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Abstract: Emerging ML training deployments are trending
towards larger models, and hybrid-parallel training that is
not just dominated by compute-intensive all-reduce for gra-
dient aggregation but also bandwidth-intensive collectives
(e.g., all-to-all). These emerging collectives exacerbate the
communication bottlenecks despite heterogeneous network in-
terconnects with ample multipath opportunities. In this work,
we propose SYNDICATE, a systematic, general framework to
minimize communication bottlenecks and speed up training
for both state-of-the-art and future large-scale models and
interconnects. SYNDICATE proposes a novel abstraction, the
motif, to break large communication work as smaller pieces
as part of execution planning. SYNDICATE also does joint op-
timization of scheduling and execution planning by rethinking
the interfaces in the networking systems stacks used for ML
training. Motifs afford greater flexibility during scheduling
and the joint optimizer exploits this flexibility by packing and
ordering communication work so as to maximize both net-
work utilization and overlap with compute. This improves the
speed of training state-of-the-art large models by 21-74%.

1 Introduction
Training machine learning (ML) models is a common-case
workload at any data-driven enterprise. To keep up with evolv-
ing data and maintain a competitive edge, enterprises are
employing more sophisticated features and more complex
model architectures, and attempting to train faster at ever
larger scales and to deploy high-quality models frequently.

These trends are exemplified by the deep learning recom-
mendation model (DLRM). DLRM is used in recommenda-
tion systems at several large organizations. These models
use a mixture of continuous and categorical features obtained
from user data. The model architectures, which are themselves
rapidly evolving, uses a mixture of multi-layer perceptrons
and embedding table lookups. The model capacity and com-
pute is increasing exponentially year-on-year [24].

At production scale, such state-of-the-art models use a mix-
ture of data and model parallelism to efficiently scale-out to a
large number of machines in the training cluster. This induces
rich communication collectives such as all-reduce, all-to-all,
collective-permute, and all-gather [21,24]. The resulting com-
munication operations (comm-ops) are a major bottleneck to
end-to-end training performance [24].

Evolution in networking infrastructure in training clus-
ters [32, 35] (to include faster interconnects such as
NVLink/NVSwitch, RoCE, Infiniband and support faster

transports such as Remote Direct Memory Access (RDMA))
does not in itself help address these bottlenecks. These ad-
vancements need to be coupled with effective computation-
communication scheduling and execution planning optimiza-
tions. These optimizations hide communication by maximiz-
ing overlap with compute and help maximize utilization of
the networking infrastructure.

Unfortunately, existing scheduling optimizations [16, 18,
29] and execution planners [10,11,20,33,34] fall short. These
works make several restrictive assumptions limiting their ap-
plicability to simplistic models, training settings, and net-
works. Communication schedulers make assumptions about
the model and training architecture (simple layer-by-layer
models [29] with data-parallel training) or deployment mode
(Parameter Server-based [16, 18]), and the execution planners
make simplifying assumptions about the nature of comm-ops
(only all-reduce [10, 11, 20, 33, 34] or only push-pull [20]).

Moreover, existing solutions are point solutions in the op-
timization space and fail to jointly optimize scheduling and
execution planning concerns. Schedulers today are unaware
of the optionality during execution planning, such as parallel
execution of two comm-ops over non-overlapping network
communication channels, and might impose orders that fail
to leverage such opportunities during execution planning. As
a result, they leave significant room for optimization.

We seek a comm-op optimization framework that jointly
optimizes planning and scheduling, applies to state-of-the-
art large models with complex communication patterns, is
generalizable to future large models and arbitrary network in-
terconnects. Our framework should also encapsulates all pos-
sible optimization axes, and enables a systematic, thorough,
automatic search through the space for optimal strategies.

Enabling systematic joint optimization of scheduling and
execution planning is challenging. First, the communication
systems stacks used for ML training today place scheduling
and execution planning concerns in two different layers. The
scheduler is co-located with ML training frameworks (such as
PyTorch, TensorFlow) and the execution planner is co-located
with communication libraries (such as NCCL, MPI). These
are governed by two different developer communities and
the scheduler interacts with the execution planner via a nar-
row, one-way API to just submit comm-ops. Moreover, the
scheduler and the execution planner only accommodate fast,
deterministic procedures so as to enable tight co-ordination
across worker processes that peer with each other using paral-
lel programming frameworks (such as MPI) during training.



Second, scheduling happens at the very coarse granularity
of collectives submitted by the training application which
limits scheduling flexibility as it leads to fewer opportunities
to reorder communication work in time and efficiently pack
communication work in space, i.e., over the heterogeneous
mix of communication channels and bandwidth available in
the networking infrastructure.

We propose SYNDICATE, a system for joint optimization of
scheduling and execution planning with several innovations:

• SYNDICATE proposes a novel abstraction, the motif,
to break large communication work in comm-ops into
smaller units of communication work. Motifs afford
greater flexibility, by helping pack and order communica-
tion work so as to maximize network multipath utilization
and to maximize overlap with compute.

• Similar to query optimization backed by a well-defined
relational algebra, we present a novel algebra atop motifs
that systematically codifies the search space of correct,
composable motif operators used to transform comm-ops
into motifs and enables comm-op optimization.

• SYNDICATE rethinks the interfaces in the commmuni-
cation stack and enables joint optimization via the joint
action of a control plane and a data plane. The former
executes a time-intensive, non-deterministic joint opti-
mization out-of-band without blocking the latter which
enables fast execution of tightly co-ordinated motifs.

• We blend techniques used for optimal tensor operator frag-
mentation [19], DAG scheduling [15] and query replan-
ning [22] to probabilistically search the joint optimization
space to yield near-optimal comm-op optimization plans.
We also introduces a novel shim-layer above existing com-
munication libraries to enforce these plans.

We implement the enforcer atop existing communication
libraries by extending the torch-ucc interface; the joint op-
timizer as a separate python process; and enable safe interac-
tion between the central optimizer and the enforcer via a two
phase commit protocol. We present the evaluation of several
state-of-the-art models on a 128-GPU cluster with rich multi-
path opportunities. SYNDICATE demonstrates 21–74% faster
training than the closest state-of-the-art [29] and is better than
hand-optimized trainers.

2 Background
The compute and capacity of models has been increasing
exponentially [1], with model training compute approaching
1000s of petaflop/s-days [9] and model capacity approach-
ing trillions of parameters [24]. To train ever larger models,
training clusters are scaling up to thousands of devices [21].

In this section, we give a short primer on the compute
parallelization strategies used for ML training and the ac-
companying communication operations (comm-ops) that are
issued. We also discuss how training network infrastructure
is evolvong to deal with higher network loads.

Bottom 
MLP

Top 
MLP

Emb 
Lookup

Dense 
Features

Sparse 
Features

Sparse 
Features

Emb 
Lookup

Feature 
Interaction

1

B

2

3 C

Model- to Data-Parallel
comm-ops: all-to-all

Sharded by Feature
Sharded by Batch

A

1

A

B

3

C

Model-Parallel2

Data-Parallel
comm-ops: all-reduce

Figure 1: DLRM Model

2.1 Parallelization Strategies
We exemplify the different parallelization strategies via the
Deep Learning Recommendation Model (DLRM). The largest
DLRM used in production has trillions of parameters [12, 24,
26], making DLRM training especially challenging. DLRM
uses a hybrid mix of parallelization strategies for different
model parts (similar to BERT [13], Megatron [30], GPT [9]).

Figure 1 shows the DLRM model architecture. The training
data comprises a mixture of dense continuous features and
sparse categorical features (one-hot encoded or multi-hot en-
coded data), which are first mapped to a common embedding
space using the bottom multi-layer perceptron (MLP) and
the embedding table lookups respectively. The output embed-
dings go through a feature interaction phase and are then fed
to the top MLP to get the recommender model output.
Data-Parallelism: With data-parallelism, all the model pa-
rameters are replicated across all the training devices and each
device has a worker process computing parameter gradients
in parallel. In the case of DLRM, the bottom MLP and top
MLP use data-parallelism for training in production. These
MLPs are compute intensive but not memory intensive and
the MLP parameters fit within a single device memory.
Model-Parallelism: Data-Parallelism does not work for mod-
els with large capacity and with input datasets that cannot be
trivially sharded into batches. With Model-Parallel training,
the model is partitioned (and not replicated) across different
devices. For DLRM, the embedding table lookup models and
the input tables are large and memory-intensive, and as a re-
sult are parititioned across different devices during training
resulting in model-parallel training.
Hybrid-Parallelism: As seen so far, different portions of
DLRM training use different parallelization strategies. This is
known as hybrid-parallelism. In the most general case, mod-
els can be replicated or partitioned in several different ways
during training [19, 21, 25], resulting in hybrid-parallelism.
FSDP: Fully Sharded Data Parallelism [8] is a memory-
efficient version of data-parallelism. It shards the model state
(weights, gradients, optimizer state) for each layer of the
model. During forward- or backward-propagation of a layer it
enables data-parallel computation by first doing an all-gather
of all the model state at all the devices and reshards the up-
dated state post-computation by doing a scatter. This leads
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Figure 4: State-of-the-art system architecture of training cluster such
as Nvidia DGX/HGX-like systems [24, 28]

to memory-efficiency and as a result allows to pack larger
models in the same cluster resources.

2.2 Communication Operations (Comm-Ops)
Different parallelism strategies induce different comm-ops.

With data-parallel training, gradients computed at each
worker process are aggregated layer-by-layer (during back-
ward pass). Each aggregation yields an all-reduce collective.

After the embedding lookups in DLRM ( 2 in Figure 1),
each device has a vector for the table lookup models resident
on those devices for all the samples in the batch, which needs
to be reorganized and sharded along the batch dimension. This
induces an all-to-all pattern of collective communication, as
shown in Figure 3.
Collectives from the MPI standard [23]: In the general case,
hybrid-parallel or FSDP model training [8, 14, 21] results in
several types of comm-ops, ranging from all-reduce, all-to-all,
collective-permute, all-gather, reduce-scatter to any collective
defined in the MPI standard [23].

2.3 Evolving Network Infrastructure
The aforementioned comm-ops push increasing amounts of
network traffic and the network infrastructure is adapting
with fatter topologies and faster interconnects to ensure the
needed throughput and latency.The network infrastructure in
a state-of-the-art training cluster [24, 28] is shown in Fig-
ure 4. Each node has multiple CPU cores and accelerators
such as GPUs, with frontend Network Interface Controllers

(NICs) connected to the host CPUs and a dedicated RDMA
NICs such as InfiniBand and RDMA over Converged Ethernet
(RoCE) for each of the GPUs connected via PCIe switches.
The RDMA NICs from across nodes can be connected with a
dedicated network. The extensible design of this node allows
to scale-out the network to interconnect thousands of nodes,
forming a data-center scale training cluster. This cluster has
heterogeneous mix of networking interconnects and protocols
with varying throughput and latency guarantees. There are
multiple communication channels between any two endpoints.
At an intra-node level, a pair of GPUs can communicate via
shared memory, NVLink, PCIe or the external network. At an
inter-node level, any two GPUs can communicate via GPUDi-
rect RDMA [27] or TCP/IP over Ethernet.

3 Motivation
Communication Bottleneck: Despite the networking infras-
tructure upgrades, the execution of comm-ops are a source of
excessive delays in training. As an example of the issues that
can arise in large model training, Figure 2 shows the execution
of CUDA stream kernels on a randomly chosen GPU during
a single iteration of production scale DLRM training 1. The
training creates a compute and a communication stream for
serialized execution of tensor operator kernels and comm-op
kernels, respectively. We note that there are several gaps dur-
ing execution. A gap on a stream occurs when the stream is
waiting for the result of kernel execution on the other stream.
The compute stream gaps are wider (34.8%) and cumulatively
larger than those in the communication stream (6.3%). This
means that communication is a training bottleneck as it blocks
compute for a third of the iteration. We now show that there
are several opportunities to optimize comm-ops.
Better Scheduling Opportunity: Reordering of comm-ops
improve compute/communication overlap. As shown in Fig-
ure 2 – 1 : the top MLP all-reduce comm-op can be split
judiciously and partially executed later to occupy the gap G4;
2 : as a result the all-to-all backward comm-op can be pulled

up to begin as soon as possible to reduce the gap G1.
Better Execution Planning Opportunity: Existing comm-
ops do not efficiently utilize multiple communication channels
available in heterogeneous network interconnects. We high-
light this in Fig.2 – 3 : both the all-to-all’s can be broken up
into smaller fragments of communication work and executed
one fragment at a time to reduce incast and improve through-

1We show accurate percentages and hide low-level details.
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put to reduce gaps G1 & G3; 4 : all-to-all and all-reduce can
be executed in parallel over communication channels with
non-overlapping interconnects to start all-reduce sooner and
drive higher network throughput to reduce gap G2.

Existing works to reduce communication overheads are
optimal for specific training scenarios (PS architecture [16],
layer-by-layer models [29], all-reduce collectives [20,34]; §7);
and the scheduling and execution planning techniques pro-
posed therein make restrictive assumptions, making it unclear
as to how to compose and apply these different techniques
towards hybrid-parallel training of large DLRM-like models.

A fundamental shortcoming of these works is that they do
not explore joint optimization (§3.1) mainly because existing
interfaces in the communication stack used for ML training
are not naturally amenable (§3.2). We also note that a collec-
tive is often too coarse-grained to schedule communication
work; breaking it up improves communication optimization
flexibility (§3.3). We describe these issues next.

3.1 Disjoint Scheduling, Execution Planning
3.1.1 Communication Stack Overview
Figure 5 shows the two sets of layers in the communication
stack used for ML training – the application (app) layer and
the communication (comm) layer – and the four steps leading
to execution of a comm-op over the network –
1 Model Definition: The user defines a model by compos-

ing various tensor operations. The example shows a model
declaration with three operators and its tensor operator graph.
2 Parallelization Strategy: The parallelize module (e.g.,
nn.DistributedDataParallel in PyTorch) takes the
model and the set of devices and converts the computation to
a training DAG. The vertices are compute-ops or comm-ops
and edges capture dependencies. Above we show the training
DAG for a single iteration; the ops in the DAG are managed
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by spawning several worker processes on all the devices by
using a parallel programming library such as MPI.
3 Comm-Op Scheduling: The communication scheduler

takes the training DAG as input and decides a ordering for the
comm-ops that maximizes compute/communication overlap.
The scheduling procedure is deterministic and executes on all
the worker processes so that the comm-ops are issued (and
executed) every training iteration in the same order on all the
devices. The default PyTorch order is FIFO.
4 Comm-Op Execution Planning: The comm layer at all

the devices receive the comm-op from the app layer via an
interface with a well-defined API (e.g., ProcessGroup in Py-
Torch). The execution planner on receiving each comm-op,
assigns it an execution plan and queues it in the same order on
the devices’ i.e., GPU’s communication stream for serialized
execution. The example shows an all-reduce collective which
binds to NCCL’s ring all-reduce implementation during ex-
ecution. Each collective typically has several options for its
execution plan (e.g., ring or tree for all-reduce collective) and
execution planners, such as NCCL, have network topology
aware cost models that estimate the execution time for differ-
ent options. Current execution planners are greedy and select
the execution plan option with the least execution time. All
worker processes bind to the same execution plan.

Thus, scheduling is an app-layer concern today, governed
by schedulers in ML training frameworks as PyTorch, while
execution planning is a comm-layer concern governed by
execution planners in communication libraries as NCCL. As
these are not jointly optimized, several inefficiencies arise,
which we exemplify next.

3.1.2 Example to highlight suboptimality
Figure 6 illustrates the lost opportunities due to a lack of
joint optimization of scheduling and execution planning. The
network topology is similar to that illustrated in Figure 4.
The training DAG in this example has four collectives: a is
an all-to-all collective and b, c, d are all-reduce collectives.



There are several execution plan options for each collective.
There is a cost associated with each option which measures the
execution time over the network. For all-reduce, the execution
plan options are tree all-reduce or the ring all-reduce, both
using NVLink and GPUDirect RDMA. For all-to-all, there are
two options: pairwise exchange between all processes either
using NVLink and GPUDirect RDMA or using PCIe complex
and TCP/IP over ethernet. With the latter option for all-to-all,
all-to-all and all-reduce can be overlapped. We compare the
iteration time of the current solution against SYNDICATE.
Current Solution: The execution planner greedily selects
the fastest option for each collective resulting in a training
iteration time of 11 units.
SYNDICATE Solution: SYNDICATE realizes that by jointly
making changes to the scheduling order and execution plan
choices there is opportunity to overlap all-to-all with all-
reduce and speed-up communication by utilizing network
heterogeneity. The current solution’s scheduling order exe-
cutes all-to-all last and does not allow overlap. SYNDICATE’s
scheduling order executes all-to-all collective at the very be-
ginning and allows overlap. The execution plan choices made
by SYNDICATE are shaded in the execution plan cost model
in Figure 6. SYNDICATE’s execution planner is not greedy
and chooses a slower execution plan for all-to-all so as to
allow for parallel execution of all-to-all and all-reduce over
non-overlapping interconnects in the network. Overall, this
results in a training iteration time of 9.5 units.

Joint optimization is beneficial but current interfaces are
not amenable as we discuss next.

3.2 Interface constraints Joint Optimization
The training DAG scheduler in the ML processing frame-
works is unaware of optionality (e.g., an all-reduce can be
executed by as a ring all-reduce or a tree all-reduce) present
lower down the stack during execution planning. A trivial ex-
tension of the existing interface is to expose the training DAG
to the comm layer and push the scheduling concern down
the stack to co-locate it with the execution planner. Exposing
the training DAG down the stack is necessary to ensure that
any reordering of comm-ops down the stack does not lead to
dependency violations: a child comm-op cannot be ordered be-
fore a parent comm-op as otherwise it can lead to a deadlock.
This enables joint optimization without dependency viola-
tions. However, the joint optimization problem is NP-hard
and the joint optimization procedure requires a time-intensive,
randomized algorithm (§4.3). As a result, this procedure can
delay comm-op execution due to its time-intensive nature. To
make matters worse, this randomized procedure, may lead to
divergent scheduling orders across different processes. This
can lead to out-of-sync issues, wherein if the collectives are
not submitted in the same order across two different processes
then it results in a deadlock where each process waits for the
other process to issue the same collective as itself. As a result,
the existing interfaces are unable to trivially accommodate
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joint optimization of these concerns.

3.3 Issues with Coarse-Grained Scheduling

Scheduling today happens at the granularity of user-submitted
comm-ops i.e., collectives. Communication libraries such as
NCCL, submit each comm-op as a kernel on the GPU com-
munication stream and a kernel cannot be context-switched
during execution. This means that once a comm-op is sched-
uled for execution it cannot be stopped mid-execution. This
leads to limited scheduling flexibility in space and time.

If the payload is very large then each network transfer in
the comm-op, once scheduled for execution, occupies the
network links for a long time. Likewise, if the pattern of
network transfers is large (e.g., a clique of network transfers)
then the comm-op gang schedules transfers on a large fraction
of network interconnects. Comm-ops, if scheduled as-is, thus
have large communication work orders and limit the ability
to both context switch and efficiently pack communication
work over available heterogeneous interconnects.

4 SYNDICATE Design
SYNDICATE changes the interfaces in the communication
stack to enable joint optimization of scheduling and execu-
tion planning. It builds on the motif abstraction to enable
deconstructing comm-ops into smaller work units along a
few dimensions and allow finer-grained scheduling. In this
section, we start with an overview of the new interfaces and
the new modules in SYNDICATE’s communication stack and
how it enables joint optimization (§4.1). We then explain the
motif abstraction (§4.2), the joint optimizer design (§4.3), and
enforcement of the joint optimizer’s decisions (§4.4).
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4.1 Overview
Figure 7 shows SYNDICATE’s communication stack. Notably,
we propose two new entities: a central optimizer and an en-
forcer. SYNDICATE co-locates scheduling and execution plan-
ning concerns in the centralized joint optimizer. The central
optimizer generates an optimizer plan. This plan contains
instructions on how to execute as well as how to schedule the
comm-ops during training and is conveyed to the enforcer on
each worker process. In this regards, the central optimizer is
the the control plane while the enforcer is the data plane. We
propose interfaces ( A , B , C ) between the central optimizer
and the communication stack. These interfaces are out-of-
band and asynchronous, meaning that the data plane does not,
in any circumstances, block execution of a comm-op waiting
for control plane instructions.

We now go over the workflow in SYNDICATE. We divide
it into control plane workflow and the data plane workflow.

Stepping through the control plane workflow –
A Joint Optimization: The central optimizer pulls the train-
ing DAG from the app layer and the network topology from
the comm layer. The optimizer uses these inputs to construct
the execution plan cost model and does joint optimization to
yield the optimizer plan (§4.3).
B Optimizer Plan Distribution: The joint optimizer plan is
sent to the enforcer on all the worker processes (§4.3).
C Feedback: The central optimizer pulls comm-op perfor-
mance statistics from the enforcer to help refine the execution
plan cost model and potentially redo joint optimization (§4.4).

Stepping throught the data plane workflow –
1 Model Definition: The user defines a model by composing

tensor operators. This yields a computation graph (§3.1).
2 Parallelization Strategy: The computation graph is con-

verted to a training DAG (§3.1). The comm-ops from the
training DAG are submitted every training iteration as-is to
the comm layer in the default FIFO order without applying
any scheduling optimizations.
3 Optimizer Plan Enforcer: The comm-ops are executed

as instructed by the central optimizer (§4.3).

4.2 Motif Abstraction
A motif is a logical grouping of several point-to-point trans-
fers over the network. The enforcer schedules and executes
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communication work at the granularity of motifs. A motif
once issued to the device e.g., as a kernel on GPU commu-
nication stream is non-preemptible and occupies network
resources until its communication work is completed.

Conversion of comm-op to motifs: Each comm-op i.e., a
collective has two attributes: a payload (typically tensors) and
a pattern of network transfers. We propose two transforma-
tion operators to slice a comm-op either along the payload
dimension or the pattern dimension into one or more motifs.
As compared to the original comm-op, each motif represents
a smaller unit of communication work (with reduced payload
size and/or smaller pattern). Since SYNDICATE does schedul-
ing at the granularity of motifs, this enables finer-grained
scheduling with increased opportunities for making more fre-
quent scheduling decisions in time to enable better overlap of
compute/communication and packing smaller units of com-
munication work more efficiently over the network resources.

4.2.1 Motif Transformation Operators

Segmentation and Splining: SYNDICATE proposes two
transformation operators: segmentation and splining. Seg-
mentation splits the payload into smaller payload segments.
Splining splits the pattern of network transfers into smaller
patterns. Figure 8 and Figure 9 illustrates these operators.

Transformation Operator Algebra: We now formalize the
algebra for the motif transformation operators. The goal of
this algebra is to state concrete rules for transforming comm-
ops into motifs. This formalization succinctly encodes: (1)
correct and admissible motif transformations, (2) correct and
admissible transformation combinations, and (3) a structured
space for all possible operator compositions. We denote the
segmentation operator by s

= and the splining operator by p
=.

These rules are by no means exhaustive and are extensible.



We first present the symbols used in the algebra.

∥ : Parallel Execution Permitted
s
= : Segmentation Transformation
p
= : Splining Transformation

N : Total number of Processes

PG[IDs] : Process IDs involved in a Collective

Ti[0:N,0:D] : N Tensors of size D on Process Pi with

Ti[j,0:D] destined for Process P j

MAA(Ti[0:N,0:D], PG[0:N]) : collective with all-to-all pattern of transfers

with tensor Ti as payload

executing on each Process Pi for all i in 0:N

M(Ti[ai:bi,xi:yi], PG[IDs]) : Motif M

executing on each Process Pi for all i in IDs

with payload = tensor Ti[j, xi:yi] from Process Pi

destined to Process P j for all j in ai:bi

Next, we present the algebraic rules that we use in the
context of DLRM to transform all-to-all into motifs. The
algebra for other comm-ops is in the Appendix §A.1.
Segmented All-To-All:

MAA(Ti[0:N,0:D], PG[0:N])
s
= ∥

D
d −1

s=0 M(Ti[0:N, s*d:(s+1)*d], PG[0:N])

With segmentation, the payload to be sent from a source
process to all the destination processes is split into segments
of size d (= Ti[0:N, s*d:(s+1)*d]). Segmentation of all-
to-all in this way, yields D

d motifs where each motif sends a
payload of size d from a source process keeping the set of
destination processes the same. d is a parameter and controls
the number of motifs associated with the input all-to-all.
Splined All-To-All:

MAA(Ti[0:N,0:D], PG[0:N])
p
= ∥

N
n −1

c=0 M(Ti[(i+c*n)%N:(i+(c+1)*n)%N, 0:D],

PG[0:N])

With splining, the pattern of network transfers in the all-to-all
with each source process sending the payload to all the N desti-
nation processes is broken down into smaller patterns, where
each source process Pi sends the same payload as before
to n destination processes (= (i+c*n)%N:(i+(c+1)*n)%N)).
Splining of all-to-all in this way, yields N

n motifs. Here, n pa-
rameterizes the all-to-all splining operator with larger n break-
ing the all-to-all into fewer motifs with larger sub-patterns.
Composition of Operators: Note that the all-to-all collective,
MAA(:), is in fact a special case single motif (with d = D and
n = N). These operators can be composed and recursively
break a motif into several more finer-grained motifs. While
fine-grained motifs are beneficial for scheduling flexibility,
there is a fixed overhead associated with dispatching a motif
as a kernel on GPU communication stream and launching it
during execution and too fine-grained motifs are not desirable
as these overheads can slow-down communication.
Physical Plan for Motif: Each motif bundles together several
network transfers. Physical plan determines the physical inter-
connects that each network transfer is assigned to. Figure 10

PCIeP1

P2

P3

P4

P1

=Input Tensor = 

P1

Broadcast Collective

P2

P3

P1

P4

P1

P2

P3

P1

P4

P1

P2

P3

P4
Broadcast Collective as Three Motifs

Input Tensor = 

P2

P3

P4
Physical Plan

PCIe
NVLink

Network Topology

memcpy

P1

P1 P1

NVLink
P1

P2

P3

P4

Figure 10: Physical Plan for Broadcast Collective

shows an example of a physical plan for the broadcast collec-
tive. The broadcast collective is first broken into three motifs.
The physical plan maps the motif to point-to-point network
transfers over various interconnects available in the network.
The figure also shows a toy network topology where the GPU
for process P1 connects to all other GPUs via both PCIe and
NVLink interconnects. The three motifs can be multiplexed
over different interconnects. The physical plan for the first
motif does a memcpy on process P1. The physical plan for the
remaining two motifs use PCIe and NVLink in a mutually
exclusive manner. This allows the point-to-point transfers in
the three motifs to execute in parallel, maximizing utilization
of multipath opportunities available in the network.

4.3 Central Optimizer
The central joint optimizer is responsible for minimizing train-
ing iteration time by minimizing communication overheads.
The optimizer determines the optimizer plan by systematically
navigating the vast space of potential schedules.

The optimizer plan has two pieces: the execution plan and
the scheduling order, containing instructions regarding how
to execute and how to schedule comm-ops respectively. The
execution plan transforms each comm-op in the training DAG
into one or more motifs. The scheduling order decides the
order of execution of motifs.
Exponential Search Space: There is a lot of optionality in
the execution plans for each comm-op. The transformation
operators can be composed to break a comm-op into motifs
in several different ways. Let us say that there are atleast O
execution plan options for each comm-op and there are C
comm-ops in the training DAG, then this results in OC unique
execution plan options for all the comm-ops in a DAG.
Cost of each Execution Plan: For a particular execution plan,
there is an optimal scheduling order for the motifs that max-
imizes overlap of compute/communication and minimizes
training iteration time. This training iteration time with the
optimal scheduling order is the cost of the execution plan.
Problem Statement: The centralized joint optimizer takes a



Pseudocode 1 Probabilistic Search
1: Training DAG with Greedy Execution Plan G∗

2: procedure MCMCSEARCH
3: C∗, sched_order∗ = optSched(G∗)
4: while true do
5: Gtemp = transform(G∗) ▷ change execution plan for a comm-op at random
6: Ctemp, sched_ordertemp = optSched(Gtemp)
7: α(Ctemp | C∗) = min(1, exp(β * (C∗ - Ctemp)))
8: G∗, C∗, sched_order∗ = Gtemp, Ctemp, sched_ordertemp with α prob.
9: end while

10: return G∗, sched_order∗
11: end procedure

12: procedure OPTSCHED
13: comm_q ▷ queue of ready communication motifs
14: compute_q ▷ queue of ready compute tasks
15: comp_time = 0
16: comm_time = 0
17: sched_order
18: while comp_time ≤ comm_time and comp_q != φ do
19: comp_task = fifoDequeue(comp_q)
20: comp_time += comp_task.time()
21: sched_order.schedule(comp_task) ▷ enqueue ready motifs, compute
22: end while
23: while comm_time ≤ comp_time and comm_q != φ do
24: comm_motif, startTime = criticalPathDequeue(comm_q)
25: comm_time = max(comm_time, startTime+comm_motif.time())
26: sched_order.schedule(comm_motif) ▷ queue ready motifs, compute
27: end while
28: return max(comm_time, comp_time), sched_order
29: end procedure

training DAG G and the network topology as inputs. We take a
training DAG that unrolls compute-ops and comm-ops across
two training iterations to enable cross-iteration optimizations.
The aim of the joint optimizer is to take these inputs and find
the execution plan with minimal cost. The joint optimizer
outputs the optimizer plan, which has the execution plan and
the scheduling order that minimizes overall cost.

4.3.1 Joint Optimization Procedure

The key idea in SYNDICATE is to do probablistic search over
the exponentially large search space. We use MCMC search
as outlined in Pseudocode 1.
MCMC Search: The joint optimizer starts with the default
execution plan for the training DAG (denoted by G∗), wherein
all the comm-ops are greedily assigned the execution plan
choice with the minimum possible execution time. Thereafter,
a comm-op is chosen at random and it is assigned a random
execution plan option. This changes the motifs associated
with this particular comm-op, keeping all the other motifs
constant and yields a temporary execution plan for the training
DAG (denoted by Gtemp). The cost i.e., the execution time of
this training DAG is calculated using the optSched (line 11
in Pseudocode 1) procedure which is a greedy scheduling
heuristic to always dequeue motifs on the critical path in the
DAG to maximize overlap of communication motifs with
compute tasks or other communication motifs (in case the
two communication motifs have non-overlapping physical
plans). This update to the execution plan is probablistically
sampled using the Metropolis-Hastings algorithm [17] and
retained in G∗ (line 8 in Pseudocode 1). This tends to behave
as a greedy search over the search space with an ability to
escape local minimas [17, 19].

Pseudocode 2 Distributed Optimizer Plan Enforcer
1: Exec Plan Ecolls = {...,collin

i : {moti f out
i, j }, ...} ▷ optimal execution plan

2: Scheduling Order S= {...,moti f out
i, j : seqnum

i, j , ...} ▷ optimizer scheduling order
3: Progress Queue pq ▷ thread-safe priority queue containing ready motifs

4: procedure ENFORCEEXECPLAN(collin) ▷ app submits comm-op to comm layer
5: {moti f out } = Ecolls[collin] ▷ comm-op is deconstructed into motifs
6: for all moti f out ∈ {moti f out } do
7: seqnum = S[moti f out ]
8: pq.INSERT(priority=seqnum, moti f out )
9: end for

10: end procedure

11: procedure ENFORCEORDER ▷ runs in a separate thread and enforces order
12: nextMoti f SeqNum = 0
13: while true do
14: while pq.TOP().priority != nextMoti f SeqNum do
15: ▷ busy loop until next in order motif is ready
16: end while
17: nextMoti f SeqNum += 1
18: {moti f } = pq.POP()
19: {moti ftensors} = {moti f }.EXECUTE()
20: REPACK({moti ftensors})
21: end while
22: end procedure

Search Termination: MCMC search is terminated if the
search procedure exceeds the time budget assigned for search
or if the search procedure does not find a better joint optimizer
plan for more than half of the total elapsed search time.

4.4 Enforcer
The central optimizer commits the same joint optimizer plan,
comprising of the execution plan and the scheduling order to
the enforcer on each worker process. The enforcer is respon-
sible for tightly co-ordinating this plan across all the worker
processes during training so as to avoid deadlocks and out-
of-sync issues (§3.2). The application thread spawned by the
ML processing framework at each worker process submits
comm-ops to the comm layer every training iteration. With
SYNDICATE, these comm-ops are submitted one-at-a-time in
FIFO order. These comm-ops are intercepted by the enforcer.
The enforcer is responsible for execution of these comm-ops
and preparing the result of these comm-ops (tensors) to un-
block the next application thread operation (compute-op or
comm-op typically waiting on a CUDA stream) that is waiting
on these tensors.

The enforcer takes the responsibility of executing these
comm-ops as per the instructions of the optimizer plan and
preparing the output tensors once ready. It does so in three
steps. First, on intercepting a comm-op, it enforces the ex-
ecution plan by breaking it into motifs. Second, it enforces
the desired scheduling order of execution of motifs. Third,
as and when motifs complete, it checks for completion of
comm-ops and packages the output of individual motifs into
the comm-ops output tensors. Pseudocode 2 shows the proce-
dure to enforce the execution plan and the scheduling order
contained in the joint optimizer plan. The repacking of tensors
to comm-op output tensors happens after successful execution
of each motif (line 20 in Pseudocode 2).
Enforcing Execution Plan: The enforcer is layered as a
shim on top of existing comm-op execution layer i.e., differ-



Compute (TFLOPS) 120 (FP32)/ 1000 (FP16)
HBM 256 GB, 7.2 TB/s
DDR 1.5 TB, 200 GB/s
Scale-up bandwidth 1.2 TB/s (uni-directional)
Scale-out bandwidth 8 x 100 Gbps (uni-directional)
Host NW 2 × 100 Gbps

Table 1: Configuration of each node in our cluster

ent communication libraries such as NCCL, MPI, UCX. The
app layer submits comm-ops to the comm layer using the
interface between them and is immediately trapped by the
enforceExecPlan procedure (line 4 in Pseudocode 2). This
procedure deconstructs the comm-op to one or more motifs,
each assigned a sequence number that captures the priority
of this motif in the current training iteration. This sequence
number is contained in the scheduling order of the joint opti-
mizer plan. These motifs are enqueued into a priority queue
using the sequence number as the priority.
Enforcing Scheduling Order: The enforceOrder proce-
dure (line 11 in Pseudocode 2) enforces the scheduling order
and runs in a thread separate from the enforceExecPlan
procedure. This procedure maintains a priority counter that is
incremented sequentially and is reset at the end of each train-
ing iteration. This counter maintains the priority of the next
expected motif(s). In case of overlapping motifs, two or more
motifs can be assigned the same priority. The enforceOrder
procedure busy loops until the priority of the motif at the
top of the priority queue matches the value in the priority
counter. It busy loops until the enforceExecPlan enqueues
the next expected motif. This ensures that the enforcer on all
the worker processes executes motifs in the same order.
Replanning: We measure the wait time in the busy loop and
send it as feedback to the central optimizer. If wait times in
every iteration consistently add up to more than a threshold
(= 5% of iteration time), then we redo joint optimization at
the optimizer to explore a different optimizer plan.

5 Implementation
We implement the central optimizer as a separate module
in python. The central optimizer simulates the execution of
different execution plan choices as part of the MCMC search
procedure until the search procedure terminates and yields
a joint optimizer plan. The central optimizer runs on one of
the machines in the training cluster and interacts with the
various enforcers on the worker processes via RPCs. We
build a two-phase commit (2PC) protocol using RPCs so
that the same joint optimizer plan is safely committed by the
central optimizer to all the enforcers. After the 2PC protocol
is complete, the enforcers switch to the new joint optimizer
plan from the subsequent training iteration. This ensures that
out-of-sync issues are avoided whenever transitioning to a
new joint optimizer plan.

We implement the enforcer in the Unified Collective Com-
munication (UCC) library interface [6]. We implement the
enforcer routines: enforceExecPlan routine in the main

Model A1 A2 A3 A4
Num parameters 95B 793B 845B 332B
MFLOPS per sample 89 638 784 60
Num of emb tables ∼ 100s ∼ 1000s ∼ 1000s ∼ 1000s
Emb table dim [4, 192] [4, 384] [4, 960] [32, 128]
([min, max], avg) avg: 68 avg: 93 avg: 231 avg: 72
Avg pooling size 27 15 17 49
Num MLP layers 26 20 26 43
Avg MLP size 914 3375 3210 682
Batch Size 512 1024 512 4096
Parallel Paradigm Hybrid Hybrid Hybrid FSDP [8]

Table 2: Models in our workload. Model A5 and A6 descriptions are
in §6.2.

thread and the enforceOrder routine in the progressLoop
thread in the torch-ucc interface [5].

6 Evaluation
6.1 Testbed
We experimented with our prototype on a production-scale
cluster using off-the-shelf NVIDIA HGX-2 based systems.
Specifically, each node hosts dual-socket CPUs, 8 NVIDIA
V100 GPUs that are fully-connected using NvSwitch, 2 front-
end host NICs, and 8 back-end RoCE NICs to allow RDMA
communication between GPUs across nodes. Table 1 summa-
rizes the node configuration; we deployed 16 such nodes.

The testbed runs CentOS-8 and CUDA 11.4 with NVIDIA
driver 470.57.02. For distributed training of DLRM models,
we used PyTorch 1.11 (nightly) with the extension of Process
Group UCC [5] and the latest UCC library [6], which can
take advantage of various transports such as NCCL 2.10.3 [2]
and UCX-based collectives [31] for dynamically selecting
optimal execution planing of collective operations.

6.2 Workloads
We tested SYNDICATE in production across a breadth of sce-
narios; see Table 2.
Vary Model Architectures: We experiment with three dif-
ferent model architecture families. A1-A4 are Recommenda-
tion Models (DLRM [24]), A5 is an NLP Model (XLM-R-
XL [14]), A6 is a CV Model (RegNetZ [7]).
Vary Model Sizes: We have progressively wider MLPs and
higher number of embedding tables from model A1 to A3.
Vary Parallelization Strategies: Models A1-A3 are Hybrid
Parallel. Model A4 is Hybrid Parallel with Fully Sharded Data
Parallel (FSDP) for data parallelism [8]. Model A5 is Model
Parallel. Model A6 is Data Parallel.
Vary Topologies: We vary the number of nodes (and hence
GPUs) used from our testbed.

6.3 Metrics
We measure the following metrics

(1) Training Throughput: We measure the training
throughput in terms of recommendation queries per second
(A1-A4) or words per sec (A5) or images per sec (A6). Higher
throughput is desirable.

(2) Compute Idling: We measure the idle gaps in the
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Figure 11: Training performance for SYNDICATE compared against
baselines

GPU’s compute stream and report it as a percentage of the
total iteration time. Lower compute idling is desirable.

(3) Normalized Metric: We normalize the metric
(such as throuput) against baseline using the formula –
Metric with SYNDICATE

Metric with Baseline .
We run each experiment 5 times and plot the mean and

standard deviation.

6.4 Baselines
We compare SYNDICATE against the following baselines.

• ByteScheduler+ (BS+): ByteScheduler [29] proposes
LIFO scheduling policy for maximizing overlap of com-
pute and communication. Their implementation only
supports all-reduce in layer-by-layer models and does
not have support for all-to-all collectives. We emulate
ByteScheduler (BS) via our own implementation that
is co-located with PyTorch framework. To emulate the
bayesian optimizer used in ByteScheduler for tensor par-
titioning, we aid our BS scheduler with an oracle (BS+)
that optimally segments tensors in all collectives.

• Hand Optimized Model (HO): Existing execution plan-
ners do not optimize all-to-all collectives and existing
schedulers do not have support for DLRM-like models.
We hand optimize both the scheduling policy in PyTorch
(and also provide it the benefit of the segment oracle) and
the choice of execution plan for each collective (including
all-to-all) in the UCC library. In this regards, HO mod-
els the best possible solution with today’s placement of
scheduling and execution planning concerns in exiting
stacks.

• SYNDICATE-Exec (S-Exec): We disable scheduling opti-
mizations in SYNDICATE. We do so by using PyTorch’s
default scheduler that does FIFO scheduling to estimate
the cost of each execution plan during joint optimization.

• SYNDICATE-Sched (S-Sched): We disable execution plan-
ning optimizations in SYNDICATE. We do so by disabling
the MCMC search procedure and find the optimal schedul-
ing order using SYNDICATE’s scheduling heuristic (and
also provide it the benefit of the segment oracle to opti-
mally segment collectives).

6.5 Evaluation on Testbed
Figure 11 compares training performance for SYNDICATE
against the BS+ and HO baselines for all the models. The
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Figure 12: Speedup with varying topology sizes

Y-axis measures the model throughput normalized against
that of BS+.
Vary Model Sizes: SYNDICATE outperforms BS+ by a factor
of 1.74x, 1.44x, 1.38x for Models A1, A2, A3, respectively.
SYNDICATE outperforms HO baseline by a factor of 1.26x,
1.21x, 1.2x for Models A1, A2, A3, respectively. Note that
gains diminish with increased model sizes. The embedding
tables are not compute-intensive and do not contribute to in-
creasing the MFLOPs per sample but have a high memory
footprint (and contribute to higher number of parameters) and
induce progressively more communication bandwidth-hungry
all-to-all’s to transfer a large number of embeddings. On the
other hand, MLPs are compute intensive and increase the
model compute (MFLOPS per sample). On detailed analy-
sis, we found that the larger embedding table sizes amplify
the amount of time spent in all-to-all in a training iteration
to a higher degree than the contribution of increased MLP
compute time; which skewed the overall ratio of communi-
cation to compute and diminished the opportunity to overlap
communication and compute with SYNDICATE.
Vary Model Architectures and Parallelization Strategies:
SYNDICATE is effective across a range of parallelization
strategies and outperforms the BS+ baselines for A2 (hybrid-
parallel, recommendation model) by 1.44x, A4 (FSDP, rec-
ommendation model) by 1.77x, and A5 (model-parallel, NLP
model XLM-R-XL) by 1.21x. SYNDICATE is slightly worse-
off for A6 (data-parallel, RegNetZ) by 0.97x. For this model
there are no opportunities to overlap comm-ops as they have
linear dependency and BS+ solution (LIFO with oracle tensor
partitions) is the optimal solution (similar to other CV model
families, e.g., ResNet [29]). SYNDICATE is slightly worse-off
due to the overheads of SYNDICATE’s enforcer. The gains are
for A4 are significantly higher than that for A2 despite both
the models having similar model sizes and model architecture.
We found that FSDP parallel strategy for A4 offers a richer
set of collectives: reduce-scatter and all-gather in addition
to all-to-all and all-reduce. This allows SYNDICATE to find
a schedule and an execution plan that overlaps atmost three
comm-ops for A4 at the same time (compared to atmost two
for A2). For Model A5, we find that BS+’s LIFO schedule
is optimal and hence HO does not yield any improvements.
For A5, the 1.21x gains with SYNDICATE are due to better
execution plan with overlap of allgather and reduce-scatter
during backward pass. For Model A6, we observe no improve-
ments with SYNDICATE. This is primarily because A6 is data
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parallel and BS+ LIFO schedule is optimal for data parallel
models. Furthermore, the collectives in training DAG for A6
have serial dependencies across themselves with no room to
optimize execution plan by overlapping collectives.

Vary Topologies: Figure 12 compares throughput speedup
for Model A2 with SYNDICATE against BS+. We report the
speedup relative to throughput on a single node. We note
that SYNDICATE scales better than BS+ and is closer to ideal
speedup line. SYNDICATE is better at opportunistically utiliz-
ing the increasing communication bandwidth as the cluster
size scales out.

6.5.1 Sources of Improvement
Compute Idling:

Figure 14 compares the compute idling metric for SYNDI-
CATE against baselines for Model A2. We observe that com-
pute idling with SYNDICATE is 27.4% and is 1.64x, 1.51x,
1.32x, 1.26x less than the BS+, HO, S-Sched, S-Exec base-
lines, respectively. This shows that SYNDICATE is better at
overcoming communication bottlenecks and achieves higher
overlap of compute and communication than any other base-
line. It also highlights that joint optimization is beneficial as
it outperforms the S-Sched and S-Exec baselines. Next, we
zoom-in on each training iteration to better understand the
reasons for lesser compute idling.
Zooming in on an Iteration: We collect traces for execution
of DLRM with different systems using PyTorch Kineto [4].
We illustrate these traces2 to zoom-in on the execution of
compute and communication events on the GPU streams for
a single training iteration for Model A2 in Figure 15. We also
show the training DAG in Figure 13 for reference. We explain
these traces one system at a time.
BS+: BS+ prioritizes the execution of the most recently sub-
mitted collective (LIFO). For reference, Figure 13 shows the
order of submission of collectives by DLRM PyTorch trainer.
To achieve LIFO, tensors in collectives need to be optimally
segmented and as explained before, we use a segment oracle to
do so. BS+ is the worst-performing baseline. BS+ prioritizes
execution of a2a-emb-bwd over ar-top-mlp3, which is bene-
ficial. However, to its detriment, it also prioritizes execution
of ar-bottom-mlp over a2a-emb-bwd despite a2a-emb-bwd
being on the critical path. Delaying a2a-emb-bwd also delays
bwd-emb compute, which delays a2a-data-prep.
HO: To amend the drawbacks of BS+, we hand optimize the
scheduling order to prioritize the execution of a2a-emb-bwd
as well as a2a-data-prep before ar-bottom-mlp. We also add
support for greedy execution planning for a2a collective (ar
greedy optimization is available out-of-the-box). We observe
that HO improves the iteration time by 15.7% as compared
to BS+. We observe that the key reason for this improvement
is that HO unblocks bwd-emb and fwd-emb compute sooner

2We hide low-level events and absolute timing information for confiden-
tiality and legal reasons.

3We use a2a and ar as short hand for all-to-all and all-reduce, respectively.



and enables better overlapping of ar-bottom-mlp with these
compute blocks.
S-Exec: With S-Exec, we observe that the iteration time is
further improved and is 17.1% better as compared to BS+. We
observe that despite placing limiting constraints on scheduling
(default FIFO scheduling), the joint optimizer in SYNDICATE
finds an execution plan that assigns two different communica-
tion channels to a2a and ar and enables better communication-
communication overlap by leveraging heterogeneity in the
network. The ar’s use a communication channel over NVLink
(for intra-node) and GPUDirect RDMA (for inter-node). The
a2a’s use a non-intersecting communication channel over
PCIe (for intra-node) and TCP/IP over Ethernet (for inter-
node). Such communication-communication overlap is not
possible with HO and BS+ as they use traditional communi-
cation stack and interfaces therein only permit one-at-a-time
execution of comm-ops with greedy execution plan.
S-Sched: With S-Sched, we observe that iteration time is
further improved and is 21.9% faster than BS+, despite the
constraints on execution planning (we also handicap S-Sched
with choosing the default execution plan option, which is
sub-optimal, for a2a). The primary reason for the improve-
ment is that SYNDICATE’s scheduler finds a superior comm-
op scheduling order and SYNDICATE’s enforcer enables en-
forcing of this order. SYNDICATE’s scheduling order moves
a2a-data-prep from the ith iteration and moves it back in
time as to overlap it with the fwd-top-mlp and bwd-top-mlp
compute blocks in the (i-1)th iteration. The enforcer design
enables this ordering due to the presence of busy loop in
the enforceOrder procedure in Pseudocode 2. The enforcer
blocks execution of all the comm-ops in the very first training
iteration until a2a-data-prep collective for the next batch is
submitted by the application layer. This increases the train-
ing iteration time only for the first iteration but significantly
improves the training iteration time for all the subsequent
iterations by unlocking pipelining.
SYNDICATE: With SYNDICATE, we observe that iteration
time is faster than all the baselines and is 30.6% faster than
BS+. We observe that as compared to S-Sched, SYNDICATE
is able to hide the overheads of ar-top-mlp by completely over-
lapping it with compute. SYNDICATE enables this by lever-
aging network heterogeneity and enabling communication-
communication overlap of ar-top-mlp and a2a-emb-bwd. S-
Sched, due to its execution planning constraints is unable
to do so and in its scheduling order has to partially push
ar-top-mlp to the very end where it cannot be overlapped
with compute. In this way, SYNDICATE’s joint optimizer max-
imizes compute-communication overlap by leveraging the
benefits of communication-communication overlap.
SYNDICATE’s Optimizer Plan for DLRM: Here, we summa-
rize the key highlights of the optimizer plan that SYNDICATE
finds for DLRM Model A2. In our study, we find that these
observations also hold for Model A1 and Model A3.
Data Prefetch The scheduling order proposed by the optimizer
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Figure 16: Effect of different execution plans on all-reduce perfor-
mance
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Figure 17: Effect of different execution plans on all-to-all perfor-
mance

moves a2a-data-prep back in time from the ith iteration to the
(i-1)th iteration. As mentioned before, this is made possible
by SYNDICATE’s enforcer.
a2a-ar Overlap The execution plan proposed by the optimizer
overlaps all-to-all collective with all-reduce collective over
two separate communication channels as explained before.
SYNDICATE binds both the a2a’s to the 4-way splined execu-
tion plan, the ar-bottom-mlp to the ring all-reduce execution
plan and the ar-top-mlp to the tree all-reduce execution plan.
This maximizes multipath network utilization and also en-
ables greater communication-compute overlap.

6.6 Microbenchmarks
We use the communication microbenchmark, PARAM [3] to
systematically understand the space of execution plans for
different collectives to better understand the choices made
by SYNDICATE’s optimizer plan. SYNDICATE uses these mi-
crobenchmarks as a cost model for its joint optimizer. We
highlight a subset of these microbenchmarks and explain the
various choices made by SYNDICATE for Model A2.
Execution planning options for all-reduce: Figure 16 shows
the effect of different all-reduce execution planning options in
our testbed. We see that the optimal execution plan depends
on the input message size. The optimal plan at small message
sizes is tree all-reduce motif whereas the optimal plan at large
message sizes is ring all-reduce motif. Bottom MLP is wider
and induces larger (O(100’s of MB) vs. top MLPs O(MB)) all-
reduce collectives and explains choice of ring all-reduce and
tree all-reduce for ar-bottom-mlp and ar-top-mlp, respectively.
Execution planning options for all-to-all:

Figure 17 shows the effect of different all-to-all execution
planning options. We note that the optimal plan at small mes-



TicTac [16] P3 [18] Blink [34] ByteScheduler [29] Syndicate

Execution

Network Throughput × × ✓ ✓ ✓
Network Heterogeneity × × ✓ × ✓
Network Ops Push-Pull Push-Pull All-Reduce Push-Pull; All-Reduce Send-Recv; Collectives
Preemptible ✓ ✓ — ✓ ✓

Scheduling
Models General DAGs Layer-by-Layer — Layer-by-Layer General DAGs
Frameworks PS PS — PS; ∼ P2P PS; P2P
Policy DAG Optimal LIFO — LIFO DAG Optimal

Joint Optimization × × — × ✓

Table 3: Comparison of systems optimizing communication operations for training workloads
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Figure 18: Effect of different execution plans for all-to-all and all-
reduce overlap

sage sizes is the 1-way splined motif (simultaneous transfers
to 128 destination processes from all source processes), at
intermediate message sizes is the 2-way splined motif (64
Processes), and at large message sizes is the 4-way splined
motif (32 Processes). The effects of incast are significant as
we increase the message sizes and more splining helps reduce
incast. DLRM training induces large a2a’s (O(GB) message
size) and SYNDICATE chooses the 4-way splined execution
plan.
Execution planning options for overlap of all-reduce and
all-to-all: Figure 18 shows that the optimal execution plan
is the one where all-reduce uses NCCL implementation and
all-to-all use UCC implementation over non-overlapping com-
munication channels (i.e., 2 streams). With this implementa-
tion all-to-all is CPU-driven and uses the PCIe complex and
TCP/IP over Ethernet, while all-reduce is GPU-driven and
uses NVLink complex and GPUDirect RDMA. This choice
is optimal (as opposed to vice versa) as all-reduce also does
compute (gradient aggregation) which is faster with GPUs.
SYNDICATE uses this execution plan for overlap of all-to-all
and all-reduce.

7 Other Related Work
Several works speed-up training by optimizing two main con-
cerns of communication operations: scheduling and execution.
Table 3 shows comparison of SYNDICATE against several
state-of-the-art systems.

Scheduling concerns looks at reordering communication
operations to maximize overlap of compute and communica-
tion. The optimal scheduling policy is dependent on factors
such as the model architecture, and the parallelization strat-
egy/framework.

Execution concerns look at accelerating individual commu-

nication operations through efficient transport over all commu-
nication links. These optimizations propose optimal batching
to improve link utilization, propose multipath in collectives
to make better use of heterogeneous links in the network, and
enable preemption to enable scheduling optimizations.

Existing scheduling works fall short in generalizing op-
timally to all scenarios and they exercise only a subset of
optimizations as highlighted in Table 3. Crucially, unlike SYN-
DICATE, existing works do not jointly optimize both these
concerns.

8 Conclusion
We propose SYNDICATE that rethinks communication
scheduling granularity and the interfaces in the communi-
cation stack for ML training to enable joint optimization of
scheduling and execution planning. Using the novel notion
of motifs and a split control/data plane architecture SYNDI-
CATE achieves improvements of 21-74% for production scale
large-model training as it better utilizes the network multipath
opportunities in emerging training clusters.
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A Appendix
A.1 Transformation Operator Algebra
We now present the algebra for the motif transformation op-
erators. We denote the segmentation operator by s

= and the
splining operator by p

=. Note that the algebraic rules presented
below are not exhaustive and are extensible. Here, we present
the algebraic rules that we use in the context of DLRM to
transform all-reduce and all-to-all collectives into motifs. We
first go over the various symbols used in the algebra.

N : Total number of Processes

PG[0:N] : Process IDs involved in a Motif

Ti[0:D] : Tensor of size D on Process Pi

Ti[0:N,0:D] : N Tensors of size D on Process Pi with

first dimension indicating destination Process ID

∥ : Parallel Execution

→ : Sequential Execution
s
= : Segmentation Transformation
p
= : Splining Transformation

AR : all-reduce motif

AA : all-to-all motif

REr : reduce motif with root Process Pr

RS : reduce-scatter motif

BCr : broadcast motif with root Process Pr

AG : all-gather motif

COLL(Ti[:], PG[IDs]) : Motif COLL with input tensor Ti

executing on each Process Pi for all i in IDs

We now present the algebraic rules for transforming the all-
reduce motif using the segment and spline operators.
Segmented All-Reduce: First, we show application of the seg-
ment operator which splits the input tensor at all the processes
and converts an all-reduce motif into smaller all-reduce motifs
over the splits. Each smaller all-reduce motif are independent
and can execute at the same time in parallel.

AR(Ti[0:D], PG[0:N])
s
= ∥

D
d −1

s=0 AR(Ti[s*d:(s+1)*d], PG[0:N])

Ring All-Reduce: Next, we show an instance of the spline
operator that divides the pattern in original all-reduce into
two sub-patterns: reduce-scatter motif followed by the all-
gather motif. The reduce-scatter motif does aggregation and
the all-gather motif broadcasts the aggregated result. The
reduce-scatter and all-gather motifs induce a pattern of com-
munication over a ring, where the processes are arranged in
a ring and the tensor is divided into N pieces. Each process
Pi does a point-to-point transfer of the (i+r)%N piece to its
neighboring process in the ring in the rth round for N rounds.

AR(Ti[0:D], PG[0:N])
c
= RS(Ti[0:D], PG[0:N])

→ AG(Ti[0:D], PG[0:N])

RS(Ti[0:D], PG[0:N])= ring pattern of communication

AG(Ti[0:D], PG[0:N])= ring pattern of communication

Tree All-Reduce: Next, we show an instance of the spline
operator that divides the pattern in the original all-reduce
into three smaller sub-patterns: reduce motif followed by a
smaller all-reduce motif followed by broadcast motif. The
same spline operator algebraic can be recursively applied to
the smaller all-reduce motif. Recursive application results in
a hierarchical tree pattern of communication where several

reduce motifs first aggregate results in a tree like fashion at a
single root process and several broadcast motifs broadcast the
aggregated result from the root process in a tree like fashion
until it is updated at all the processes. Each reduce motif
results in a convergent pattern of communication where all
the processes involved in the reduce send their tensors to the
root process where it is aggregated. Each broadcast motif
results in a divergent pattern of communication where the
root process sends its tensor to all the processes involved in
the broadcast motif.

AR(Ti[0:D], PG[0:N])
c
= ∥

N
n −1

c=0 REc∗n(Ti[0:D], PG[c*n:(c+1)*n])

→ AR(Ti[0:D], PG[∪
N
n −1

c=0 c*n])

→ ∥
N
n −1

c=0 BCc∗n(Ti[0:D], PG[c*n:(c+1)*n])

RE j(Ti[0:D], PG[j:j+n])= convergent pattern of communication

BC j(Ti[0:D], PG[j:j+n])= divergent pattern of communication

AR(Ti[0:D], PG[∪
N
n −1

c=0 c*n])= recursive application of c
= induces

tree pattern of communication

Segmented and Splined All-To-All: Next, we show examples
of segmenting and splining an all-to-all collective into smaller
motifs. With segmentation, the tensor at all the processes is
split and the original all-to-all is deconstructed into several
smaller all-to-all motifs over the split tensors. With splin-
ing, the pattern of communication in the original all-to-all
motif with a clique of point-to-point transfers between all
the processes is broken down into smaller all-to-all motifs
with smaller patterns where each process Pi initiates point-to-
point transfers to a subset of destination processes (with ids
in the range (i+c*n)%N:(i+(c+1)*n)%N). Here, n parame-
terizes the all-to-all splining operator with larger n resulting
in breaking the original all-to-all into fewer all-to-all motifs
with larger sub-patterns.

AA(Ti[0:N,0:D], PG[0:N])
s
= ∥

D
d −1

s=0 AA(Ti[0:N, s*d:(s+1)*d], PG[0:N])

AA(Ti[0:N,0:D], PG[0:N])
c
= ∥

N
n −1

c=0 AA(Ti[(i+c*n)%N:(i+(c+1)*n)%N, 0:D],

PG[0:N])
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