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ABSTRACT
This paper proposes an approach to the design of large-scale general-
purpose data center networks based on the notions of volume and
area universality introduced by Leiserson in the 1980’s in the con-
text of VLSI design. In particular, we suggest that the principle
goal of the network designer should be to build a single network
that is provably competitive, for any application, with any network
that can be built for the same amount of money. After describ-
ing our approach, we survey the technology choices available to
network designers today, and examine several existing commer-
cial data center networks. In the most recent of these networks
resources are allocated roughly as we suggest in this paper.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Network topology,
Packet-switching networks

General Terms
Algorithms, Design, Performance

1. INTRODUCTION
By the early 1980s dozens, if not hundreds, of designs of intercon-
nection networks had been proposed for use in parallel computers.
(See [22] for the seminal text on this subject.) These networks
could be compared on the basis of diameter, bisection width, max-
imum degree, etc., but there was no consensus on which network
was “best” or most general purpose, and parallel computers were
built around a variety of designs.

In 1985, however, Leiserson suggested that, at least in the “network
on a chip” context, where cost equates to VLSI layout area, a fair
comparison between two different classes of networks can be made
by comparing instances of the two classes that occupy the same
amount of area. He then proposed a class of hierarchical networks
called fat-trees that allows a network designer to choose how much
bandwidth to allocate at each level of the hierarchy. Furthermore,
he demonstrated that one specific allocation strategy leads to a fat-
tree that is area universal in the sense that, for a given amount of
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layout area, n, an area-universal fat-tree of area n can emulate any
other network that can be laid out in area n with slowdown at most
logarithmic in n [5, 24, 25]. One interpretation of this theorem
is that although it may be possible to build a special-purpose net-
work to solve a specific problem quickly, the improvement in per-
formance over that achievable by an area-universal network built at
the same cost is limited.

Over the past few years, interest in data center network design has
burgeoned in the networking research community, and we now find
ourselves in a situation somewhat analgous to that facing the par-
allel computing community in the 1980’s. Researchers have pro-
posed disparate designs based on cliques of cliques [20], meshes
of stars [19], expander graphs [32], fat-trees [2, 30], and Clos net-
works [14, 16]. As before, there is no consensus on which of these
networks is best.

This paper does not advocate a specific network for use in data cen-
ters, but instead promotes a methodology for designing networks
that are “cost universal”. A network is cost universal if it can em-
ulate any other network that could be built at the same cost with
limited slowdown. The notion of cost universalilty is a general-
ization of area universality in the following sense. The crux of
Leiserson’s proof that certain fat-trees are area universal is to al-
lot an equal amount of layout area to the links at each level of the
hierarchy. (A short tutorial on area-universal fat-trees is given in
Section 2). The analog in the data center context, where there is
no convenient homogeneous medium such as layout area, is to ex-
pend the same amount of money on each level of the hierarchy, and
this is the gist of our approach. For example, we recommend that
the designer spend the same amount of money on the networking
connectivity within a rack (summed over all racks), on connecting
racks in a row, and on connecting rows of racks.

Our approach results in the constuction of hierarchical networks,
which, when provisioned properly, should be competitive with any
networks that could be built at the same cost. We do not rule out the
possibility that a non-hierarchical network could also be cost uni-
versal, but we do not know of any such examples. In any case, the
commercial networking technology available today is well suited to
hierarchical design, and hierarchical networks have the advantages
of simplicity and modularity.

After a short tutorial on fat-trees and Clos networks, we survey sev-
eral influential recent proposals for data center networks, analyzing
how bandwidth, and hence cost, is allocated to the various levels
of these networks. Then we provide an overview of the theory of
area and cost universality. We use fat-trees as our examples of uni-
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Figure 1: The coarse structure of a fat-tree could, for example, be a
complete 4-ary tree.
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Figure 2: One possible fine structure, called a butterfly fat-tree,
where the coarse structure is a complete 4-ary tree. In this exam-
ple, the capacities of the channels have been to chosen to make the
network area universal.

versal networks, but other hierarchical networks might suffice. The
fat-trees, however, are proportioned very differently than those de-
scribed in recent papers on data center network design, where the
cost of the top level of the hierarchy dominates the costs of the other
levels. We then examine several modern data center networks, and
observe that, whether consciously or not, the designers roughly fol-
lowed our recommendation of spending the same amount of money
on each level of the hierarchy.

2. NETWORK STRUCTURES
This section begins with a brief primer on fat-tree networks. It also
examines the relationships between fat-trees and other networks
such as folded Clos networks, and explains how expanders can be
incorporated into fat-trees.

Fat-trees were introduced by Leiserson [25] in 1985. A fat-tree has
a coarse structure and a fine structure. The coarse structure is a
rooted tree, consisting of nodes and bidirectional channels between
parents and children. The degrees of the nodes can be chosen by
the fat-tree designer. An example coarse structure for a fat-tree, a
complete 4-ary tree, is shown in Figure 1.

The fine structure provides the details necessary to implement the
fat-tree. For each leaf in the coarse structure there is a processor,
server, or other device in the fine structure. For each internal node
in the coarse structure, there is a corresponding set of switches in
the fine structure. The number of switches per node, and the num-
ber of ports per switch, are chosen by the designer. For each chan-
nel in the coarse structure, there is a corresponding set of links con-
necting ports on switches at the parent to ports on switches at the
child. How these ports are connected is again up to the designer.
The capacity (bandwidth) allocated to each channel is determined
by the number of links, which in turn depends on the number of
switches and ports at the parent and child nodes. Leiserson’s orig-
inal paper [25] contemplated links between switches at the same

Figure 3: A VLSI layout of an area-universal fat-tree.

Figure 4: A full 4-ary butterfly fat-tree.

node, but in practice such links have not been used. One possible
fine structure for a complete 4-ary fat-tree is shown in Figure 2.

2.1 Butterfly fat-trees
In [18], Greenberg and Leiserson introduced a fine structure sim-
pler than those in [25], which Greenberg calls a butterfly fat-tree in
his thesis [17]. Today the term fat-tree almost always refers to a
butterfly fat-tree. Figure 2 depicts a butterfly fat-tree whose chan-
nel capacities (doubling every level in a 4-ary fat-tree) have been
chosen so that the network is area universal.

In a butterfly fat-tree, every link connects a port on a switch at a
parent node to a port on a switch at a child node (i.e., there are no
links between switches at the same tree node). Furthermore, there
is at most one link between any two switches, and each switch at a
parent node is connected to exactly one switch at each of the chil-
dren. A butterfly fat-tree is not actually a tree (it contains cycles!),
but its coarse structure is a tree.

Figure 3 shows a VLSI layout of the fine structure shown in Fig-
ure 2. This way laying out a tree is called an H-tree layout [29]. In
the figure, the square leaf nodes denote processors, while the ovals
denote switches. Note that although the number of links at the root
(8) is only the square root of the number of processors (64), these
links occupy a significant fraction of the layout area.

In general, switches with any number of children or parents can be
used to construct a butterfly fat-tree. Typically only a single type of
switch is used, but, for example, an area-universal binary fat-tree
could be constructed in which each switch has two links to child
switches, but on alternating levels, each switch either has a single
link to a parent switch, or two links to parent switches. In general,



the number of parents per switch can be varied from level to level
in order to control the rate at which bandwidth is allocated among
the levels. At the top level of a fat-tree, the number of switches can
be reduced because there are no parent switches to connect to. In
particular, ports that would otherwise be used to connect to parent
switches can instead be used to provide additional connections to
children. It would be unusual to use a switch with more parents
than children, because the children would not be able to send or
receive enough traffic to saturate the connections to the parents. In
a fat-tree built out of commodity Ethernet switches or routers, each
switch would typically have a large number of children and parents.

The special case in which every switch in a butterfly fat-tree has
as many parents as children, shown in Figure 4, is called a full fat-
tree [11, 12]. Full fat-trees are not area or volume universal, and
would likely be prohibitively expensive to build on a large scale due
to their large bisection bandwidths. In particular, in a full fat-tree
with N leaves, the amount of layout area required for the different
levels of the tree vary greatly. For example, the wires at the root
require Θ(N2) area, whereas the wires at the leaves require only
Θ(N) area. Confusingly, some authors depict fat-trees as full fat-
trees without pointing out that the full fat-tree is a special case,
and many experimental network simulations are carried out on full
fat-trees without justifying the choice of this special case.

A defining feature of the butterfly fat-tree is the algorithm for find-
ing a path from one leaf to another. The path first proceeds upwards
in the tree, following parent links. Upon reaching a switch at the
lowest common ancestor of the two leaves (in the coarse structure
of the tree), the path then proceeds down child links to the destina-
tion leaf. On the upward part of the path, any parent switch can be
chosen. A common strategy for load balancing is to select a parent
at random, which is precisely the technique suggested by Valiant
and Brebner [34] (and somewhat unfairly known as "Valiant load
balancing" today). On the way down from the lowest common an-
cestor, there is a unique path to the destination leaf.

2.2 Redundant downard paths in fat-trees
One defininition of an expander is an N -node graph with the prop-
erty that any set of k ≤ αN nodes is connected to at least βk other
nodes, for some fixed constants 0 < α < 1 and β > 0. An N ×N
bipartite graph is an expander if any set of k ≤ αN nodes on the
left side is connected to a set of at least βk nodes on the right side,
for β > 1. With nonzero probability, a bipartite graph in which
each node on the left has at least three neighbors, and those neigh-
bors are chosen at random, is an expander. Explicit constructions
are also known.

Unless α and β are very small, an expander will have high bisection
bandwidth. Hence, building a large-scale network that exhibits a
global expansion property is challenging. Adding to the challenge,
a randomly-wired expander also exhibits an irregular wiring pat-
tern. The use of expanders as components within structured net-
works, however, has proven useful in theory. For example, the
AKS sorting network [1], which can sort any set of N keys using
O(logN) levels of comparators, incorporates expanders, as does
the N -input multibutterfly [33] network, which has a determinis-
tic routing algorithm that can route any permutation of N packets
in O(logN) steps, and is highly resilient to faults [23]. The non-
blocking multi-Beneš network [3], which is based on the multibut-
terfly can establish a set of circuits among N inputs and N outputs
in any permutation using O(N logN) crosspoints.

Figure 5: A channel in a 4-ary multi-fat-tree. Each switch has four
links to parents and eight links to children, the proper ratio for an
area universal 4-ary fat-tree. The four parent switches at the top
of the channel each connect to both of the child switches at the
bottom, providing redundant paths from the root to the leaves.

inputs outputs

Figure 6: A 3-stage, 16-input Clos network composed of 4 × 4
crossbar switches.

Expanders can be incorporated into fat-trees in a straightforward
way. In particular, each channel, which forms a bipartite graph
between a child and a parent (and vice versa) in the coarse structure
of the fat-tree can be wired to form a bipartite expander. Such a
network is known as a multi-fat-tree [15]. (The first paper on fat-
trees [25] incorporated a closely related graph structure called a
concentrator.)

Multi-fat-trees have several advantages over fat-trees. In a butterfly
fat-tree, the number of children of each switch is equal to the arity
of the tree. I.e., in a binary fat-tree, each switch has two children,
one in each subtree of the coarse structure. Hence, although there
are multiple paths up in a fat-tree, there is only a single path down
to any particular leaf. In contrast, in a multi-fat-tree, a switch may
have multiple children in the same subtree, as shown in Figure 5.
With multiple paths both up and down the tree, multi-fat-trees are
more resilient to faults than fat-trees. The expansion in the channels
of a multi-fat-tree can also be exploited by adaptive load balancing
techniques. There is a cost for incorporating redundant links: the
size of each switch may grow by a constant factor (e.g., two), as
will the bandwidth requirements of each channel, and the VLSI
layout area or volume. Nevertheless, it is possible to construct area-
, volume-, and cost-universal mult-fat-trees.

2.3 Clos networks
Clos networks [13] were designed for use in telephone systems
where the goal is to establish a set of disjoint circuits between a
set of N input terminals (inputs) and a set of N output terminals
(outputs) according to an arbitrary permutation. As shown in Fig-
ure 6, a Clos network is composed of crossbar switches, which are
organized into multiple stages, the switches in each stage connect-
ing to those of the next stage. The Beneš network [7], which has
O(N logN) crosspoints and can implement any permutation and



hence is called rearrangeable, is a popular example of a Clos net-
work. In a Clos network, the path from every input to every output
passes through all stages, and hence all paths have the same length.
Because the goal of Clos networks is to establish disjoint circuits
in permutations, the number of links between successive stages is
typically at least N . Hence, Clos networks are full-bandwidth net-
works, making them expensive and cumbersome to build on a large
scale.

Sometimes the corresponding inputs and outputs of a Clos network
are identified as one and the same. I.e., rather than having an ith
input terminal and an ith output terminal, there is a single, bidi-
rectional, ith terminal connected to switches on both the first and
last stages. Such a network was originally called a folded Clos
network [9], but today the term folded is used differently (e.g., in
[31]), as explained below. In this configuration, it remains the case
that the path between any two terminals passes through all stages
of the Clos network.

A Clos network can also be “folded” around its middle stage so
that corresponding switches on stages at the same distance from
the middle are identified, as are the corresponding inputs and out-
puts. Such a network appears in [13] and was originally called a
truncated Clos network [4], but is now called a folded Clos net-
work. In a folded Clos network, the path between two terminals
might travel “up” towards the middle stage only as far as necessary
to make a connection.

A folded Clos network might belong to the class of butterfly fat-
trees. For example, the folded Beneš network becomes a full bi-
nary butterfly fat-tree with 2 × 2 switches. Indeed, some authors
use the terms folded Clos network and fat-tree interchangeably (see
e.g., [31]), but this practice is problematic as Clos networks are full-
bandwidth networks whereas fat-trees were specifically designed
for the flexible allocation of bandwidth.

3. RELATED WORK
This section describes important related work. Rather then attempt-
ing to survey the large and growing body of research in this area,
we focus on four influential papers, and attempt to explain how the
networks proposed in these papers are related to the network struc-
tures and terminology established in Section 2. We also evaluate to
what extent the approaches taken in these papers are in congruence
with our cost-universal approach.

Several recent developments have allayed certain concerns addressed
by earlier work. First, low-end routers are now available at costs
close to those of switches, so there is less impetus to implement a
network entirely at layer two. Indeed vendors such as HP sell de-
vices that can be configured to operate as either routers or switches.
As a consequence concerns about loops in layer two networks and
avoiding the Ethernet spanning tree algorithm have lessened. More
excitingly, software defined networking (SDN) is growing in ac-
ceptance and multiple vendors now provide support for OpenFlow
in their devices. SDN is ideally suited to data center applications,
where all switching and routing devices are under the administra-
tion of a single entity. Hence, throughout this paper we assume
support for effective network load balancing stratgies.

3.1 Al-Fares et al.
In an early and inspirational paper [2], Al-Fares et al. advocate
building data-center-scale networks using (almost) commodity Eth-
ernet switches. The paper is similar in spirit to our work in that it

focuses on the price-performance ratio of available hardware, and
takes many practical considerations into account. The paper asks
for minor modifications in the forwarding algorithm employed by
Ethernet switches, which seems reasonable today in light of SDN
and other developments. We also note in Section 5 that the designer
of a cost-effective data center network may not be strictly limited
to commodity hardware, as vendors are willing to offer some cus-
tomization when fullfilling an order on the scale of one or more data
centers. The Al-Fares et al. paper advocates building a full butter-
fly fat-tree, which it terms a network with an oversubscription ratio
(ratio of bandwidth connecting end hosts to bisection bandwidth) of
1:1. The paper also suggests allocating addresses systematically to
match the structure of the network, a technique that is compatible
with all of the structures described in Section 2, and which has been
applied whenever these networks have been incorporated in parallel
computers.

The terminology in Al-Fares et al. is not entirely consistent with the
historical terminology. The paper states that the fat-tree is a special
case of a Clos network which is unfortunate because it obscures
the distinction between Clos networks, which are full bandwidth
networks, and fat-trees, whose bandwidths can be adjusted to match
available packaging technology. We would prefer to say that the
Clos network of [2] is a special case fat-tree called a full butterfly
fat-tree, and might add that when fat-trees were introduced, full fat-
trees were not viewed as likely candidates for implementation on a
large scale due to the difficulty of providing such a high degree of
connectivity at the root.

At first glance, it appears that the cost of each level of the hierarchy
in the Clos network is equal because each level has the same total
number of links and the same total number of ports. But the long
cables connecting racks of servers on opposite sides of the data cen-
ter are more expensive than the short cables connecting servers to
top-of-rack (TOR) switches. Furthermore, there are limits on the
lengths of copper cables driven at 1 Gbps or higher, so high grade
copper cables (e.g., cat 6a or 7), or more expensive optical fiber,
may be needed to span greater distances. Al-Fares et al. acknowl-
edge that they do not take cabling costs into consideration. In their
defense, however, the cost per port of the proposed switches ($145)
is fairly high (these costs have since come down), so the relative
impact of cabling costs is limited. The paper does provide a care-
ful plan for cabling, but it doesn’t account for the actual weights
and volumes of the cables. We would caution that such physical
considerations must be taken into account.

3.2 VL2
VL2 [16] is a Clos network, similar in structure to a full fat-tree.
One of the goals of VL2 is to provide an oversubscription ratio
of 1:1. To achieve this, however, servers are connected to TOR
switches at 1 Gbps, whereas switches are connected to other switches
at 10Gbps. Hence the number of wires at each level above the
racks is one tenth the number within racks. One disadvantage of
this approach of “throttling” access to the network is that for the
relatively small cost of upgrading to 10Gbps connections to the
TOR switches, applications that mainly require communications
with other servers in the same rack could perform much better.
In a cost universal network, technology providing the best price-
performance ratio would be employed at each level. The VL2 pa-
per analayzes the cost of various types of switches, but does not
analyze cable cost, volume, or weight.

VL2 uses Valiant-Brebner-style load balancing at the granularity



of flows, with paths from servers behind different TOR switches
traveling all the way to the root. Note, though, that there is provably
little load-balancing advantage gained from sending all packets to
the root whether they need to travel that far up in the tree or not.

The VL2 prototype consists of 80 servers in four racks, with the
TOR switches connected to three 24-port “aggregation” switches.
The aggregation switches are in turn connected to three 24-port
“intermediate” switches. (Not all ports are used in the prototype.)

3.3 DCell
The paper by Guo et al. [20] introduces a network called DCell.
The stated goals of the DCell design are fault-tolerance and scala-
bility. Fault-tolerance is achieved through redundant paths between
source-destination pairs. DCell also aims to provide high bisection
bandwidth. The authors argue that tree-based networks contain sin-
gle points of failure and cannot provide a high degree of connectiv-
ity. The multi-fat-trees described in Section 2.2, however, provide
multiple paths between pairs of endpoints, and as we have seen in
Section 2, the amount of bisection bandwidth provided by a fat-tree
can be chosen by the network designer.

DCell is constructed as follows. At the lowest level of the hierar-
chy, the N servers in DCell0 are connected to a single switch. In
general, suppose that a DCelli contains ti servers. Then a DCelli+1

is built from ti + 1 instances of DCelli. In each of the DCelli in-
stances, each of the ti servers has a link to a server in a different
instance. Hence, each DCelli instance is connected by one link to
every other DCelli instance. For this reason, we might call DCell a
clique of cliques. DCell is hierarchical in the sense that if any two
servers belong to the same DCelli, there is a path between them
that is contained entirely with that DCelli. On the other hand, there
may be redundant paths between the servers that are not entirely
contained in the DCelli.

A major difference between the fat-trees described in Section 2 and
DCell is that the DCell network structure is inflexible. The total
number of servers and the topology of DCell is determined entirely
by two parameters: the number of servers in a DCell0, n, and the
number of levels in the hierarchy. For example, in a DCell2, the
number of servers is given by the ugly formula t2 = ((N + 1)N +
1)(N +1)N . The designer cannot adjust the structure to match the
available packaging and wiring technologies.

Apart from the use of switches in DCell0, all other connections are
made directly between servers. This type of network is called a di-
rect network in the literature. Clos networks and fat-trees, on the
other hand, are indirect networks. In a direct network, switching
and routing are implemented at the servers themselves. One advan-
tage to this approach is that it allows for flexible routing algorithms,
and may be used to avoid the pitfalls of cycles in layer-2 networks.
Without augmenting the servers with specialized hardware, how-
ever, performance is likely to suffer. With specialized hardware,
the price-performance ratio (today) is unlikely to be competitive
with an indirect network.

The DCell paper does not contain any analysis of the lengths or
weights or costs of the cabling, although it acknowledges that the
design uses more and longer cables than competing designs.

The authors implemented a 20-server testbed, but did not face the
cabling challenges that would arise were the network to be im-
plemented at the scale of a data center with tens of thousands of

servers.

The DCell paper states that in a fat-tree the aggregate bandwidth is
the same at all levels. As we have discussed, this is true only of full
fat-trees.

3.4 BCube
The BCube [19] is another network in which servers participate in
the routing. Its topology could be called a “mesh of stars,” i.e., a
variant of the mesh of trees network [22], in which each tree con-
sists of a root (a switch) connected directly to leaves (servers).

To the best of our knowledge, the exact oversubscription ratio of the
BCube is not known. Calculating the bisection width of the mesh
of stars, i.e., the number of links that must be cut to separate the
N leaves into two equal-sized groups, is somewhat complicated.
A BCubek is formed by connecting d BCubek−1 networks using
dk degree-d roots. Hence the bisection width is at most dk+1/2.
There are N = dk+1 leaves, so the bisection width is at most N/2.
The standard technique for proving a lower bound on the bisection
width of a network is to find an efficient and symmetric embed-
ding of the complete graph KN in the network. This technique
provides a lower bound of N/4 for the BCube. Thus, the BCube is
a full-bandwidth network in the sense that the bisection bandwidth
is proportional to the number of servers in the network. For those
curious about whether the true bisection width is closer to N/2 or
N/4: the simple bisection described above is not optimal. Instead,
it is more efficient to cut out a (1/2)1/(k+1)d×. . .×(1/2)1/(k+1)d

submesh leading to a bisection width of (k+ 1)((1/2)(k/(k+1))−
(1/2))dk+1, which approaches ((ln 2)/2)dk+1, about .35N , as k
grows large. We don’t know if this bound is tight.

Wiring volume is estimated in [19], but only for a 2048-server
BCube. Weight and cable length are not estimated. The paper ex-
plains that an Ethernet cable has diameter 0.54cm, that the number
of level-2 cables along a column of racks is 256, and that the num-
ber of level-3 cables is 512 (for a total of 768). These cables need
176cm2, which is less than (20cm)2. The available height is 42cm,
so there is enough room for the cables. Note however, the exponen-
tional growth in the number of cables needed at level 2 versus level
3. Adding another dimension would require routing another 1024
cables along the top of the racks, so from a packaging perspective,
this design is not scaling well.

4. UNIVERSALITY
This section reviews the theory of area-univeral networks and then
describes the approach that we take in constructing cost-universal
data center networks.

The main result in Leiserson’s paper is a construction of a fat-
tree network that can be laid out with VLSI area n and that can
emulate any other network that can be laid out with area n with
only O(log3 n) slowdown. Such a fat-tree is called area univer-
sal, and there is an analogous volume universal fat-tree for three-
dimensional VLSI layouts. Greenberg’s thesis also shows how to
reduce the slowdown of the emulation to O(log2 n). The emula-
tion results described thus far assume the bit model of computation
in which a wire in a circuit can transmit a single bit of information
in one time step. In the word model, in which a wire can transmit
anO(logn)-bit address in a single step, Leighton, Maggs, Ranade,
and Rao [24] showed how to reduce the slowdown to O(logn).
Bay and Bilardi then reduced the slowdown to O(logn) in the bit



√
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Figure 7: The VLSI layout of network N , which has area n, is
divided into four quadrants, each with a boundary of

√
n. The

diagram shows wires severed by the vertical and horizontal cuts.

model [5]. All of these emulation results apply in the scenario in
which the entire network is integrated onto a single chip.

It is not too difficult to sketch a proof that a certain 4-ary butterfly
fat-tree is area universal. The goal of the fat-tree is to emulate any
other network that could be laid out in area n. The fat-tree has n
leaves, and the capacities of the channels are chosen so that the ca-
pacity at the leaves is one, and the capacity doubles at each of the
log4 n levels on any path up the tree from the leaves to the root, so
that the capacity at the root is

√
n. Doubling the channel capacity

in a 4-ary fat-tree is achieved using switches with twice as many
children as parents. There are two ways to see why doubling the
capacity at each level is the right growth rate. First (as we shall see
below), the boundary of the area to be emulated by each subtree
of the 4-ary tree doubles at each level. Second, as seen in Fig-
ure 3, starting at the leaves and moving up the tree, at each level the
length of the wires in each channel roughly doubles and the capac-
ity (number of wires) also doubles, so that the area required to lay
out a channel increases by a factor of about four. But the number
of channels is reduced by a factor of four, so the total area allocated
for each level is roughly equal, which is the right allocation for area
universality. (Technically the area of the H-tree layout for this fat-
tree is Θ(n log2 n), rather than n, a complication we ignore here,
but which can be addressed by constructing a fat-tree with root ca-
pacity

√
n/ logn and n/ log2 n leaves, which has area O(n), and

then augmented the tree by attaching a logn× lognmesh of nodes
to each leaf with a single wire [24], which also requires a total area
of O(n).)

Suppose that the fat-tree is to emulate a network N that has been
laid out with area n using unit-width wires. NetworkN is mapped
to the fat-tree as follows. Without loss of generality (but without
proof here), we can assume that the layout of N is square. We
begin by cutting the layout ofN into four equal-sized square quad-
rants, as shown in Figure 7. Because wires have unit width, the
number of wires leaving a quadrant is at most equal to the perime-
ter of the quadrant. Since the layout of N is square and has side-

length
√
n the perimeter of each quadrant is

√
n. The root of the

fat-tree has four children, and the subtree rooted at each of these
children emulates one of the quadrants. The capacity of the chan-
nel between the root and each child,

√
n, has been chosen to match

the maximum number of wires connecting the quadrant to the other
quadrants. Hence, at the root the fat-tree has sufficient bandwidth
to carry any interquadrant traffic that network N could carry. The
mapping then proceeds recursively, with the processors of N ul-
timately mapped to the leaves of the fat-tree. A similar approach
can be used to construct a volume-universal fat-tree. Instead of
cutting a two-dimensional layout into quadrants with lines, a three-
dimensional layout is cut into octants with planes. In three dimen-
sions, the number of wires that cross a cut is bound by the surface
area of the cut.

The fat-tree emulates network N in a step-by-step fashion. For
each message that N sends across a wire, the fat-tree sends a mes-
sage between two of its leaves. A message may have to travel a
distance (called the dilation) of up to 2 log4 n. In each step, the
number of messages sent byN across any fat-tree channel matches
the capacity of that channel. It is not difficult to show that if mes-
sages follow random paths on the way up towards lowest common
ancestors, the maximum number of messages that cross any link
of the fat-tree (i.e., the congestion) is at most O(logn/ log log n),
with high probability. The combination of logarithmic congestion
and logarithmic dilation implies logarithmic slowdown for the em-
ulation [5, 24].

4.1 Building-scale networks
Thus far in the discussion of universality we have considered only
the scenario in which the entire networks fits on a single chip. This
is a convenient but limited scenario. In this context we can de-
rive a simple mathematical formula for the amount of bandwidth to
allocate at each level of the tree in order to achieve universality be-
cause cost equates to a single, homogeneous, quantity: layout area
(or volume). But a data-center-scale network will not fit on a sin-
gle chip, so our notion of universality must be generalized, and our
approach to achieving universality may be more complex. Leiser-
son [26, 27] contemplates the more general case, observing that a
network may be packaged in a hierarchical fashion using a vari-
ety of technologies, from chips to circuit boards to backplanes to
racks. The following passage from [27] explains that the structure
of a fat-tree should be adjusted to match the available technology.

In practice, of course, no mathematical rule governs
interconnect technology. Most networks that have been
proposed for parallel processing, such as meshes and
hypercubes, are inflexible when it comes to adapting
their topologies to the arbitrary bandwidths provided
by packaging technology. The growth in channel band-
width of a fat-tree, however, is not constrained to fol-
low a prescribed mathematical formula. The channels
of a fat-tree can be adapted to effectivelty utilize what-
ever bandwidths the technology can provide and which
make engineering sense in terms of cost and perfor-
mance.

Fat-trees were first implemented in parallel computers such as the
Connection Machine CM-5 by Thinking Machines [28], the CS-2
by Meiko [6] and more recently the BlackWidow by Cray [31]. In
its KSR-1 and KSR-2 machines, Kendall Square Research used a



hierarchy of rings, which has at times been called a fat-tree (see,
e.g., [10]).

The coarse structure of the CM-5 was a complete 4-ary tree, con-
structed using two types of switches. Every switch had four chil-
dren, but the number of parents could be either two or four. Think-
ing Machines exploited the flexible structure of fat-trees to match
engineering constraints, as explained in the following passage from [28].
The passage uses the term “router chip” synonymously with the
term “switch” in this paper.

Based on technology, packaging, and cost considera-
tions, the CM-5 bandwidths are as follows. Each pro-
cessor has 2 connections to the data network, corre-
sponding to a raw bandwidth of 40 megabytes/second
in and out of each processing node. In the first two lev-
els, each router chip uses only 2 parent connections to
the next higher level, yielding an aggregate bandwidth
of 160 megabytes/second out of a subtree with 16 pro-
cessing nodes. All router chips higher than the second
level use all 4 parent connections, which, for example,
yields an aggregate bandwidth of 10 gigabytes/second,
in each direction, from one half of a 2K-node system
to the other.

4.2 Provisioning cost-universal networks
The proof that a data-center-scale fat-tree is cost universal cannot
strictly follow the proof that a certain fat-tree is area or volume
universal. While it is amusing to contemplate cutting a data cen-
ter building into octants and allocating as many cables to the root
channels of the fat-tree as can possibly cross the surface area of the
corresponding cut, the analogy with the VLSI model doesn’t en-
tirely hold up. The biggest difference is that in the VLSI model the
cost of a wire, i.e., the area or volume that it occupies, is exactly
equal to the length of the wire. Furthermore, the area or volume
devoted to a wire often dominates that devoted to the circuitry that
drives the wire. In a data center, different cabling technologies, e.g.,
copper versus optical fiber, impose different limits on the lengths
of cables, and vary in transmission speed, cost, weight, and vol-
ume. While weight and volume are proportional to length, cost can
be better modeled as the sum of a fixed-cost term and a term pro-
portional to length [21]. The fixed cost, which includes the cost
of ports and line cards, is higher for optical cables than for electri-
cal cables, but the cost per meter is lower. The operational cost of
wiring the cables, which depends on the complexity of the network
design, may also be significant. In Section 5, we discuss current
cabling and switch port costs.

On the other hand, whereas VLSI layout technology offers a net-
work designer the freedom to create arbitrary structures within the
area bounds of a chip, there are many practical constraints that limit
the options of a data center network designer, including, most im-
portantly, the technologies available at low cost at the time of the
design. At the endpoints of the network, the best price-performance
ratio is achieved by installing commodity servers, or in any case
servers composed of commodity processors on commodity moth-
erboards. In a denser installation, server blades might be plugged
into a blackplane, which could implement a high-speed network
that connects the blades and also interfaces with the rest of the net-
work. Servers are typically housed in racks, and the best price-
performance ratio approach to connecting the servers within a rack
is often achieved by using a switch or router. Racks are organized

in rows (for ventilation and wiring purposes), and the same sorts of
switches and routers can be used to connect the racks within a row,
or to connect different rows.

The cost-universal approach to data center design leverages the fact
that a data center network designer makes investments in only a
small number of connectivity categories. For any network that
is implemented in practice, the designer must decide how much
money to spend connecting processors or servers within racks, how
much to spend connecting racks within a row, and finally, how
much to spend connecting the rows. To build a cost-universal net-
work, the designer allocates roughly the same amount of money to
each of these categories, heeding physical constraints such as limits
on the weight of cables that can be carried from one row to another.
When physical constraints prevent the designer from spending an
equal amount on all levels (due to weight, volume, or wiring com-
plexity), the designer’s goal is then to spend as close as possible to
an equal amount.

For the purposes of our approach, the differences in the intercon-
nection patterns of fat-trees, multi-fat-trees, folded Clos networks,
etc., are not especially significant. What is required is that the cho-
sen class of networks can be configured in a hierarchical fashion
with a small number of levels in the hierarchy. A second require-
ment is that it must be possible to allocate bandwidth at each level
of the hierarchy as a function of the costs and engineering con-
straints of the networking technology, e.g. maximum wiring length
and wiring volume, that is most appropriate for implementing that
level. Finally, the path in the network from one leaf to another
should travel no higher than their least common ancestor, and the
network and its routing algorithm must provide an effective load
balancing mechansim so that any bandwidth allocated at a particu-
lar level can be fully utilized.

We are now in a position to argue that a network such as a fat-tree
in which an equal amount has been invested symmetrically in each
level of the hierarchy (e.g., within the racks, between the racks,
between the rows) is cost universal. As in the proof that certain fat-
trees are area universal, we describe an emulation. Suppose that
the cost-universal network is to emulate a networkN that has been
implemented at the same cost. We assume that N is a roughly
symmetric network, i.e., there is no rack that is much better con-
nected internally than any other rack, there is no row that is much
better connected internally than any other row, and each row has
roughly the same amount of connectivity to the rest of the network.
This assumption is limiting, but virtually all proposed data center
networks are symmetric. Consider an application A that is exe-
cuting on N , and now imagine instead that the same application
A is executed on the cost-universal network. How much slower
will it run? Suppose that the performance of A is limited by a
network bandwidth bottleneck in some category, e.g., the links be-
tween racks in a row are saturated. (If instead, the performance
of A is limited by the latency of N , then it should not be much
more limited by the latency of the cost-universal network, which is
a shallow hierarchical network.) The cost-universal network has a
level in its hierarchy for each category of connectivity in N , and
can use all of its bandwidth efficiently. Because there are only a
small number of levels in the hierarchy (e.g., four), even if the de-
signer of N invested everything in this single bottleneck category,
the designer of the cost-universal network has made at least one
fourth of the same investment in the corresponding level of the hi-
erarchy. We assume that this one-fourth investment will provide
application A with at least one fourth the bandwidth, and hence at



most a factor of four slowdown. (In practice, it is not strictly true
that the optimal price/performance ratio is constant for all levels
of investment. The price/performance ratio might change at inflec-
tion points where different technologies requiring different mini-
mum investments are employed. If a small increase in investment
would allow the designer to switch to a technology with a better
price/performance ratio, it might make sense to invest a little more.)
While a factor of four (in this example) certainly matters in prac-
tice, this worst-case slowdown would apply only if the designer
knew the application in advance of building the network, and the
application had a communication pattern that exclusively exercised
one category of connectivity. The fact that such an upper bound ap-
plies to all application running on all possible networks that could
be built at the same cost is an indication that the cost-universal net-
work is a sound general-purpose design.

Of course if the application or applications to be executed in a data
center are all known in advance, it may make sense to design a
custom network with the aim of optimizing these applications. In
this case, a cost-universal network can serve as a design starting
point, and the capacities of the channels at different levels of the
hiearchy can be adjusted to match the demands of the applications.

Another important cost to consider when designing a network is the
cost of developing the software for the applications that will run on
the network. Blelloch et al. [8] argue that achieving good perfor-
mance on networks with low bisection bandwidth requires carefully
engineering algorithms that are specialized to the network architec-
ture, which is an expensive and time-consuming process. Hence, a
larger investment in the wiring of the upper levels of the hierarchy
may be offset by savings in software development costs. This ar-
gument does not contradict the universality argument presented in
this paper. Instead, it suggests that in determining the total budget
for building a network, the impact on future software development
costs should be taken into consideration.

5. PRACTICAL ISSUES
The art of designing a realizable and cost-effective data center net-
work requires a careful blending of theory and practical concerns.
Previous sections have reviewed some of the applicable theory, and
we now turn to some of the important of the practical issues.

As previously pointed out, the overall network serves as one large
“switch” made of ASICs (switching elements) connected together
by a variety of motherboard traces, backplanes, or cables (links)
and knit together by software (the control plane) [26]. Due to space
constraints, we examine the ASICs, backplanes, and cable, leaving
the software for future work. We examine several large data centers
built by a major online services company, analyzing the spent at
each of the layers.

5.1 Trends in ASIC Design
“Commodity” switching has been revolutionized by single-chip switch
ASICs with astonishing performance. Each switch ASIC genera-
tion is usually opened by a new fabrication node, just like CPUs.
This sets how many transistors the switch designer has to work with
on a cost effective die-area of silicon.

The trend is to spend these transistors on more links, faster links,
and integrating more elements of a physical switch onto the chip
(e.g., the SERDES). As a result, designers have spent fewer transis-
tors on buffer space or forwarding features. This trend is illustrated
by Table 1 that shows how the number of ports, port speeds, total

Year Ports Throughput Total µs of
Buffer Buffer

2007 24 x 1Gbps, 4 x 10 Gbps 64Gbps 2MB 250
2009 48 1Gbps, 4 10Gbps 88Gbps 4MB 363
2009 24 10Gbps 240 Gbps 4MB 133
2011 64 10Gbps 640 Gbps 9MB 112
2013 32 40Gbps or 128 10Gbps 1.2Tbps 9MB 56

Table 1: Timeline of ASIC port counts, speeds, buffer size, and how
many microseconds of buffer are available per port if each port is
outputting at maximum utilization.

buffer, and buffer per port have changed over multiple generations
of switch ASICs.

Continuing the similarities with CPUs, since the die area of each
generation of switch ASIC is roughly the same, the per-unit man-
ufacturing cost of each generation is also roughly the same. Like
with CPUs, prices vary greatly depending on a buyer’s volume and
market relationship, but are probably in the range of $500 - $1,500
each.

5.2 ASIC Interconnection Strategies
Consider the challenge faced by a designer wishing to create a net-
work that can interconnect 2,048 ports of 10Gbps Ethernet with
no oversubscription, and the designer has a switch ASIC with 64
ports of 10Gbps available as the basic building block. The designer
could create a two layer Clos network of switches, each switch hav-
ing 64x10Gbps ports and the two layers of switches connected by
fiber links. This would consume 64 switches in one layer and 32
switches in the other for a total of 96 switches and 2,048 cables
inside the Clos. Alternatively, the designer could first assemble a
set of ASICs into a 128x10Gbps switch, creating a Clos network
among the ASICs using traces on a PCB motherboard, and then
build a network using these 128x10Gbps switches.

The challenge faced by commodity network device vendors is to
assemble a collection of switch ASICs into a switch that they can
sell profitably to a large market. Since the complexity is higher and
the market smaller for a multi-chip switch, the per-port cost of such
a multi-chip switch is usually higher than the costs for a network
device housing a single switch ASIC. This can be counter-intuitive,
given that the cost of traces between multiple switch ASICs on a
motherboard are much cheaper than wires in the backplane of a
multi-motherboard switch, which are much cheaper than the cost of
fiber or copper connection between two physical separate network
devices.

To give some feel for the costs: motherboard traces are so cheap
as to be essentially free. The cost of a switch chassis containing
a roughly 4Tbps backplane is on the order of $50K, or $125 per
10Gbps. The cost of a 10Gbps fiber cable, with optical modules on
each side, is roughly $200. A copper-based Direct Attach Copper
(DAC) 10Gbps cable, which can used up for distances up to about
5m, costs about $50-$100 (one problem with DAC cables is their
volume, which is significantly larger per cable than fiber).

This means that today, any network that can be built using single
ASIC switches within about 5m of each other connected by copper
cables is the cheapest way to build such a network. Above that size,
the use of multi-ASIC switches starts to become cost effective.

Active Optical Cables (AOCs) are changing the game, however. At



a cost around $125, AOCs provide 10 or even 40Gbps over 3m
to 20m of fiber. They achieve this feat by hermetically sealing
the fiber to the optical modules, which enables them to use non-
standard lasers or even LEDs. The major drawback is a deployment
issue — the cables have to be pulled or otherwise installed with the
optical modules attached.

Planning for the cabling between switches is a first order concern
in any network design, but especially in designs like those we de-
scribe. Physically running the cables needed to realize these de-
signs is quite possible, but does require carefully computing the
weight and volume of all the cable paths so that properly sized hor-
izontal and vertical cables trays can be installed. Failure to plan
ahead has led fibers to overflow and spill out of cable managers, re-
sulting in such a mess that the network layout had to be redesigned
and recabled.

Similarly, the cost of cables and cabling needs to be accounted for
in the design process. For example, consider building a network
using three layers of single ASIC switches or two layers of multi-
ASIC switches (each switch then having a higher radix than a sin-
gle ASIC switch). The network with three layers of single ASIC
switches will use fewer ASICs than a similarly sized network with
multi-ASIC switches. However, the three-layer network uses twice
as many physical cables, and is much harder to construct.

5.3 Costs
While we have some data on the costs of data center components,
we do not have enough information to fully flesh out the design
of a cost-universal network. However, we were able to obtain,
from a large on-line services provider, the relative capital expenses
on each tier (top-of-rack, aggregation switch, spine switch) of two
generations of production networks. Interestingly, the data suggests
that, in practice, network designers are now roughly following our
“equal cost per tier of the hierarchy” suggestion. The cost of the
cables to connect two layers is included with the cost of the layer
above (e.g., server to ToR cables are included in the cost of the
ToR layer, and ToR to Aggregation cables are included in the cost
of the Aggregation layer). In a network over 4 years old with a
relatively high oversubscription ratio, the ratio of the cost of the
network layers was 6:2:1 ($6 spent on top-of-rack switches and $2
on aggregation switches for every dollar spent on spine switches).
For newer networks with lower oversubscription ratios, we found
the ratio to be close to 2:2:1. As predicted by the model, the factor
driving the equalization of cost is the increased expense for cables
in the networks with less oversubscription.

6. CONCLUSION
As we enter an era of ubiquitous cloud computing and online ser-
vices, investment in data centers is going to be enormous. It is in-
cumbent on the networking community, therefore, to develop prin-
cipled methods for designing data center networks. In this vein, we
have suggested a rule for allocating resources to the tiers of hierar-
chical networks: roughly equal investment at each tier. Our focus is
on network bandwidth and the cost, volume, and wiring complexity
of the network. There are numerous other important considerations,
however. For example, the network designer must also address the
cooling, energy consumption, latency, fault tolerance, and manage-
ment of the network. At the moment we do not see any reasons
why addressing these issues will conflict with our cost-universal
approach. Further confirmation, however, will require a complete
and holistic design of a cost-universal network.
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