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Traffic Changes Make Cache Management Challenging

Are static cache management policies effective?
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Hot Object Cache (HOC) Admission Policy

A common policy:  
frequency  f, size  s≥ ≤

Example: f = 3, s = 20

f=3, s=50

f=1, s=10
f=6, s=10

Metric: Object Hit Rate (OHR)

HOC OHR=
#HOC Hits
#Requests

CDN Server

Hot Object Cache (HOC)

Disk Cache (DC)

HOC Admission
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No one-size-fits-all static policy.



Can we learn the optimal policy for the current traffic?
No one-size-fits-all static policy.
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• AdaptSize@NSDI’17 can only adapt size threshold. 

• Don’t accommodate hardware-dependent metrics 

• Shadow cache-based approaches (e.g. HillClimbing@NSDI’17) 
cannot model disk Ops. 

• Impose high overhead 

• RL-Cache@NetAI’19 performs per-request inference.

Darwin

Unrestricted Knobs ✓

Hardware-dependent Metrics ✓

Low Overhead ✓
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Best policy
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Challenge 1: Scalable Performance Observation

Problem: Observation Rounds Problem: Resource Overhead

Policy a: f = 2, s = 20

Policy b: f = 2, s = 500

Policy c: f = 3, s = 20

Round 1 Round 2 Round 3Sequential

Policy c: f = 3, s = 20

Policy a: f = 2, s = 20

Policy b: f = 2, s = 500

Parallel Round 1
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Policy i: f=2, s=50

Policy j: f=2, s=100
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Cross-policy Prediction Models

Traffic 
features

Policy i  
performance  

Policy j  
performance  

Prediction 
Model  

(i, j)

1-layer fully connected 
neural net effective enough

Policy performances are correlated



How to reduce the policy space?
Feature Clustering and Policy Association



How to reduce the policy space?
Feature Clustering and Policy Association

Features: 
Average object size 

Inter-arrival time 
Stack distance 

……



How to reduce the policy space?
Feature Clustering and Policy Association

Features: 
Average object size 

Inter-arrival time 
Stack distance 

……

Clusters of features

Best policies 
for yellow 

cluster

Best policies 
for red 
cluster

Best policy 
for blue 
cluster



How to reduce the policy space?
Feature Clustering and Policy Association

Features: 
Average object size 

Inter-arrival time 
Stack distance 

……

Clusters of features

Best policies 
for yellow 

cluster

Best policies 
for red 
cluster

Best policy 
for blue 
cluster

Policies affiliated with the cluster
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Feature Clustering and 
Policy Association

Offline Training
Cross-policy Predictors
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Policy i  
performance  

Policy j  
performance  

Online Policy Selection

Incoming Traffic Policies of 
feature cluster

“Best” policy
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Hardware-dependent 
metrics
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Evaluation Setup

• HOC Cache Size 

• 100MB, 200MB, 500MB 

• CDN Traces 

• 100 mixed configurations for two traffic classes 

• Baselines 

• Static policies, AdaptSize, Percentile, HillClimbing

Darwin Simulator [1] and Apache Traffic Server (ATS)-based Prototype

[1]: https://github.com/Janecjy/Darwin

https://github.com/Janecjy/Darwin


Robustness to Traffic Changes
Darwin outperforms static baselines by 4.83%-28.16%
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Robustness to Traffic Changes
Darwin outperforms static baselines by 4.83%-28.16%

No static policy works well in all traces
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Robustness to Traffic Changes
Darwin outperforms adaptive baselines by 3%-19.96%
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Robustness to Traffic Changes
Darwin outperforms adaptive baselines by 3%-19.96%

• Percentile: Use f-th, s-th percentile value as thresholds 
• HillClimbing: Move toward the direction with better performance 
• AdaptSize: Markov chain tuning of probabilistic size threshold
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Robustness to Traffic Changes
Darwin outperforms adaptive baselines by 3%-19.96%

•Tuning of multiple parameters 
•Access to finer granularity of policies

• Percentile: Use f-th, s-th percentile value as thresholds 
• HillClimbing: Move toward the direction with better performance 
• AdaptSize: Markov chain tuning of probabilistic size threshold
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More Evaluation Results
• Cross-policy prediction models are robust. 

• >90% of the cross-policy predictors reach > 80% order prediction accuracy.  

• Darwin can be used to improve other metrics.  

• e.g., improves (OHR - ) by 7.47%-96.67% 

• Darwin doesn’t impose additional latency overhead and minimally impacts 
CPU and memory utilization.

DiskWrite
#Requests



Conclusion
• Static HOC admission policies fall short when the workload shifts 

• Darwin can learn the best CDN HOC admission policy flexibly with 
•  Cross-policy prediction models 

•  Feature clustering and policy association 

• Track and Stop with Side Info algorithm 

• Darwin outperforms the state-of-the-art admission policies with respect to multiple 
metrics adding minimal overhead 

• Darwin is a generally applicable policy selection approach.

Thank You!


