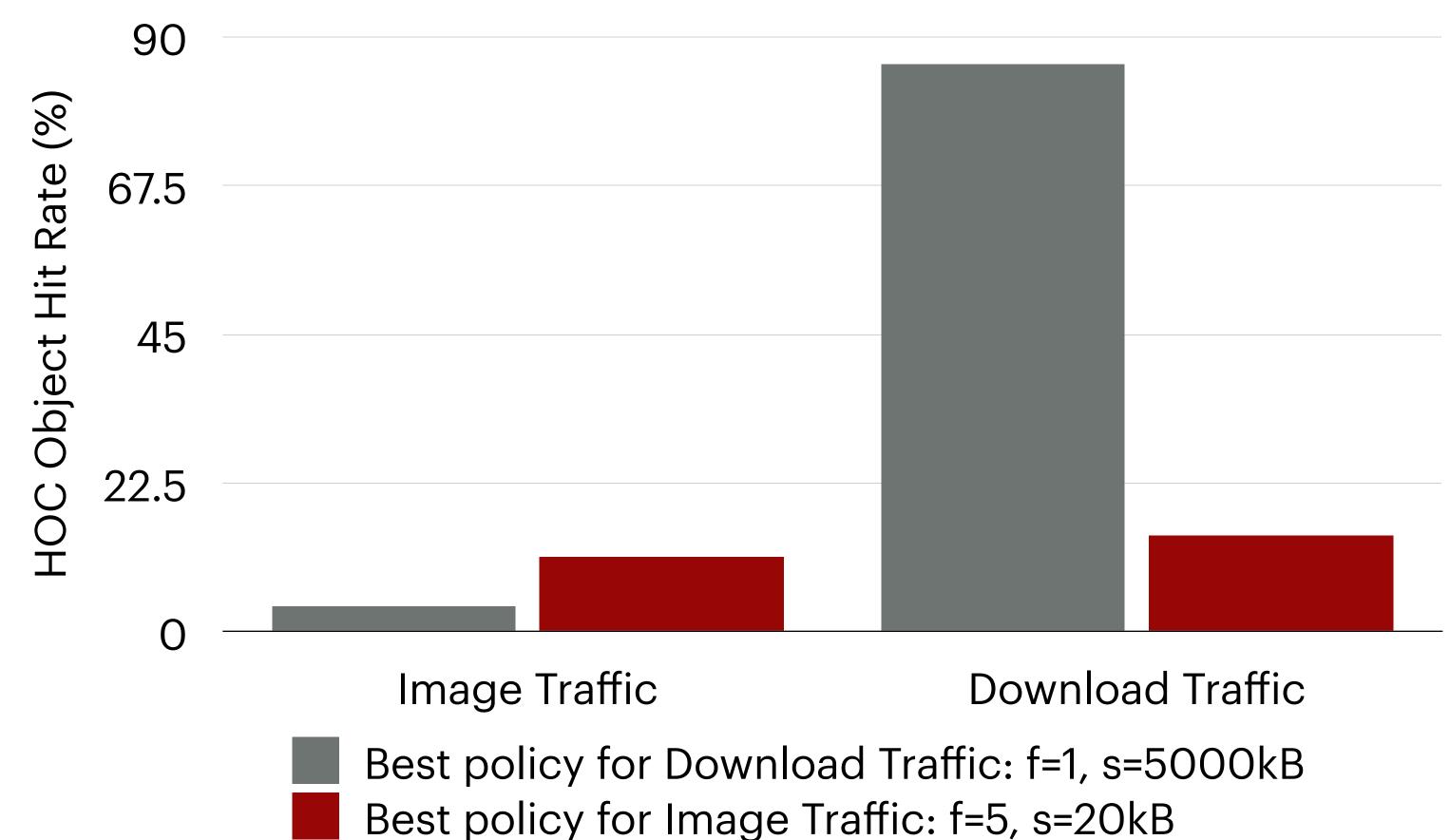
A common policy: frequency \geq f, size \leq s



Metric: Object Hit Rate (OHR) HOC OHR= $\frac{\#HOC \text{ Hits}}{\#Requests}$

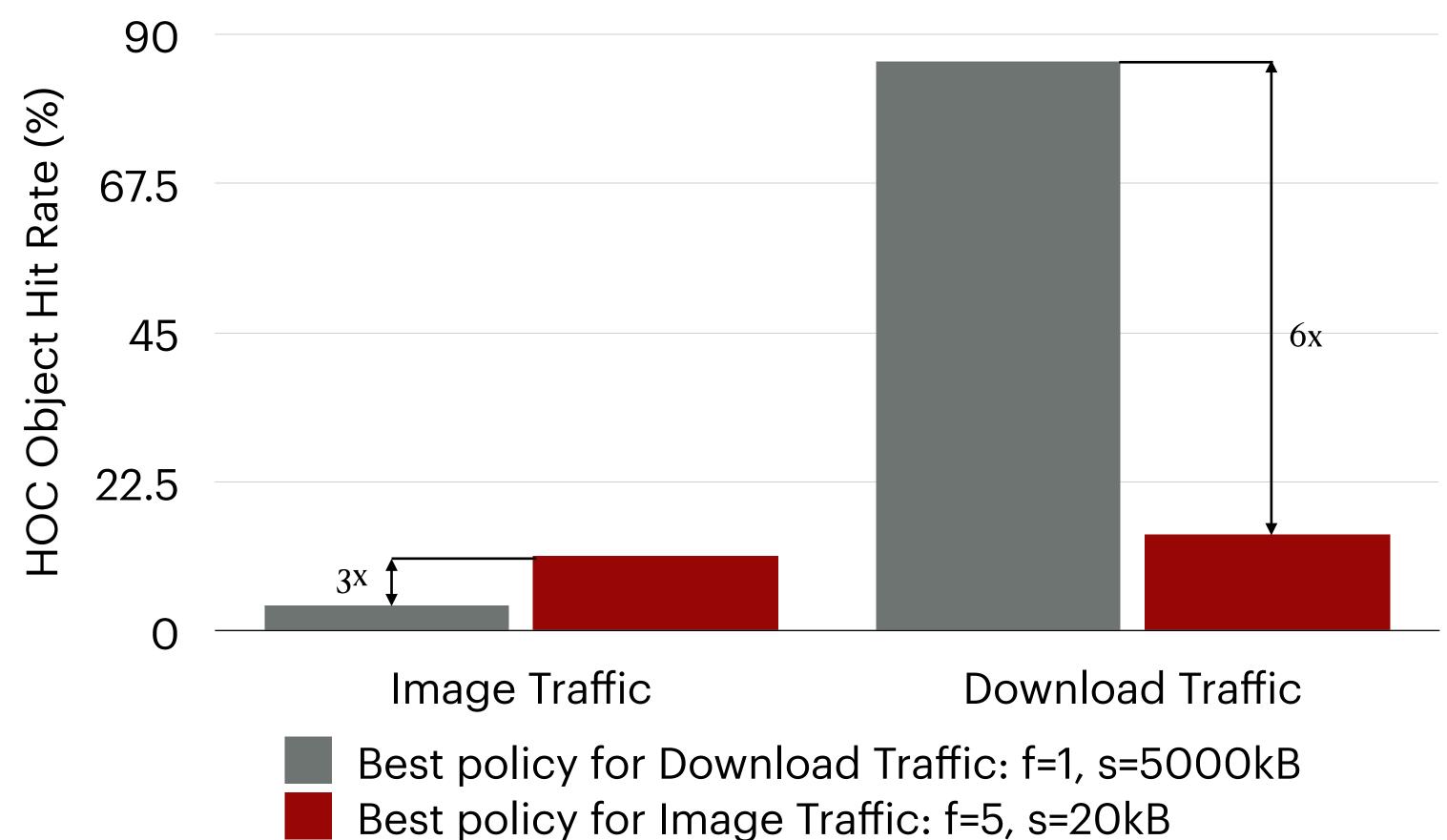
Static HOC admission policies fall short

Static HOC admission policies fall short



Performance of Download and Image Traffic **Class Subsets on a Production Server Trace**

Static HOC admission policies fall short



Performance of Download and Image Traffic **Class Subsets on a Production Server Trace**

No one-size-fits-all static policy.

No one-size-fits-all static policy. Can we learn the optimal policy for the current traffic?

- Restrict the **policy decision knobs** •
 - *AdaptSize@NSDI'17* can only adapt size threshold.

- Restrict the **policy decision knobs**
 - AdaptSize@NSDI'17 can only adapt size threshold.
- Don't accommodate hardware-dependent metrics
 - Shadow cache-based approaches (e.g. *HillClimbing@NSDI'17*) • cannot model Disk Ops.

- Restrict the **policy decision knobs**
 - AdaptSize@NSDI'17 can only adapt size threshold.
- Don't accommodate hardware-dependent metrics
 - Shadow cache-based approaches (e.g. *HillClimbing@NSDI'17*) ulletcannot model disk Ops.
- Impose high overhead
 - *RL-Cache@NetAl'19* performs per-request inference.

- Restrict the **policy decision knobs**
 - AdaptSize@NSDI'17 can only adapt size threshold.
- Don't accommodate hardware-dependent metrics
 - Shadow cache-based approaches (e.g. *HillClimbing@NSDI'17*) ulletcannot model disk Ops.
- Impose high overhead
 - *RL-Cache@NetAl'19* performs per-request inference. •

- Restrict the **policy decision knobs**
 - AdaptSize@NSDI'17 can only adapt size threshold.
- Don't accommodate hardware-dependent metrics
 - Shadow cache-based approaches (e.g. *HillClimbing@NSDI'17*) ulletcannot model disk Ops.
- Impose high overhead
 - *RL-Cache@NetAl'19* performs per-request inference. \bullet

Darwin

- Restrict the **policy decision knobs**
 - AdaptSize@NSDI'17 can only adapt size threshold.
- Don't accommodate hardware-dependent metrics
 - Shadow cache-based approaches (e.g. *HillClimbing@NSDI'17*) ulletcannot model disk Ops.
- Impose high overhead
 - *RL-Cache@NetAl'19* performs per-request inference. •

Darwin

Unrestricted Knobs ✓

- Restrict the **policy decision knobs**
 - AdaptSize@NSDI'17 can only adapt size threshold.
- Don't accommodate hardware-dependent metrics
 - Shadow cache-based approaches (e.g. *HillClimbing@NSDI'17*) \bullet cannot model disk Ops.
- Impose high overhead
 - *RL-Cache@NetAl'19* performs per-request inference.

Darwin

Unrestricted Knobs ✓

Hardware-dependent Metrics √

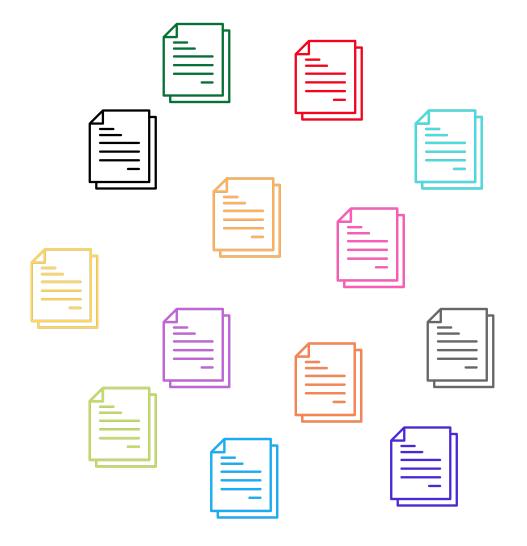
- Restrict the **policy decision knobs**
 - AdaptSize@NSDI'17 can only adapt size threshold.
- Don't accommodate hardware-dependent metrics
 - Shadow cache-based approaches (e.g. *HillClimbing@NSDI'17*) lacksquarecannot model disk Ops.
- Impose high overhead
 - *RL-Cache@NetAl'19* performs per-request inference.

Darwin

Unrestricted Knobs ✓

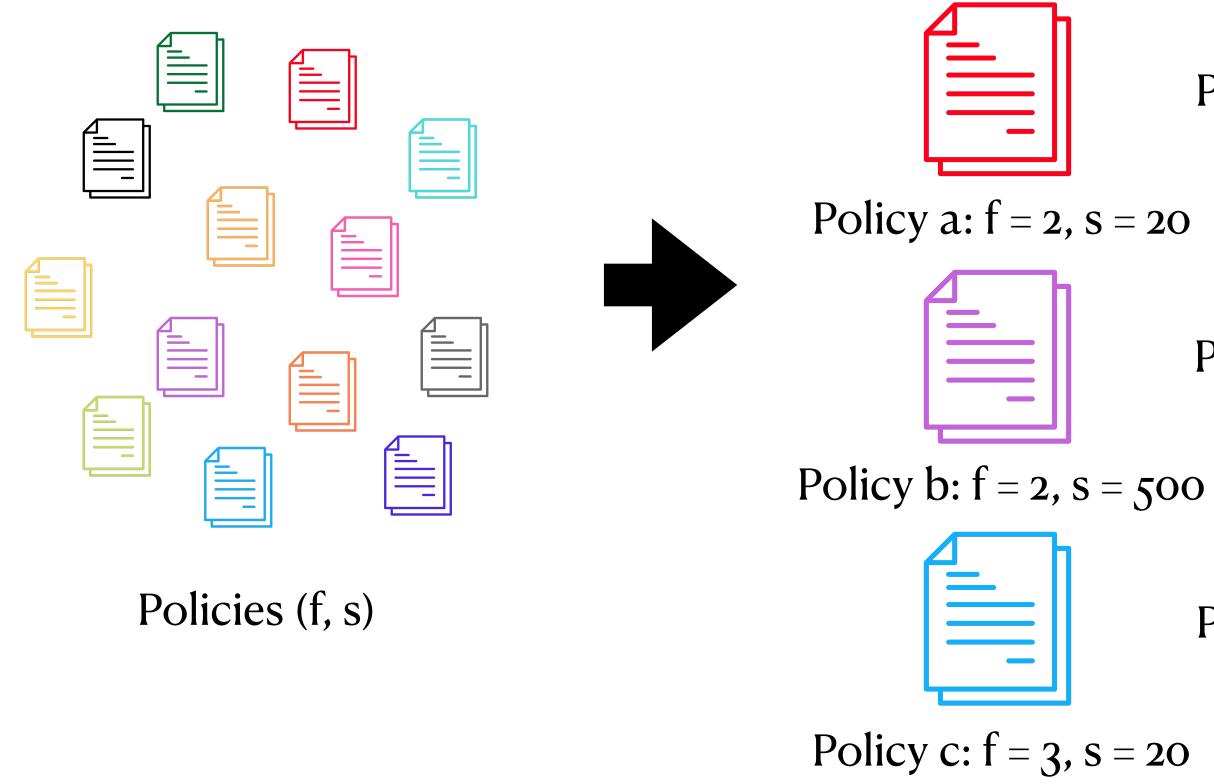
Hardware-dependent Metrics √

Low Overhead ✓



Policies (f, s)

Performance Evaluation

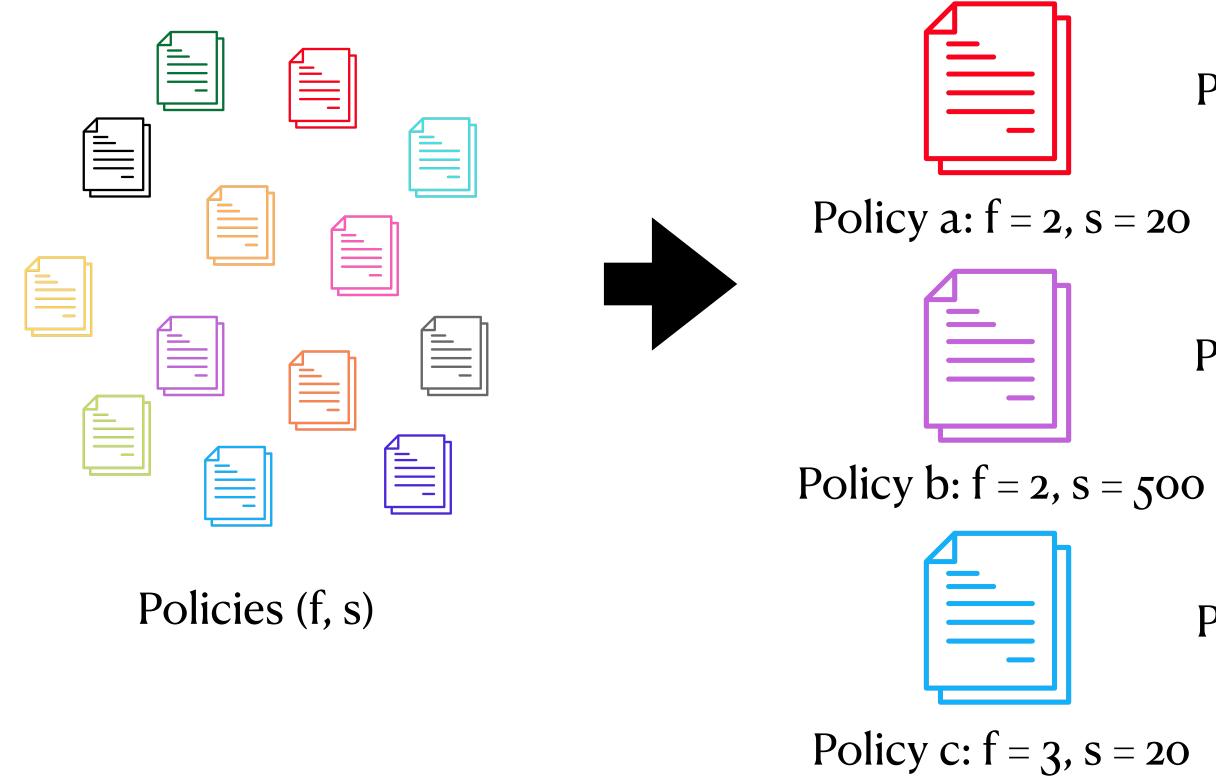


Performance a

Performance b

Performance c

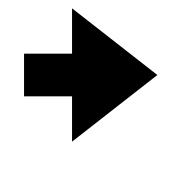
Performance Evaluation



Policy Selection

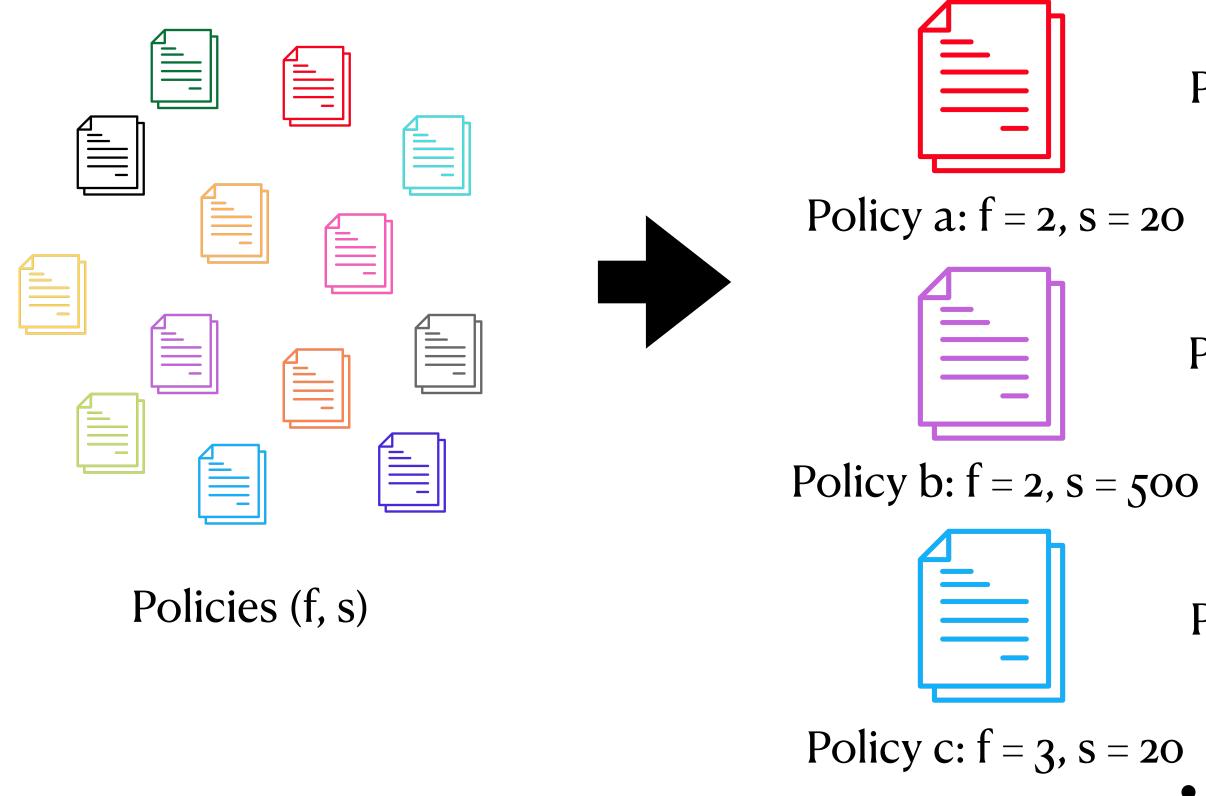
Performance a

Performance b



Performance c

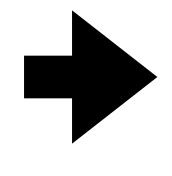
Performance Evaluation



Policy Selection

Performance a

Performance b

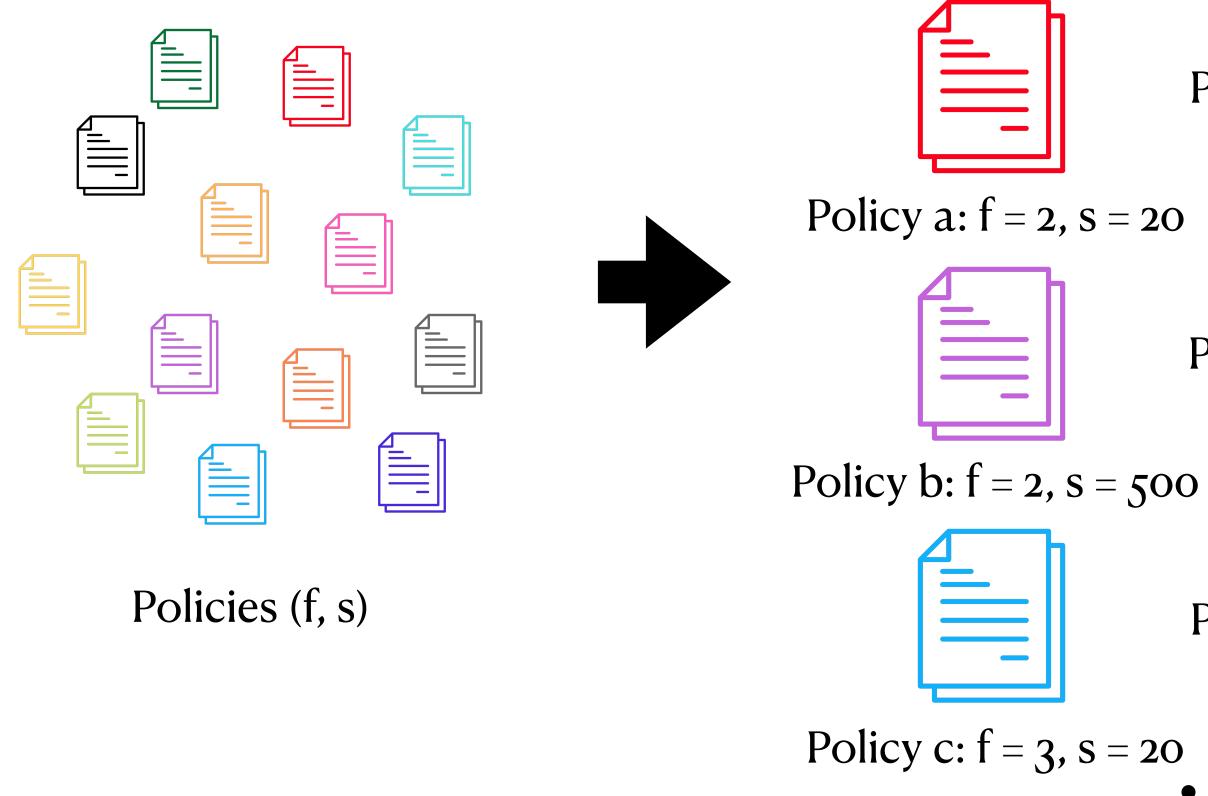


Performance c

Challenge 1: Scalability

Darwin Overview

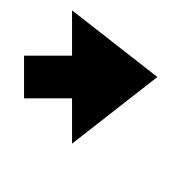
Performance Evaluation



Policy Selection

Performance a

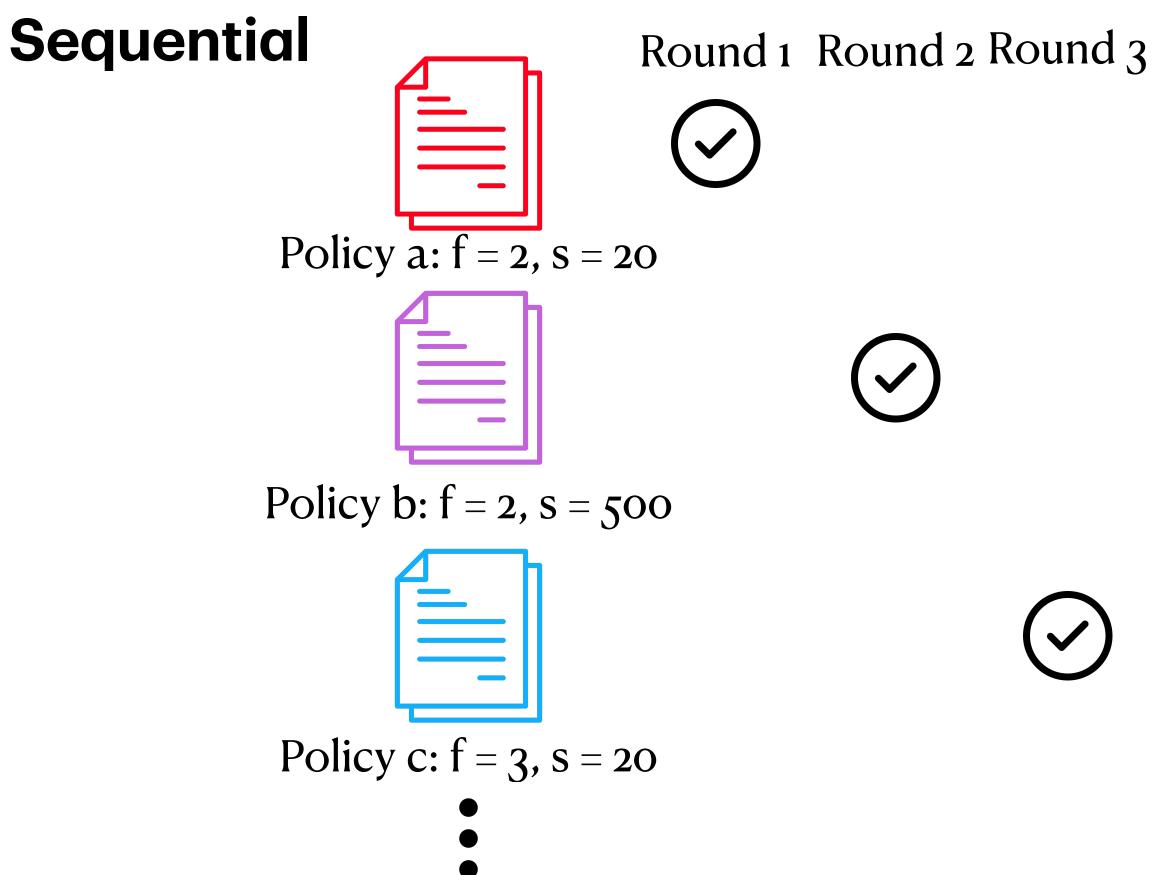
Performance b

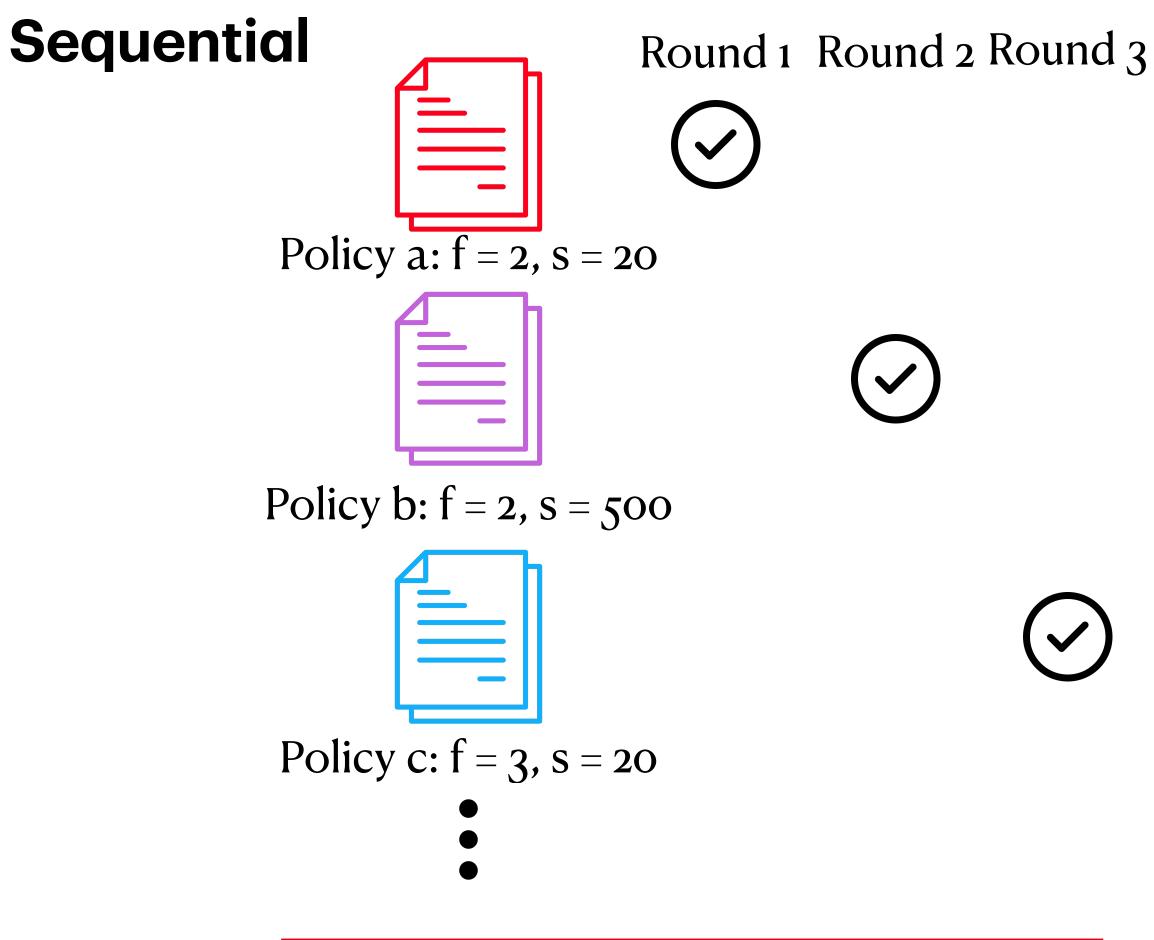


Performance c

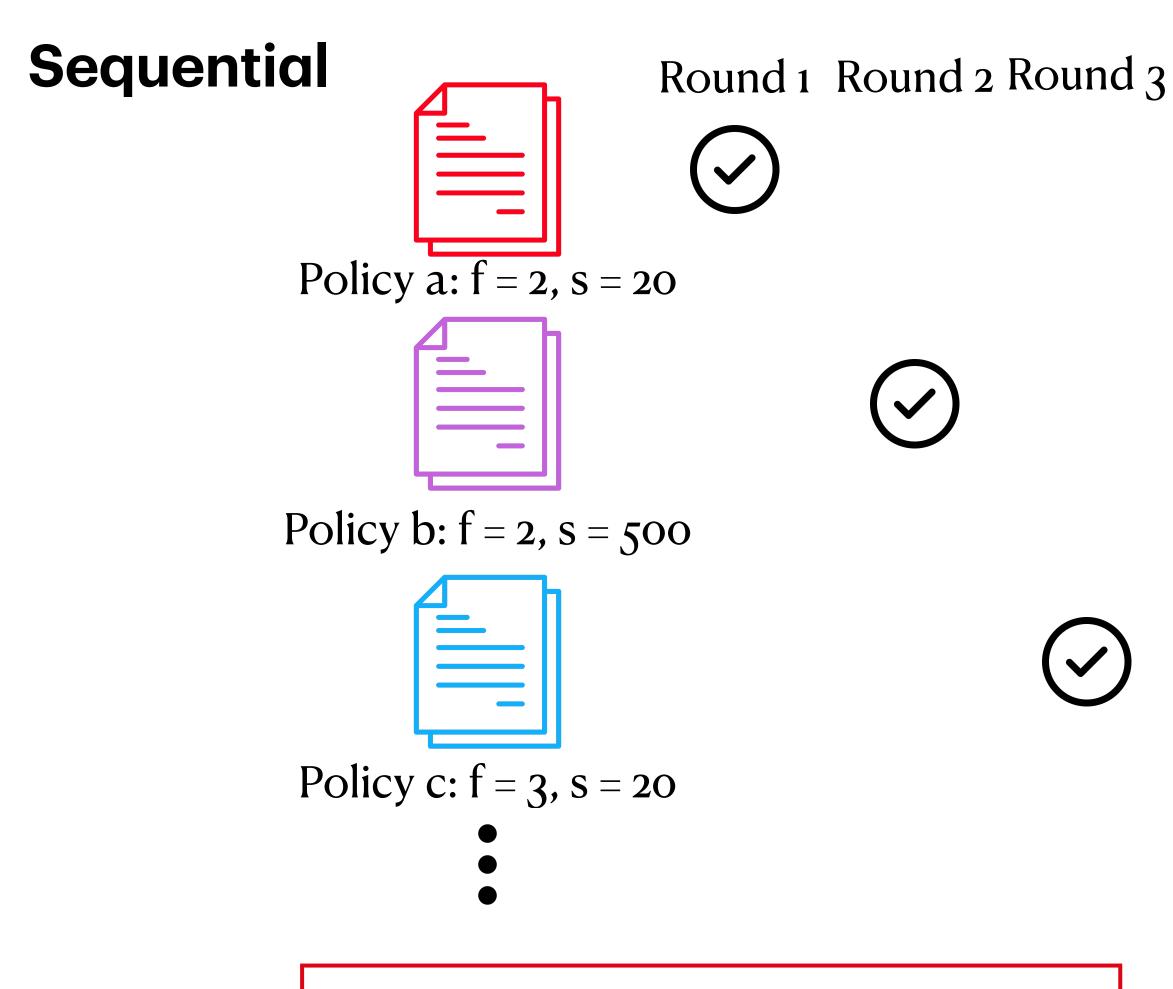
Challenge 1: Scalability

Challenge 2: Efficiency

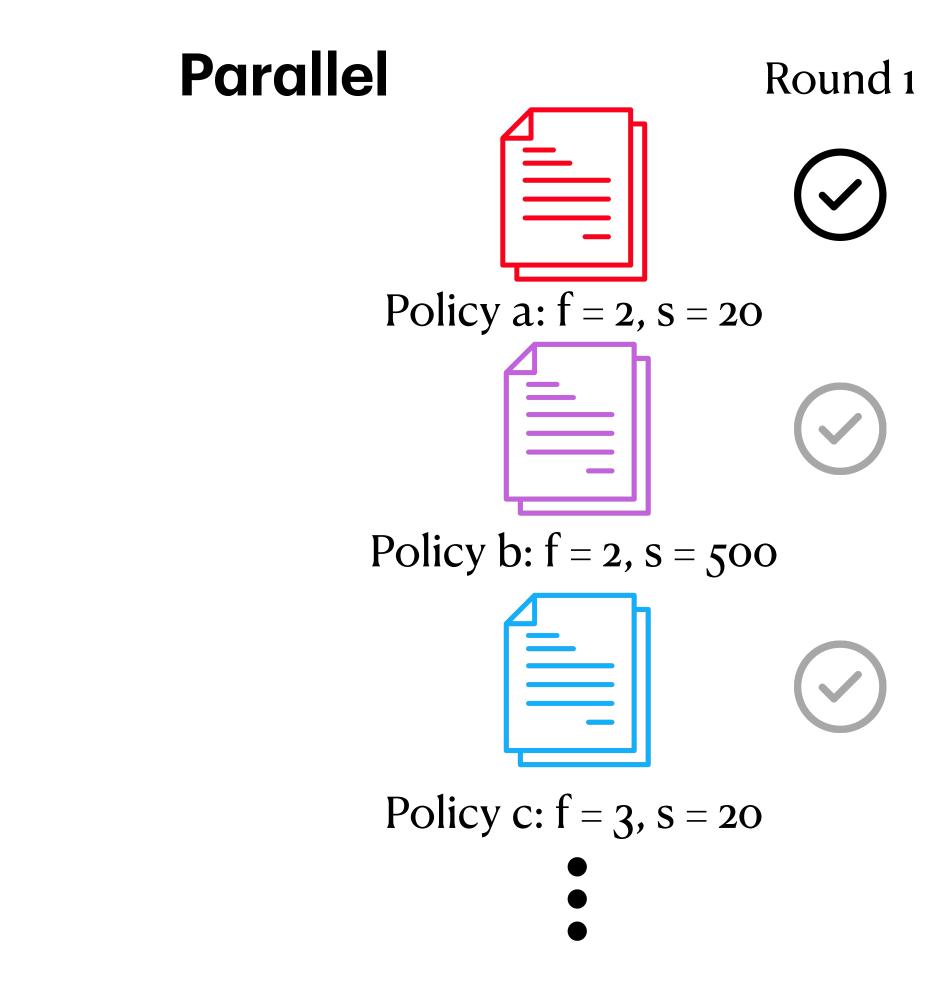


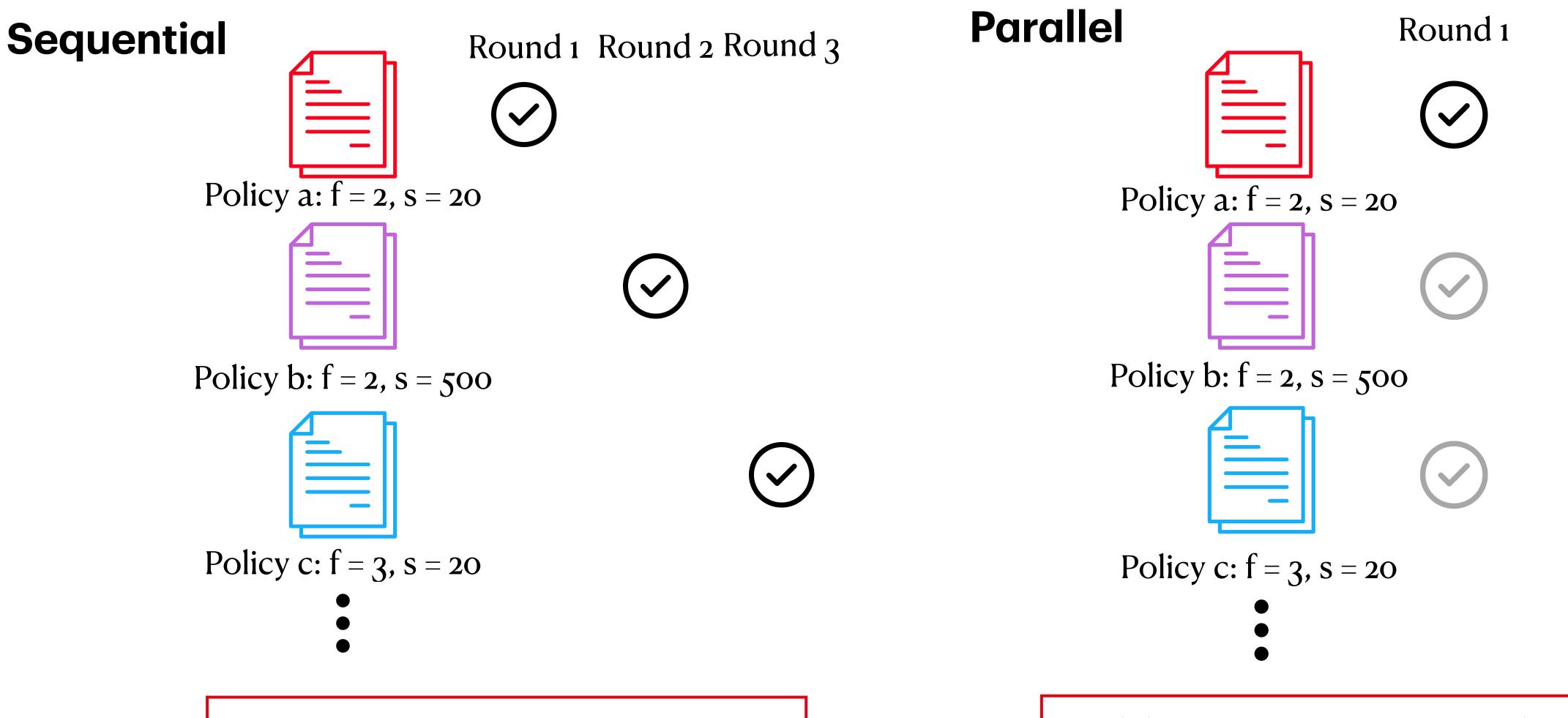


Problem: Observation Rounds



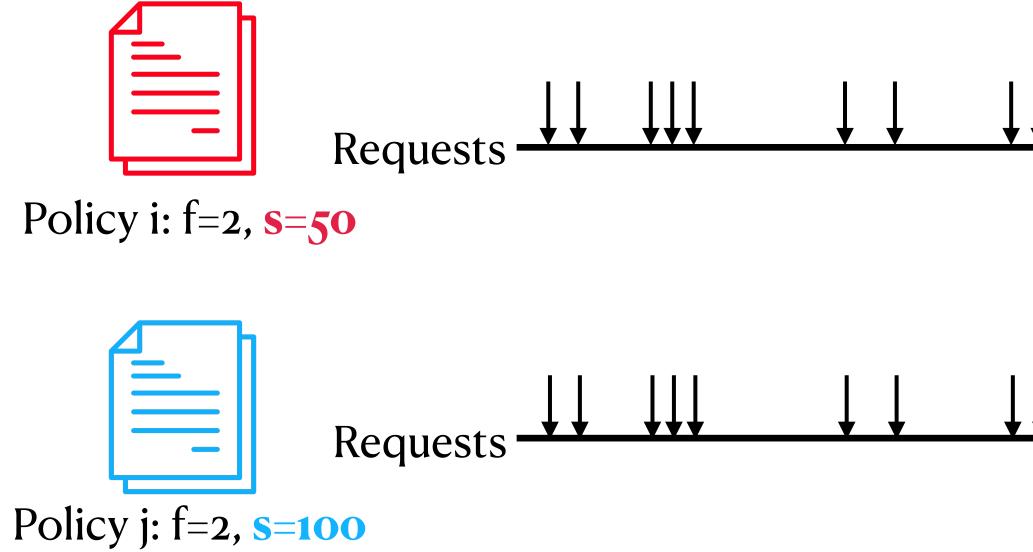
Problem: Observation Rounds

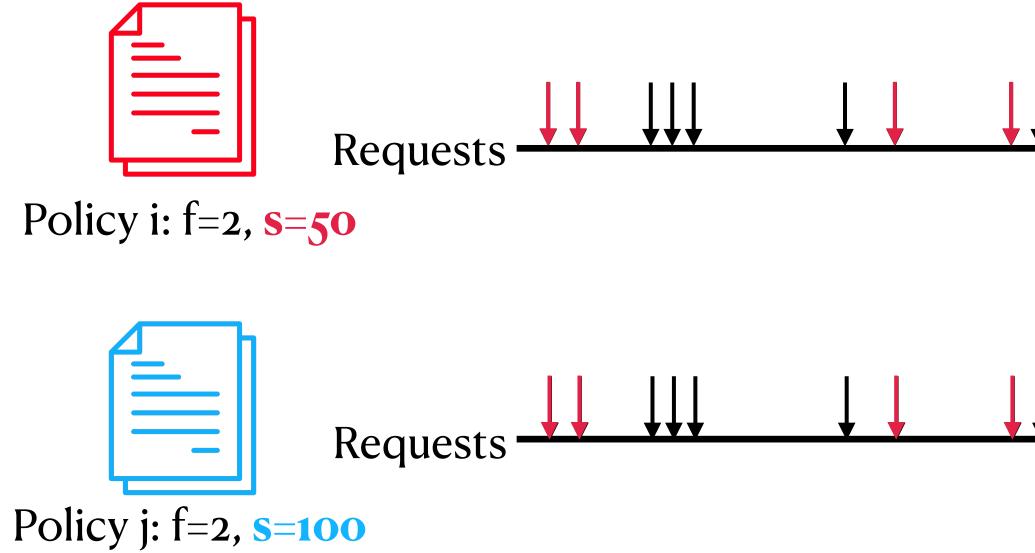


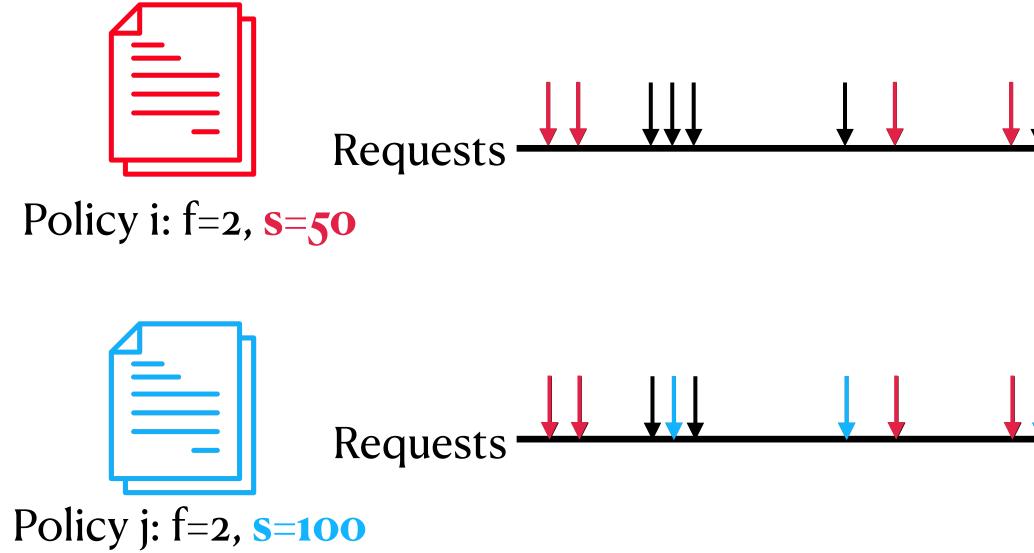


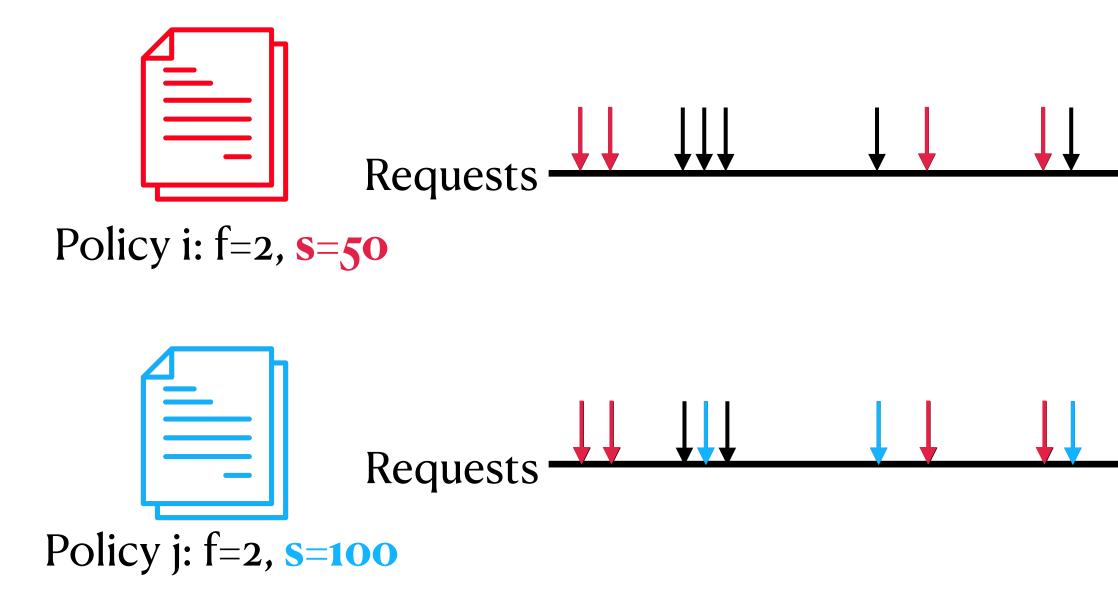
Problem: Observation Rounds

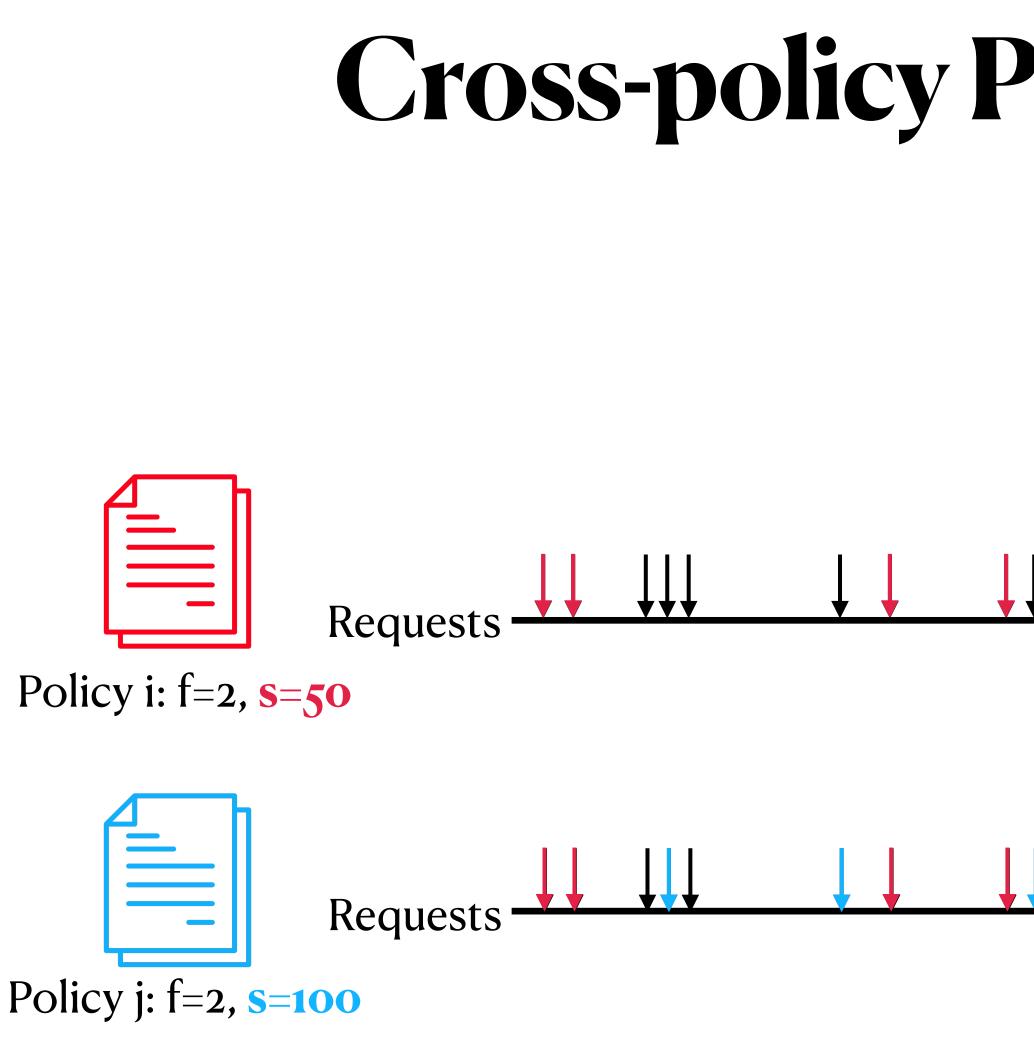
Problem: Resource Overhead



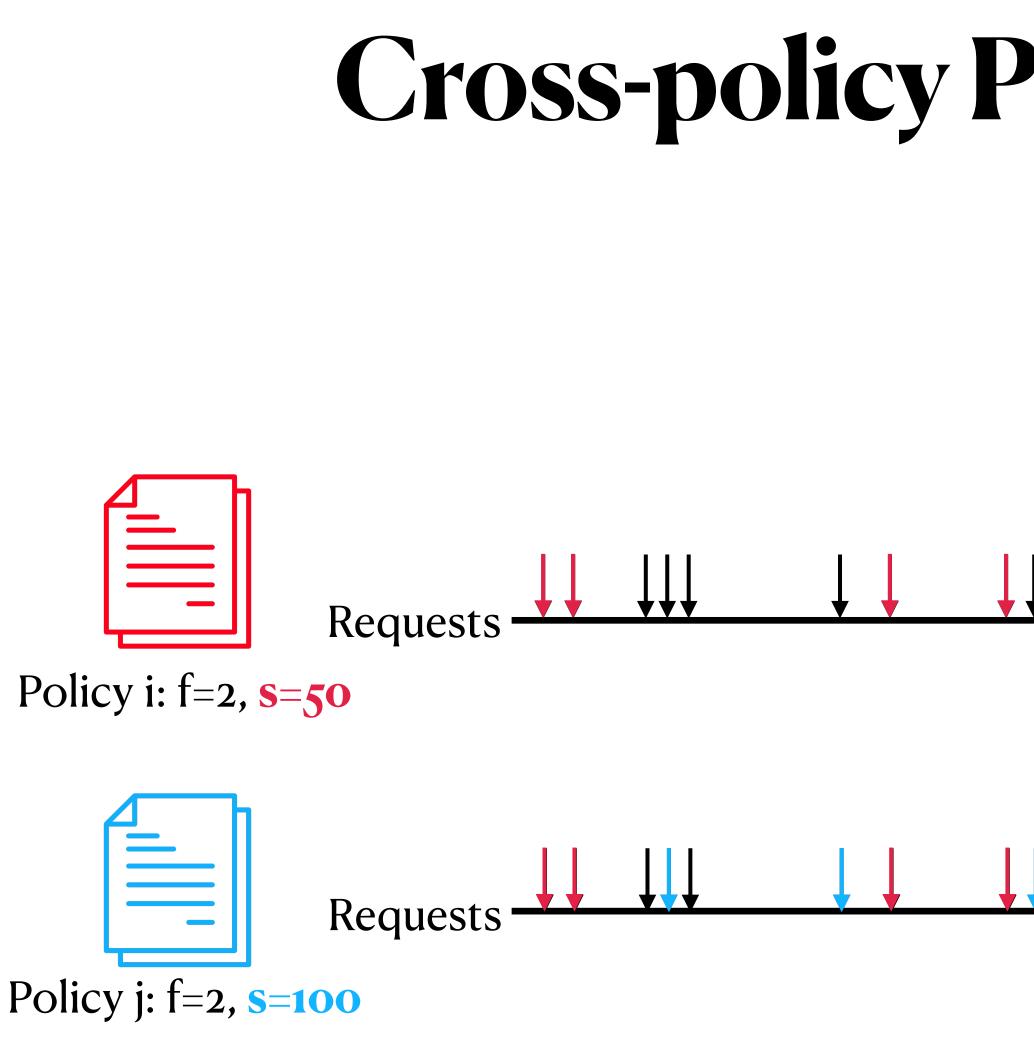




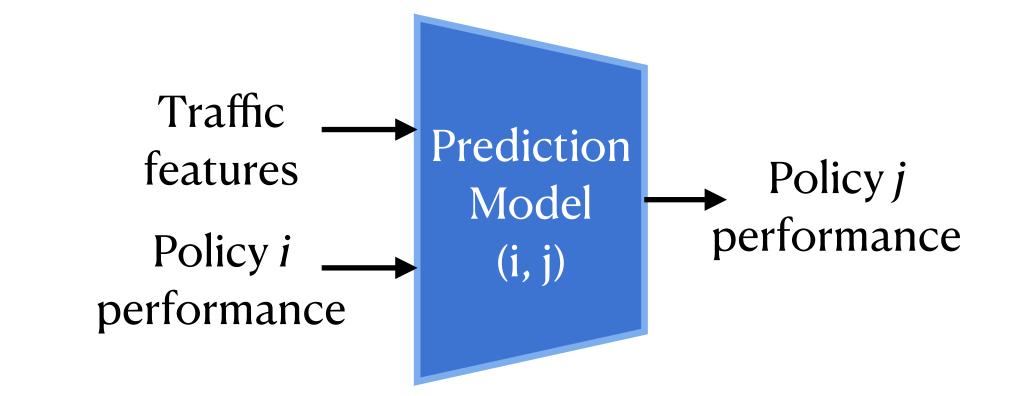


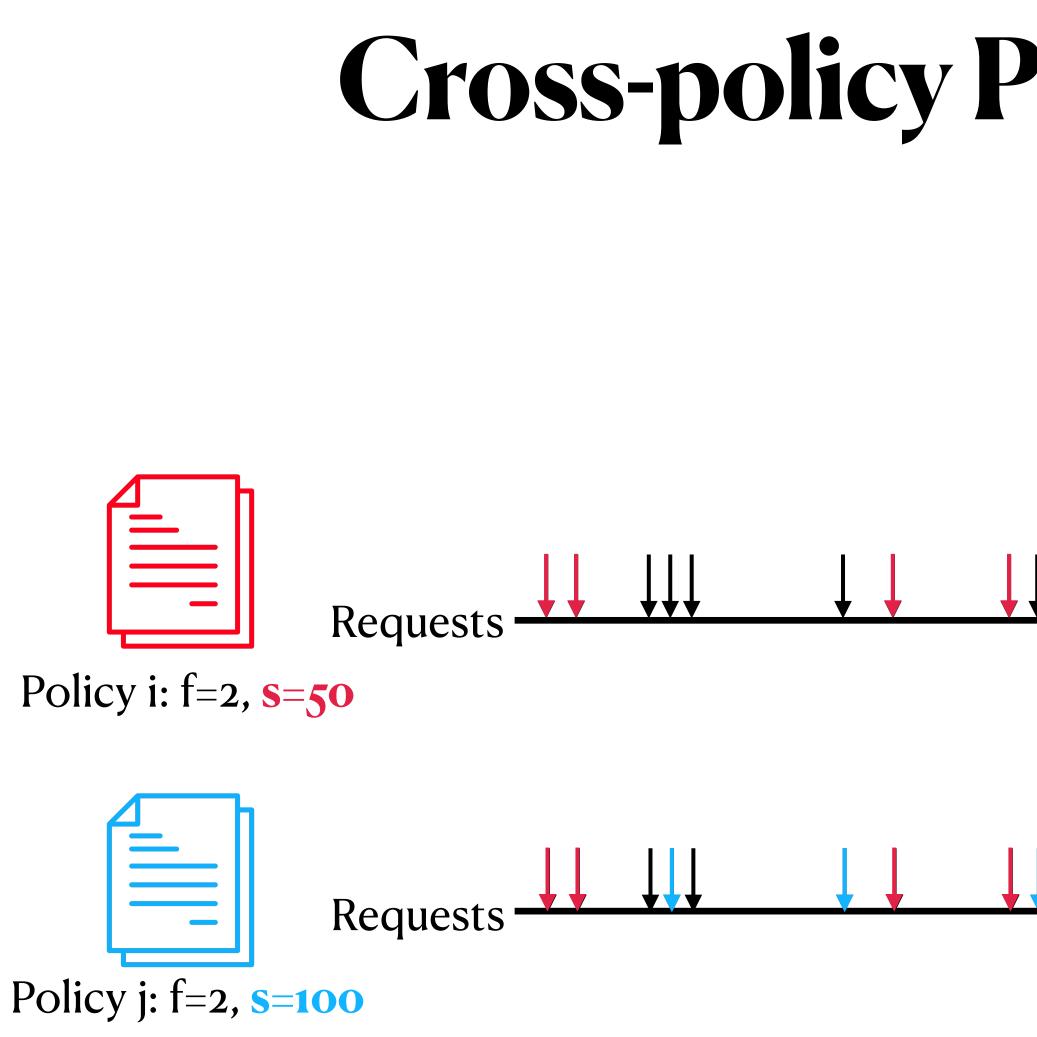


Cross-policy Prediction Models

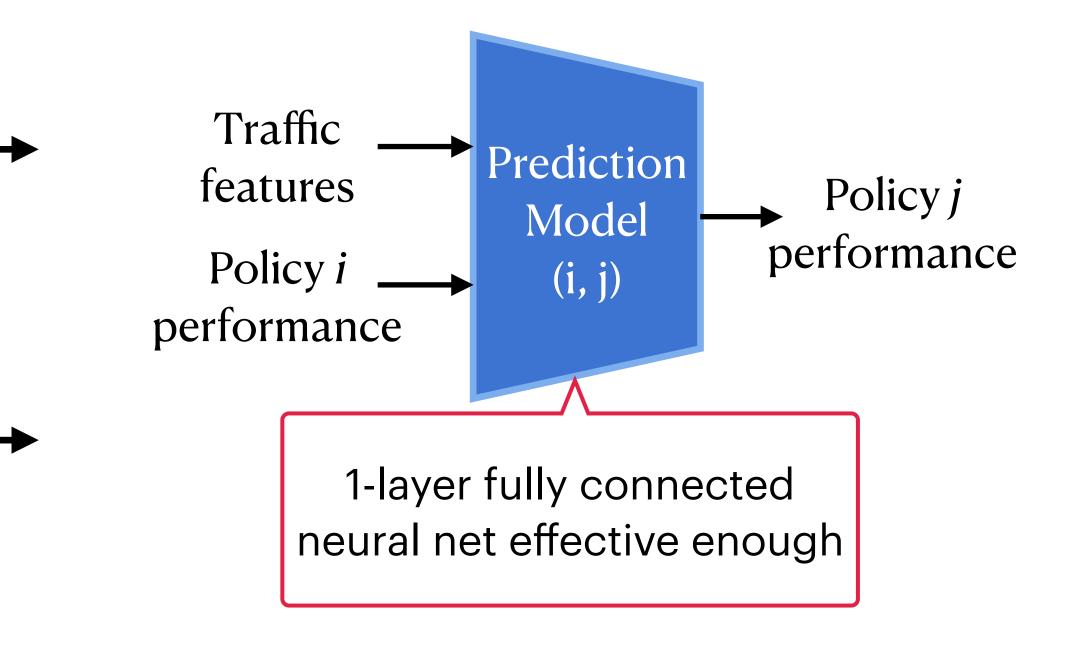


Cross-policy Prediction Models





Cross-policy Prediction Models

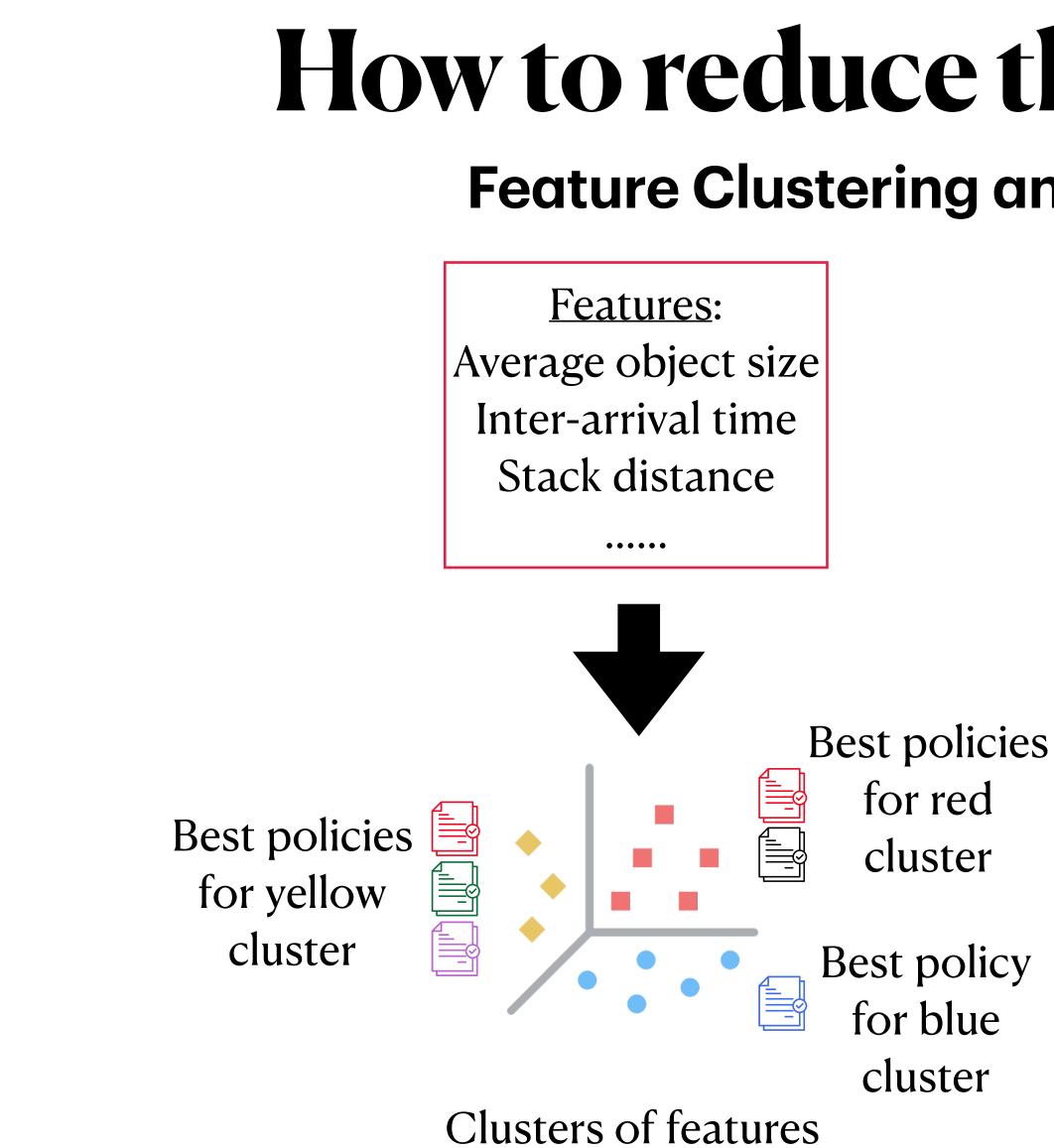


How to reduce the policy space? Feature Clustering and Policy Association

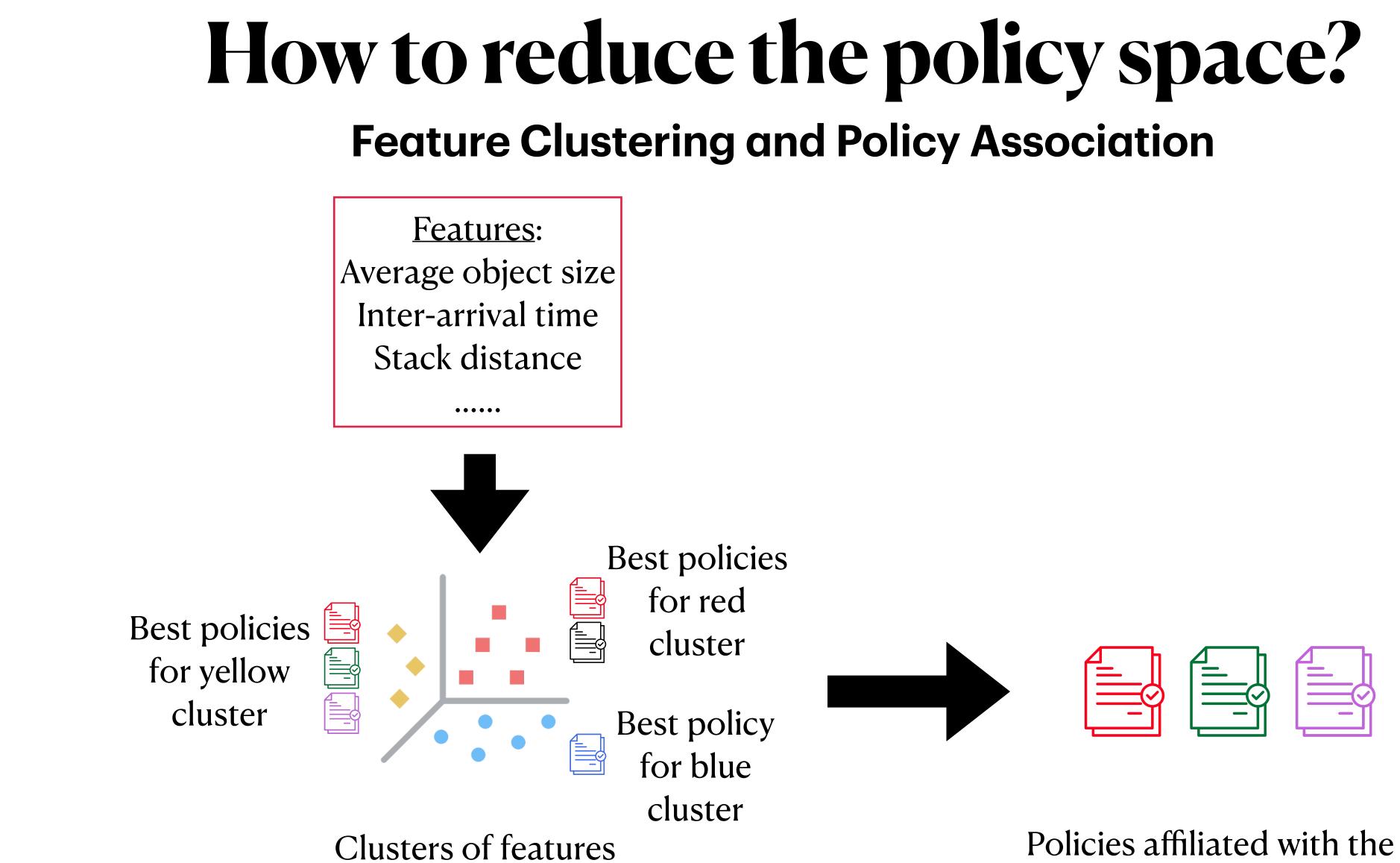
How to reduce the policy space? **Feature Clustering and Policy Association**

Features: Average object size Inter-arrival time Stack distance

.....

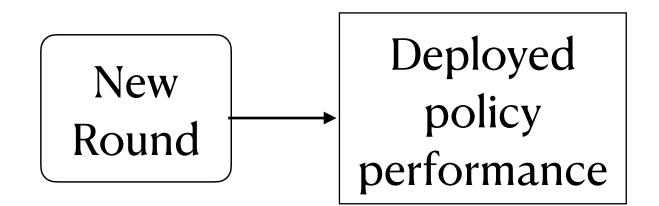


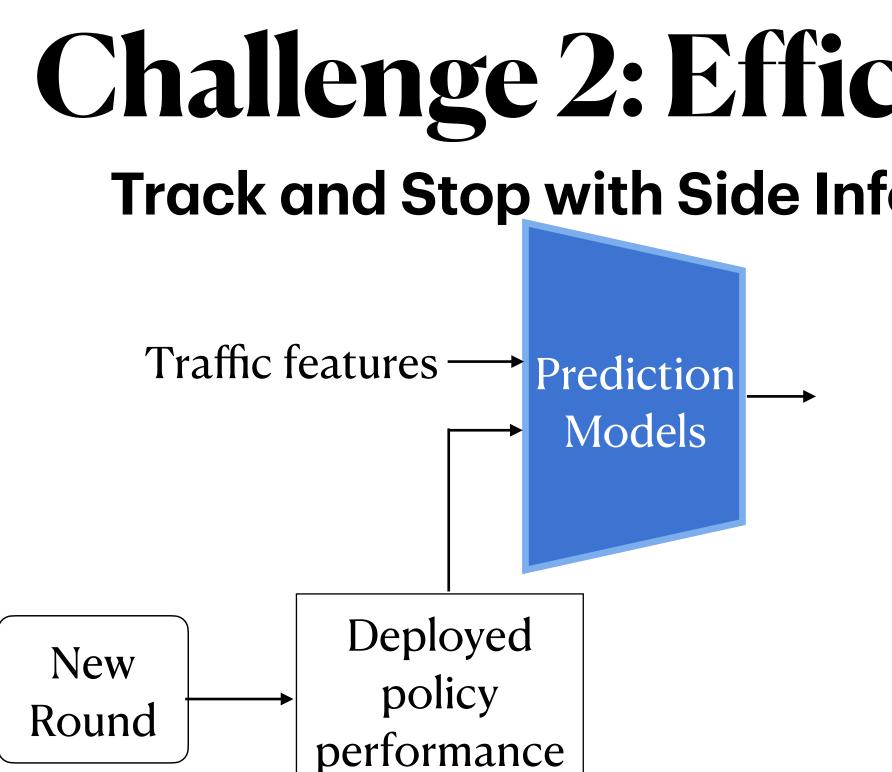
How to reduce the policy space? **Feature Clustering and Policy Association**



Policies affiliated with the cluster

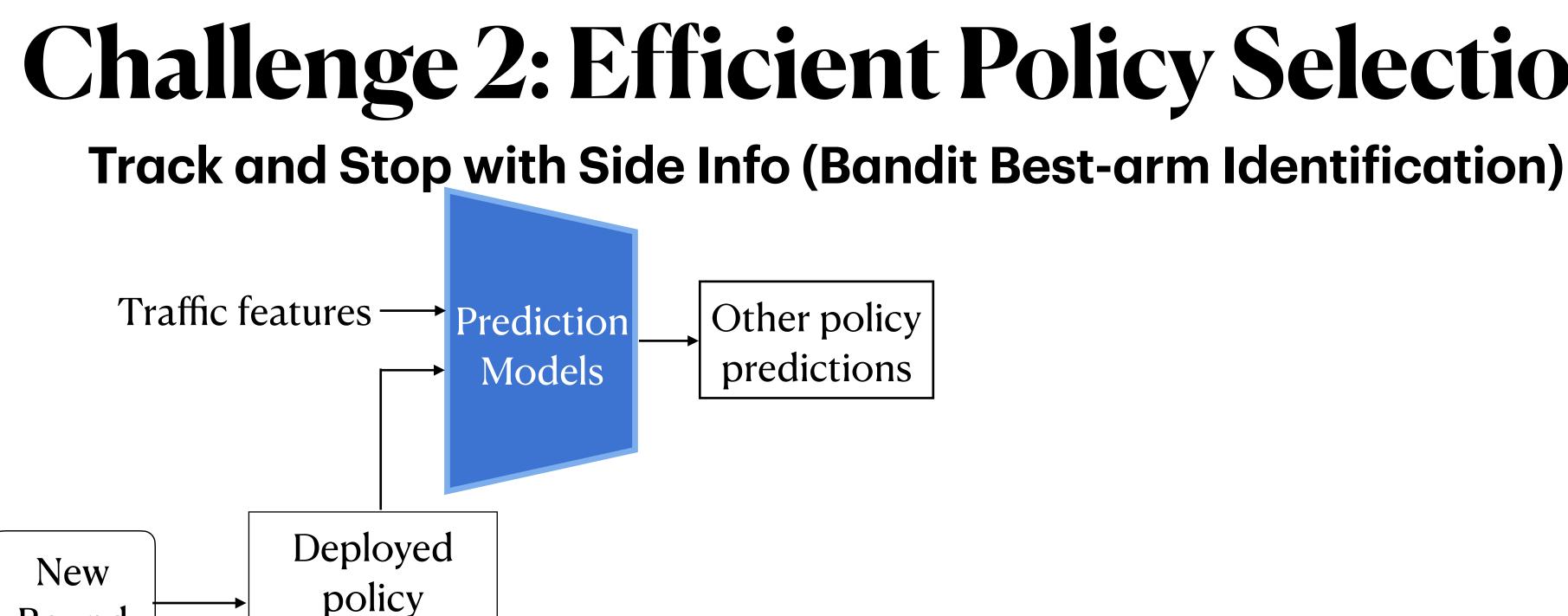
Challenge 2: Efficient Policy Selection





Challenge 2: Efficient Policy Selection

Track and Stop with Side Info (Bandit Best-arm Identification)

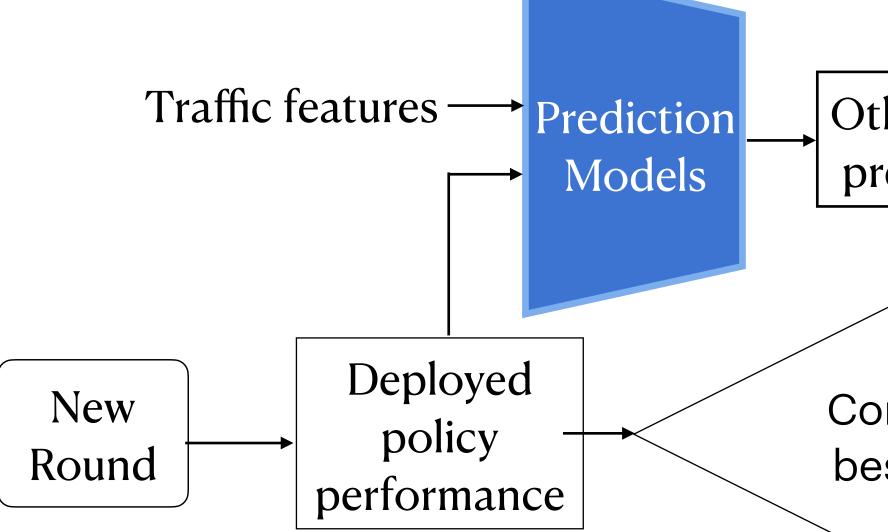


performance

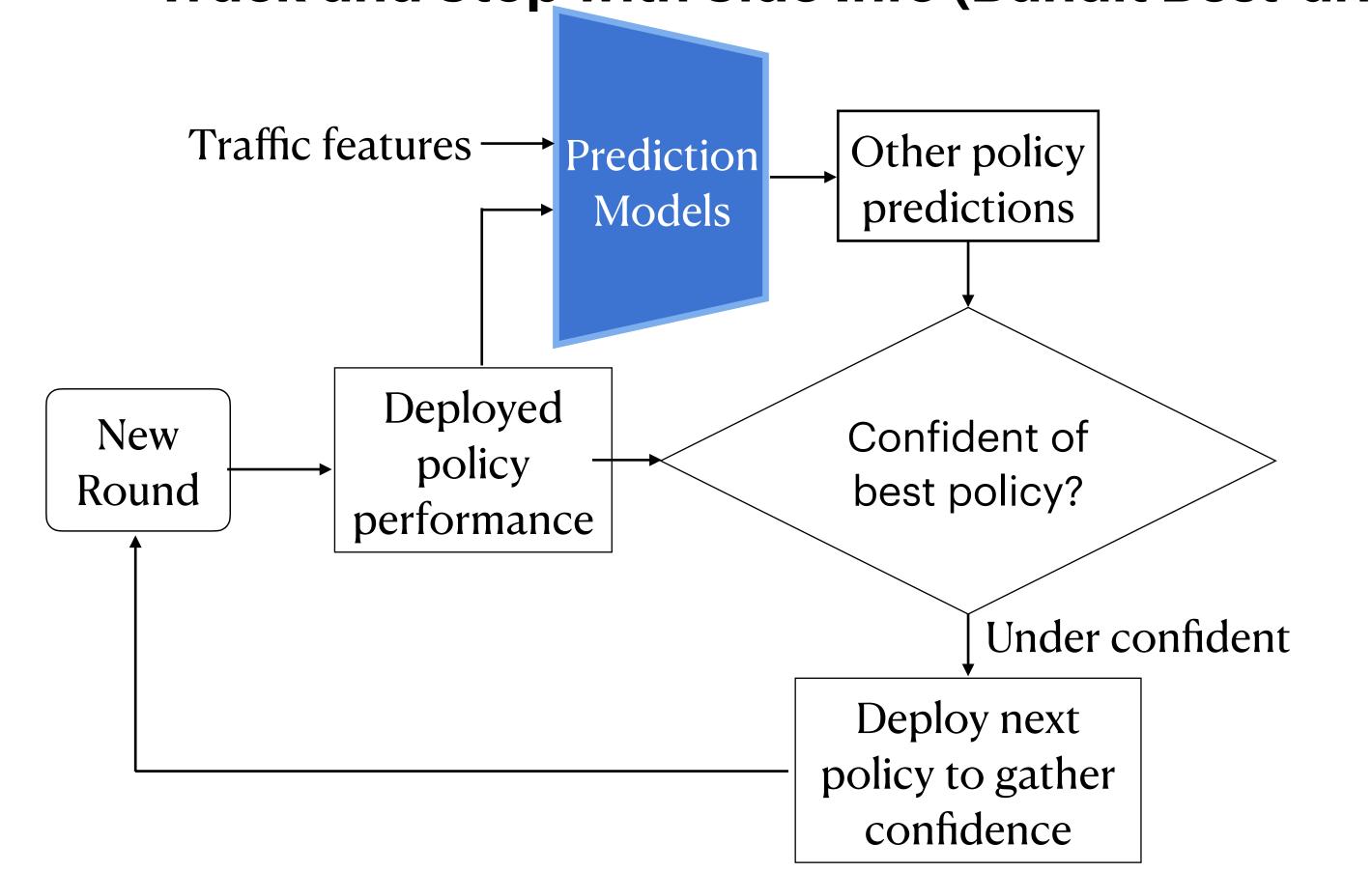
Round

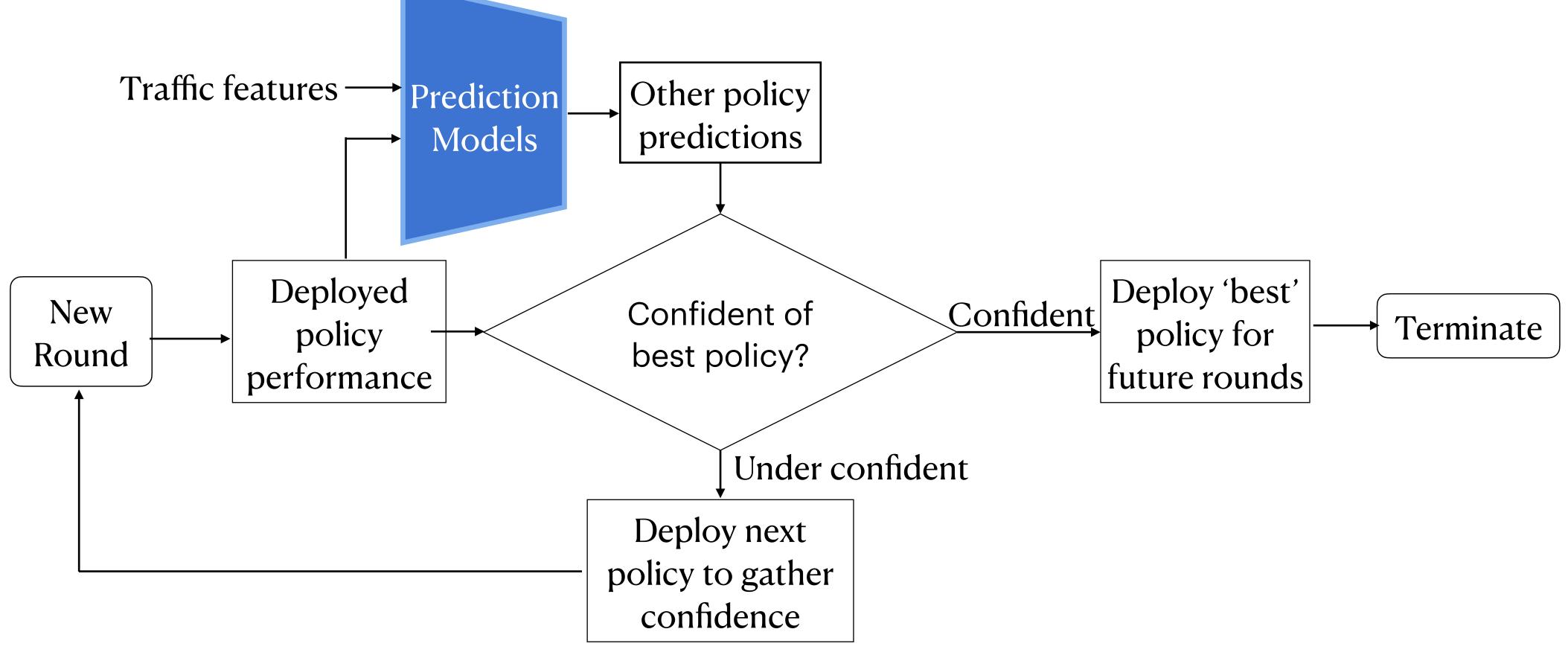
Challenge 2: Efficient Policy Selection

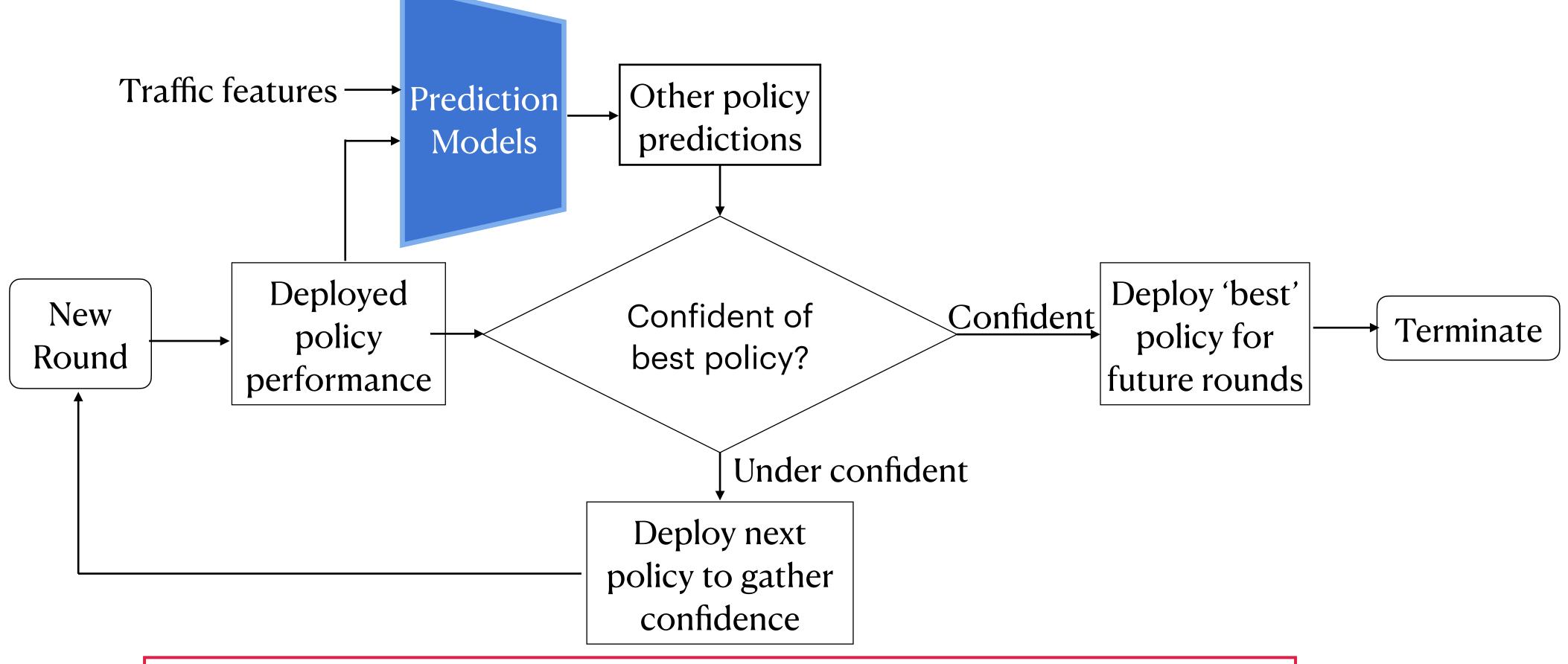
Other policy predictions



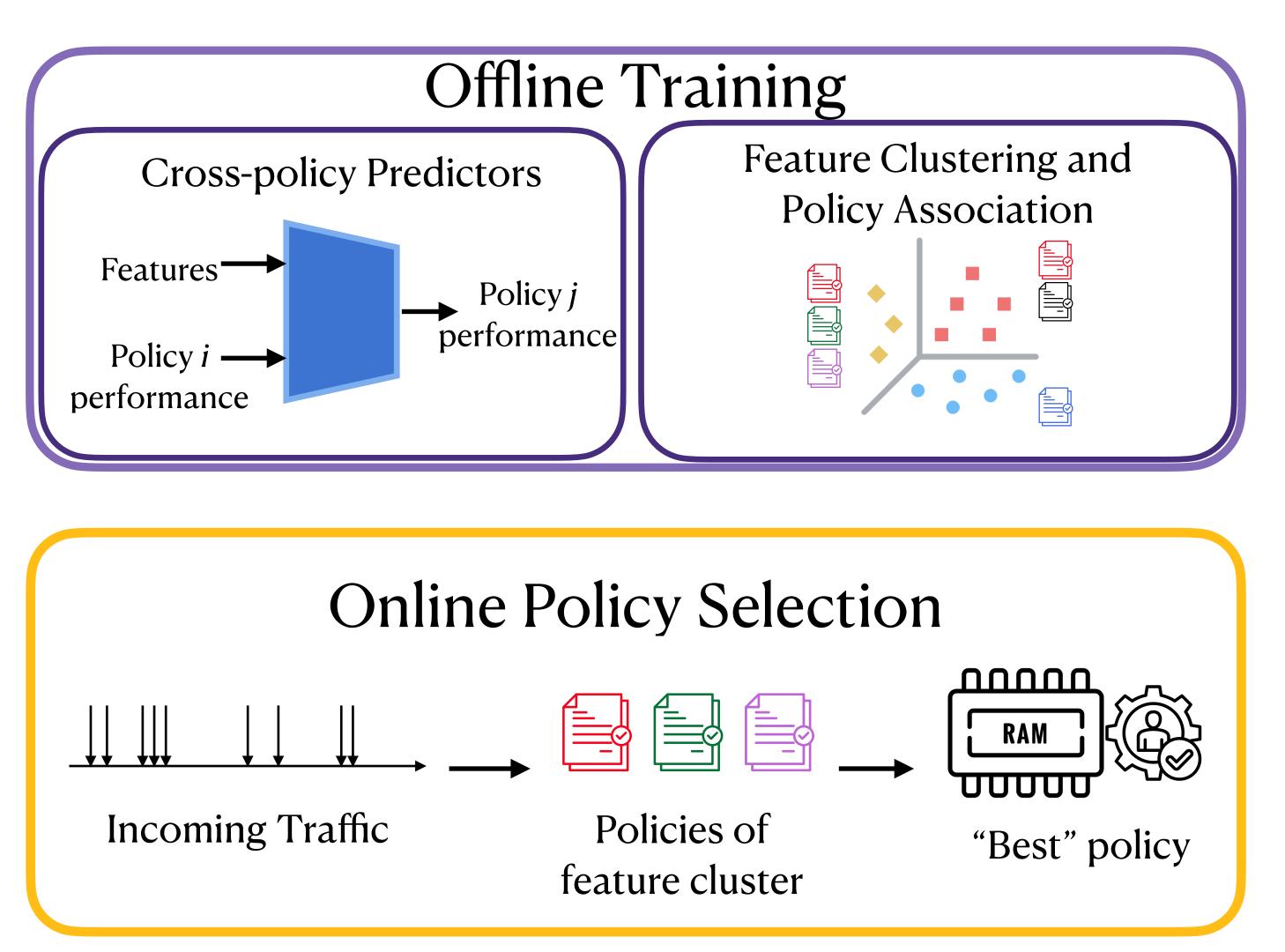
her policy edictions	
onfident of est policy?	

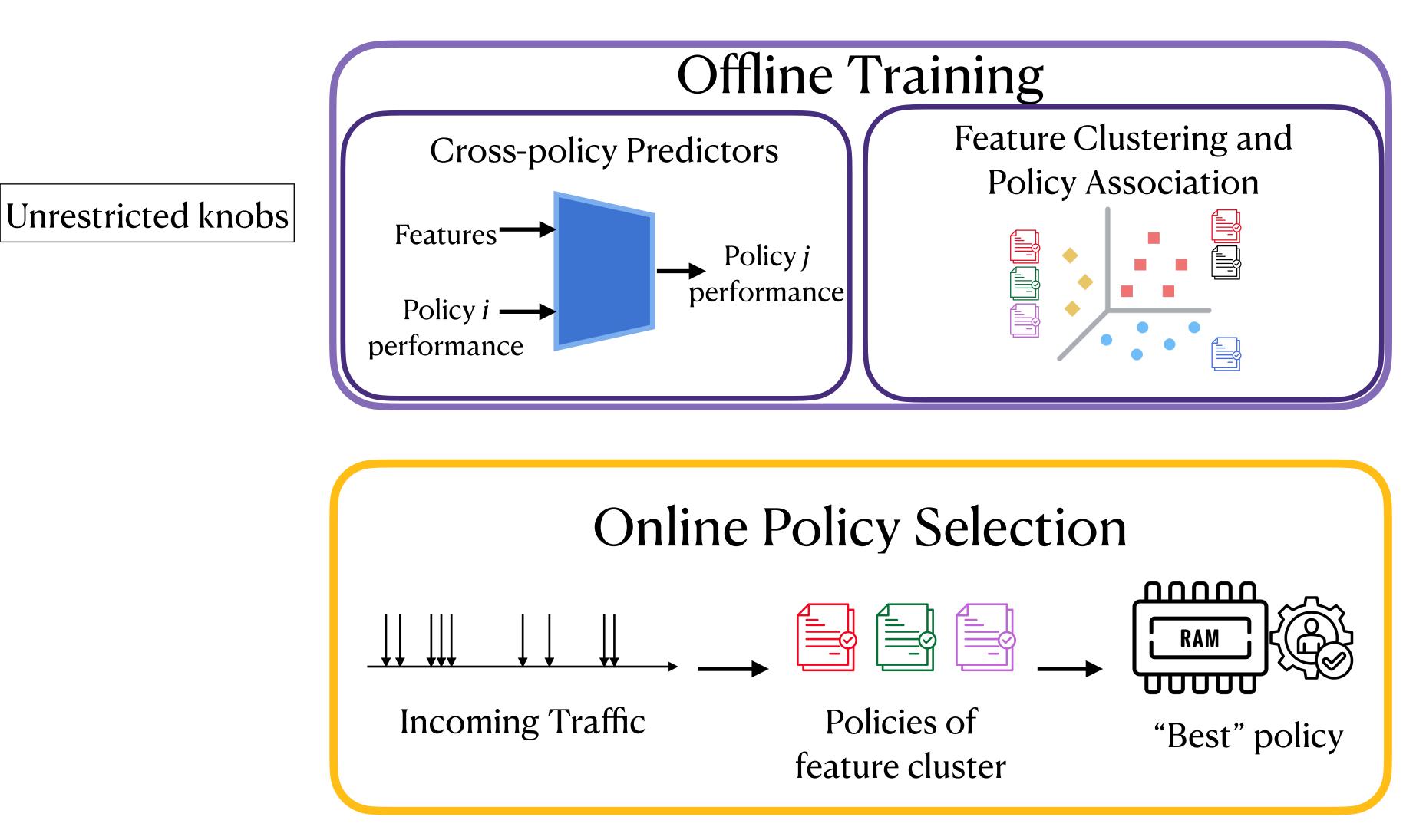


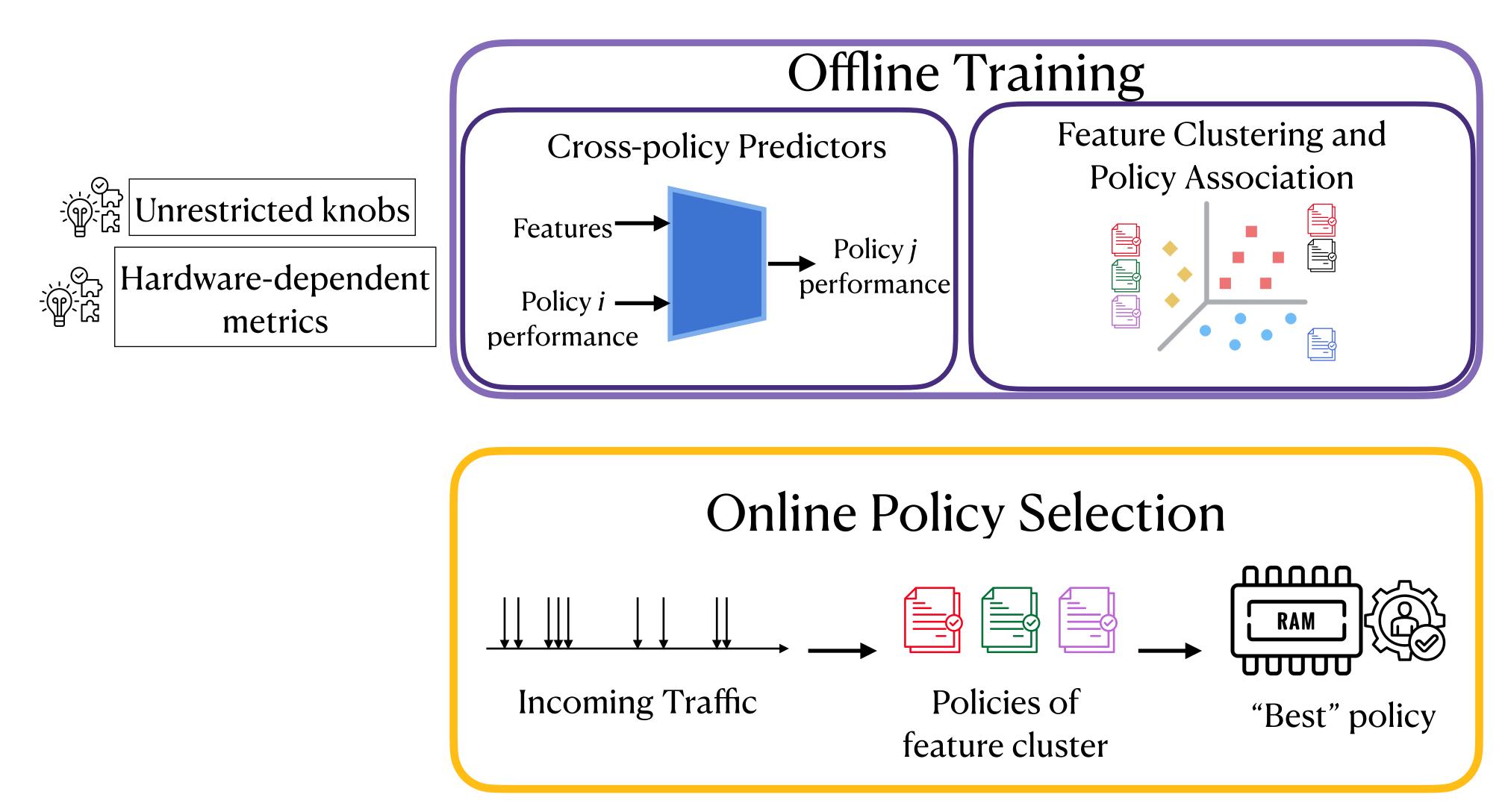


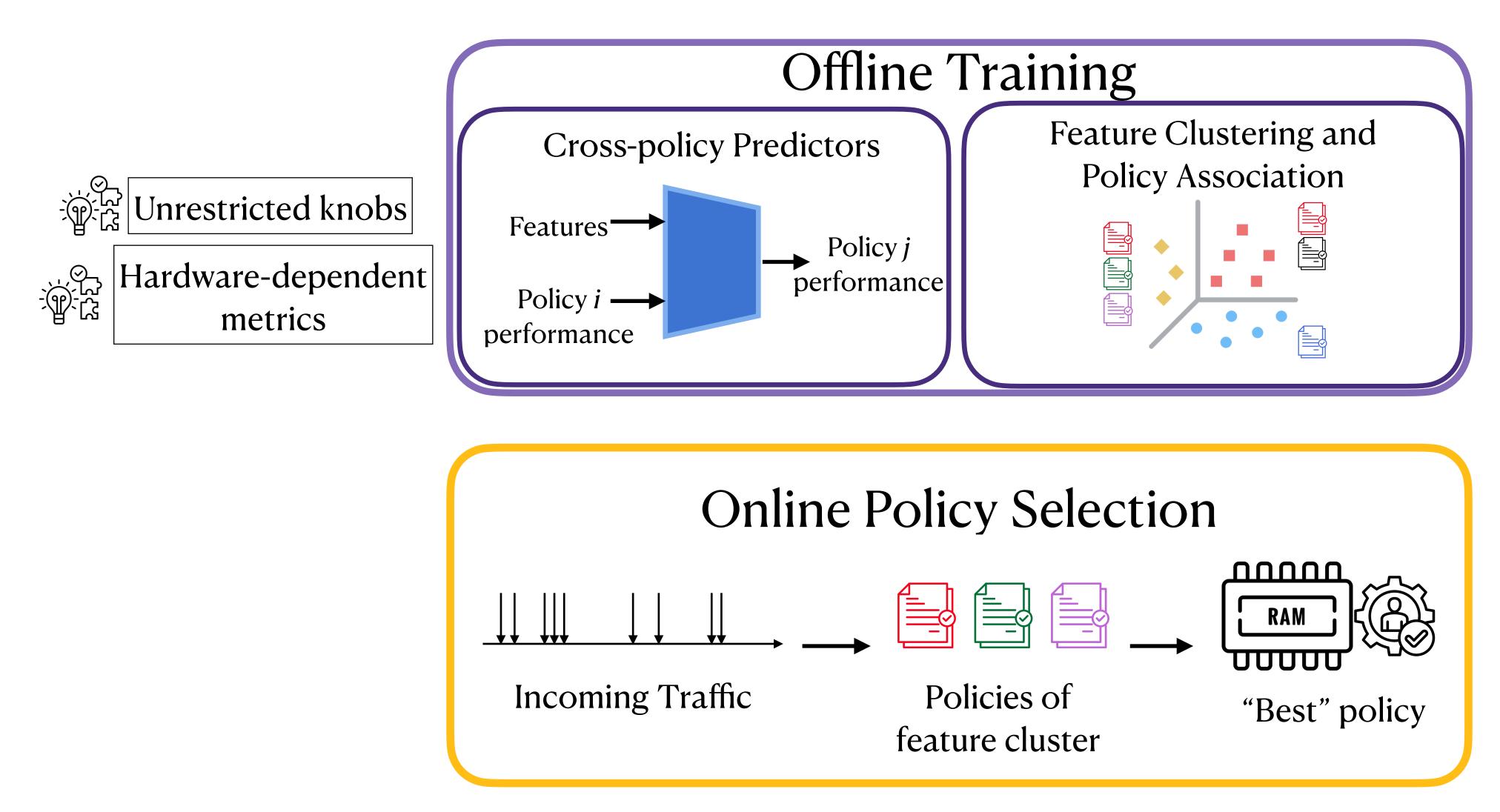


Theorem: Convergence time is bounded by a constant that is **independent of the number of policies**









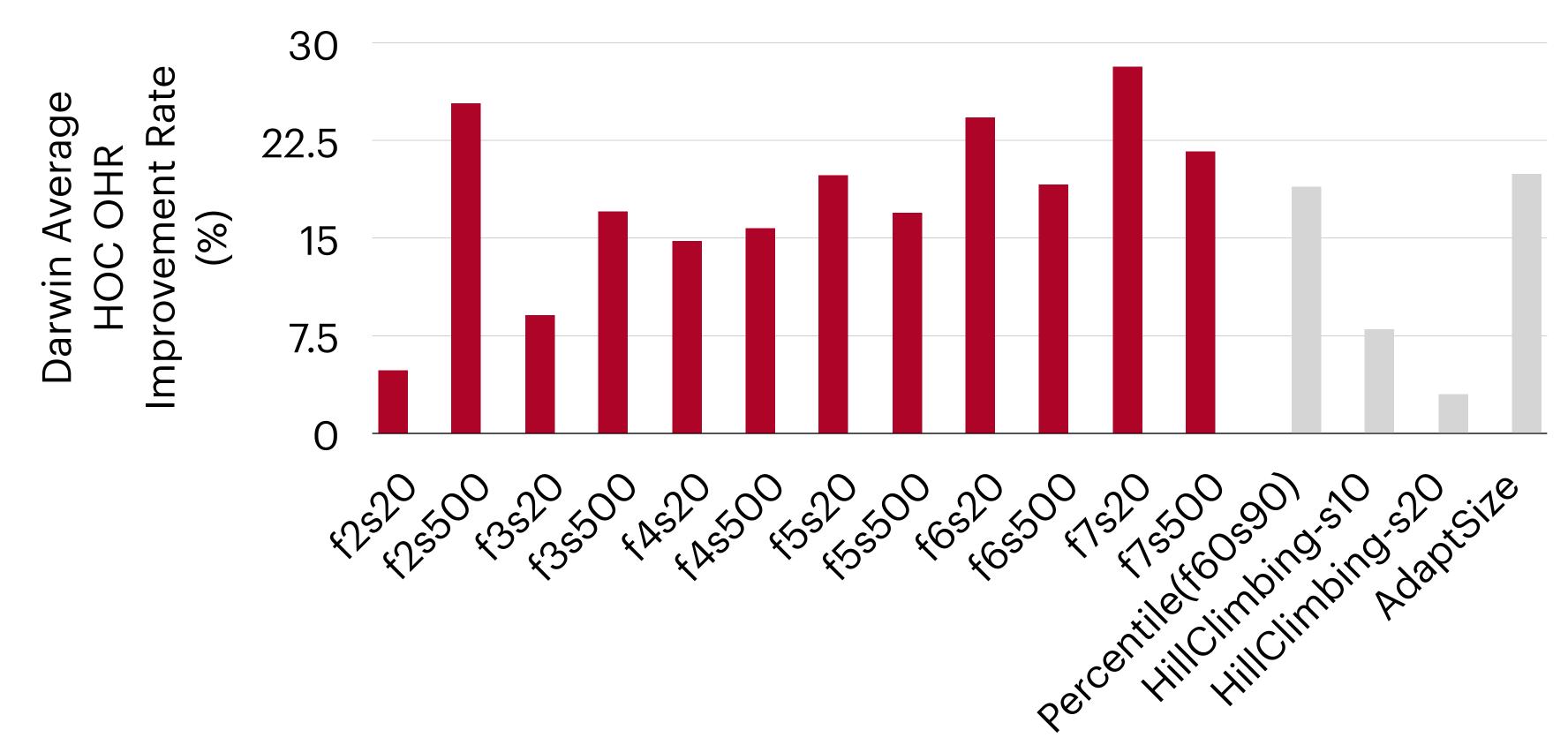
Evaluation Setup

Darwin Simulator^[1] and Apache Traffic Server (ATS)-based Prototype

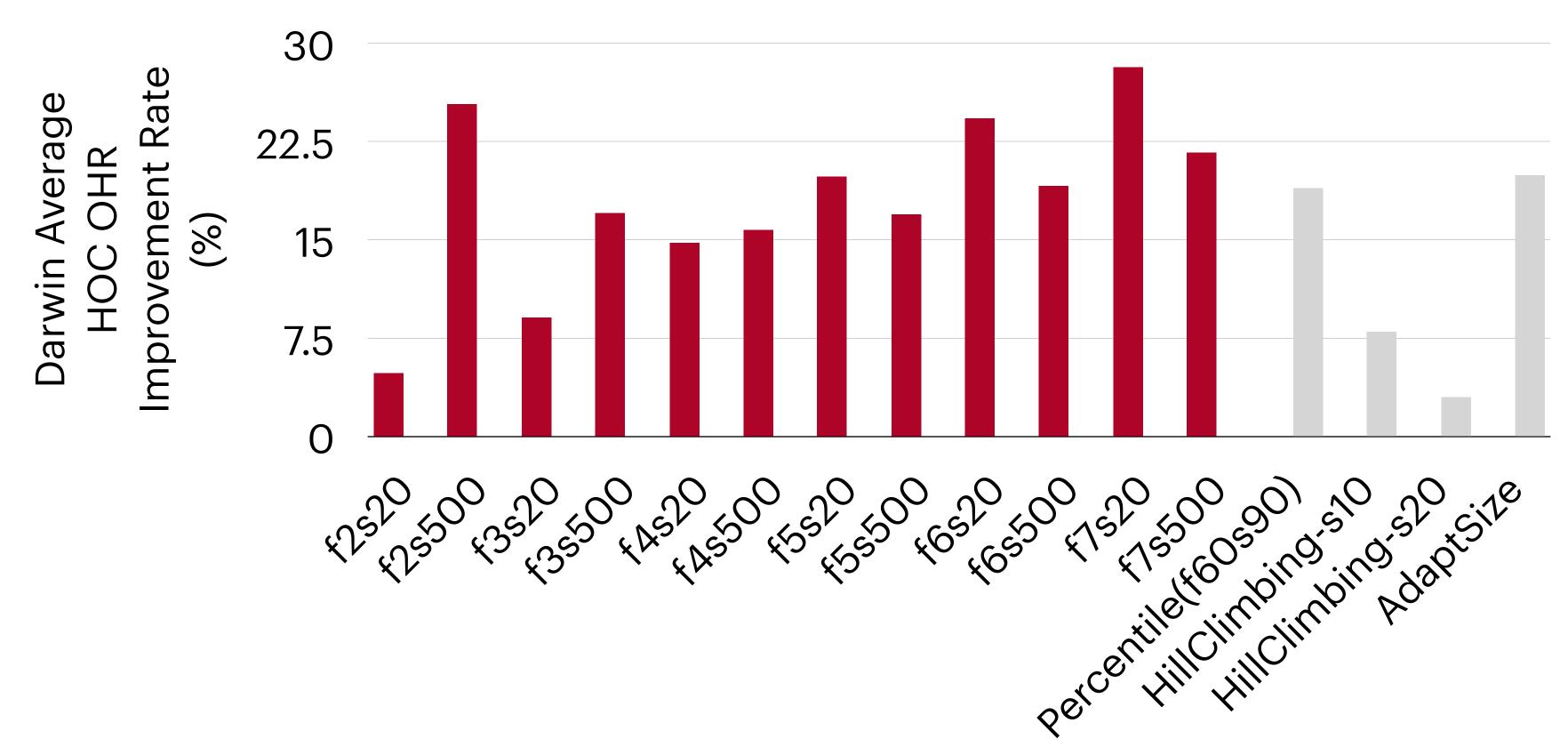
- HOC Cache Size
 - 100MB, 200MB, 500MB
- CDN Traces
 - 100 mixed configurations for two traffic classes
- Baselines
 - Static policies, AdaptSize, Percentile, HillClimbing

[1]: https://github.com/Janecjy/Darwin

Darwin outperforms static baselines by 4.83%-28.16%

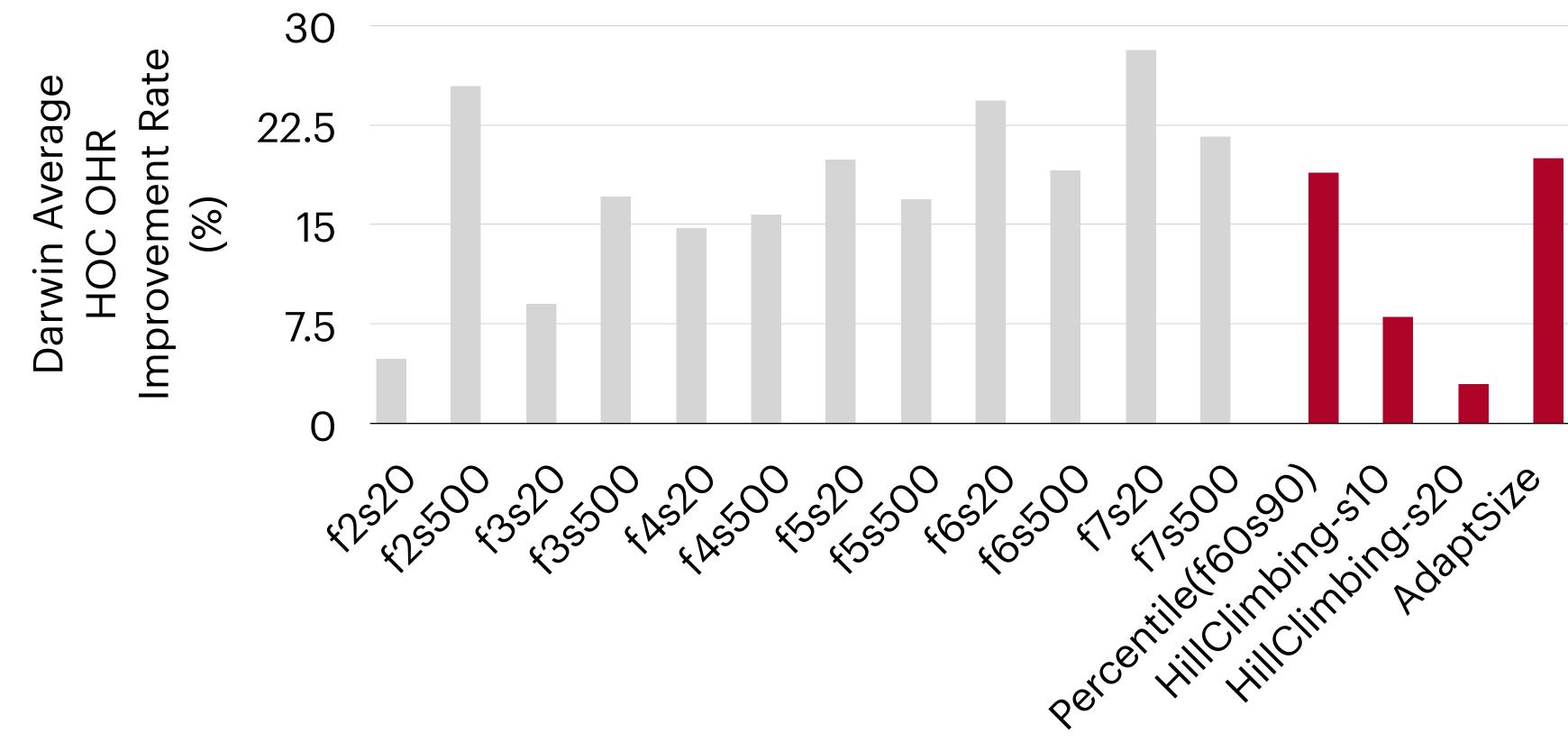


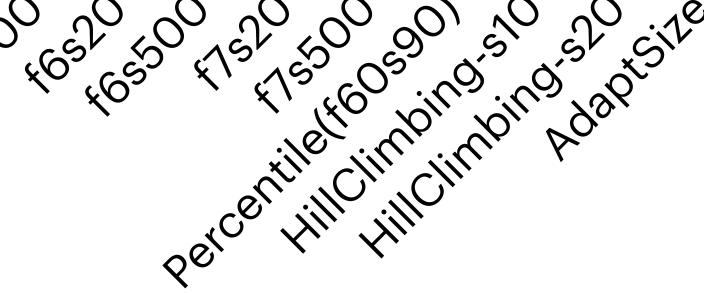
Darwin outperforms static baselines by 4.83%-28.16%



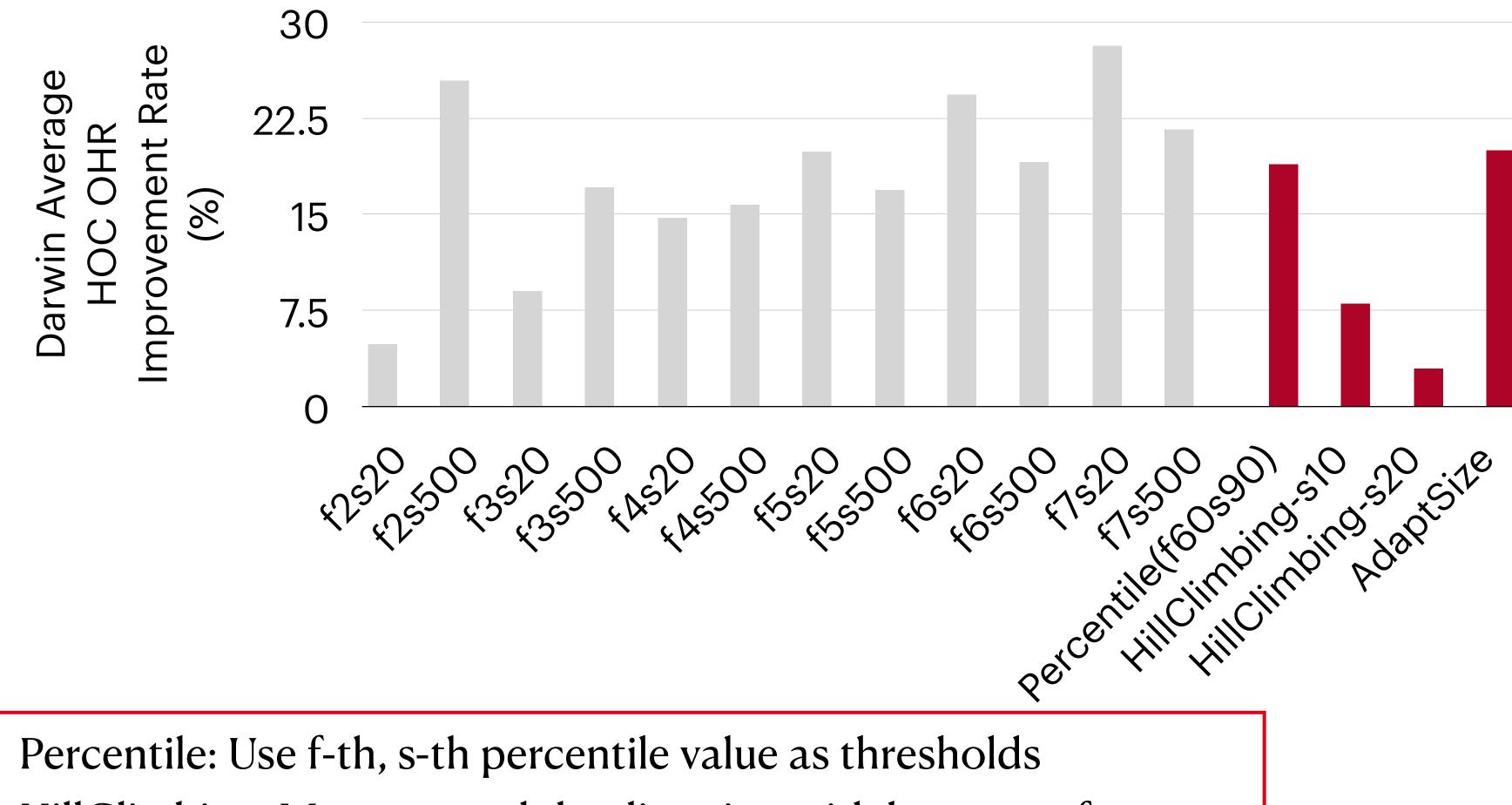
No static policy works well in all traces

Darwin outperforms adaptive baselines by 3%-19.96%



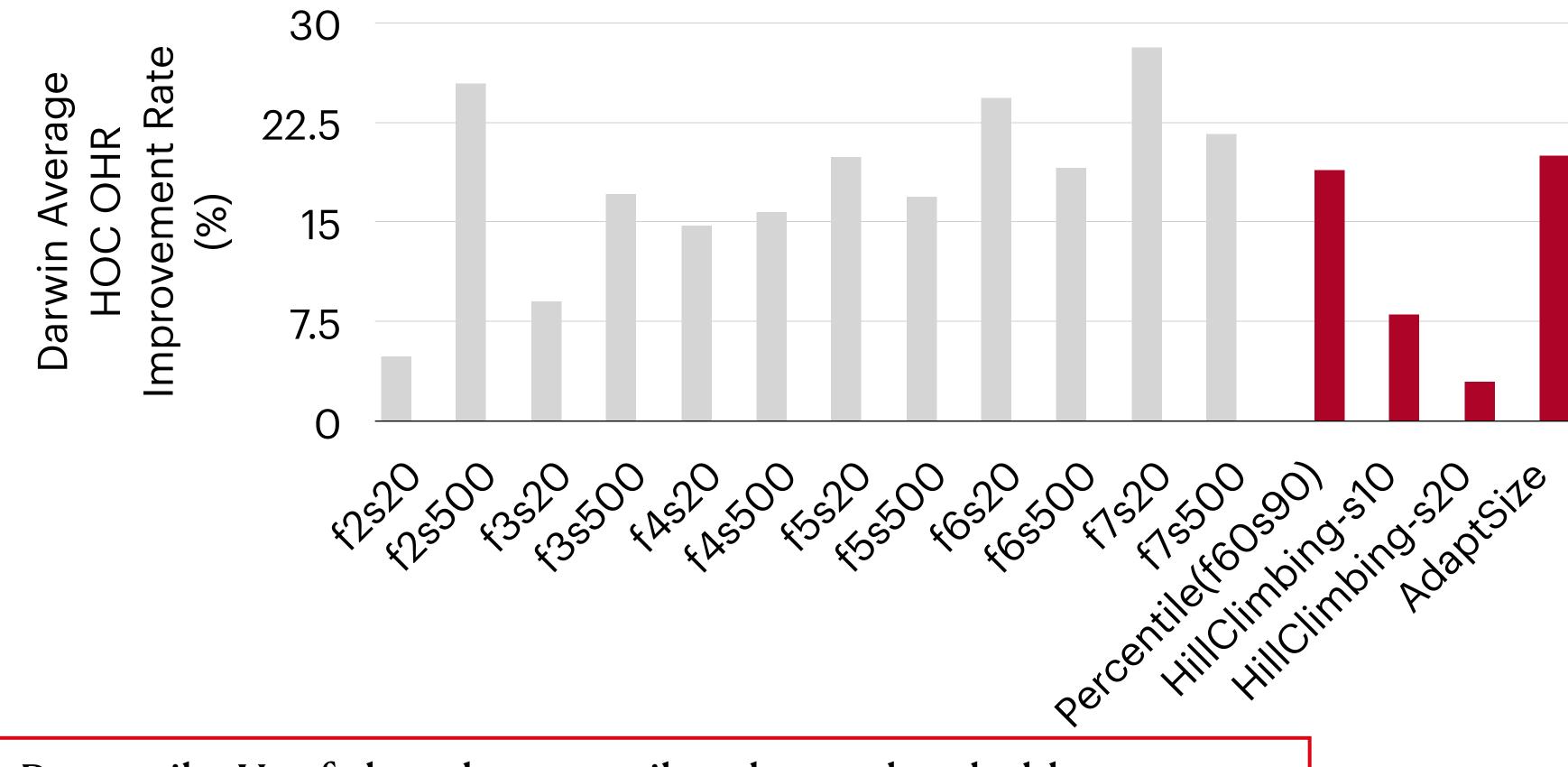


Darwin outperforms adaptive baselines by 3%-19.96%



- HillClimbing: Move toward the direction with better performance
- AdaptSize: Markov chain tuning of probabilistic size threshold

Darwin outperforms adaptive baselines by 3%-19.96%



- Percentile: Use f-th, s-th percentile value as thresholds
- HillClimbing: Move toward the direction with better performance
- AdaptSize: Markov chain tuning of probabilistic size threshold

•Tuning of multiple parameters •Access to finer granularity of policies

More Evaluation Results

- Cross-policy prediction models are robust.
- >90% of the cross-policy predictors reach > 80% order prediction accuracy. • Darwin can be used to improve other metrics.

CPU and memory utilization.

Dy 7.47%-96.67%

• Darwin doesn't impose additional latency overhead and minimally impacts

Conclusion

- Static HOC admission policies fall short when the workload shifts • Darwin can learn the best CDN HOC admission policy flexibly with
- - Cross-policy prediction models
 - Feature clustering and policy association
 - Track and Stop with Side Info algorithm
- Darwin outperforms the state-of-the-art admission policies with respect to multiple metrics adding minimal overhead
- Darwin is a generally applicable policy selection approach.

