
Shockwave: Fair and Efficient Cluster Scheduling for Dynamic Adaptation in
Machine Learning

Pengfei Zheng1, Rui Pan1, Tarannum Khan2, Shivaram Venkataraman1 and Aditya Akella2

1University of Wisconsin-Madison, 2The University of Texas at Austin

Abstract
Dynamic adaptation has become an essential technique in
accelerating distributed machine learning (ML) training. Re-
cent studies have shown that dynamically adjusting model
structure (e.g., lottery ticket hypothesis [16]) or hyperparame-
ters (e.g., batch size [1]) can significantly accelerate training
without sacrificing accuracy. However, existing ML cluster
schedulers are not designed to handle dynamic adaptation.
We show that existing schemes fail to provide fairness and de-
grade system efficiency when the training throughput changes
over time under dynamic adaptation. We design Shockwave,
a scheduler with future planning that builds on two key ideas.
First, Shockwave extends classic market theory from static
settings to dynamic settings to co-optimize efficiency and
fairness. Second, Shockwave utilizes stochastic dynamic pro-
gramming to handle dynamic changes. We build a system
for Shockwave and validate its performance with both trace-
driven simulation and cluster experiments. Results show that
for traces of ML jobs with dynamic adaptation, Shockwave im-
proves makespan by 1.3× and fairness by 2× when compared
with existing fair scheduling schemes.

1 Introduction
GPU-powered deep neural network (DNN) training is rapidly
becoming a core workload in data centers [25, 28, 29]. Due to
the sheer volume of training data and massive, ever-increasing
model sizes, many DNN models cannot be trained on a single
GPU device, and distributed, multi-GPU training has become
the norm. The increasing demand for GPU devices motivates
enterprises to consolidate their hardware resources and run
their workloads in a shared GPU cluster [25]. Thus, building
scheduling mechanisms that can fairly arbitrate among jobs
competing for GPU resources and efficiently schedule them
for high cluster utilization is important.

While there has been a plethora of work in designing sched-
ulers for DNN workloads, they do not use a rigorous ap-
proach to co-optimize system efficiency and fairness. Systems
like Gandiva [41] and Tiresias [21] optimize makespan and
average JCT (Job Completion Time) with techniques such

as dynamic scaling, time-slicing, and over-subscription, but
do not consider fairness. Processor sharing [40] based ap-
proaches such as DRF [17] and Gavel (Weighted Max-Min
Fairness) [33] provide instantaneous fair share of (dominant)
resources in each scheduling round, but this can significantly
undermine efficiency [20, 35]. Stride [39] scheduling-based
approaches such as Gandiva-Fair [10] require cluster opera-
tors to explicitly specify an individual job’s share (e.g., A 20%
and B 80% of GPUs), and manually specified fixed shares
can violate long-term fairness for ML jobs [29]. Finally, Al-
loX [28] and Themis [29] aim to provide long-term fairness
by adopting a filter-based approach where within each round,
a subset of jobs that are furthest from the fair share are filtered,
and among the filtered jobs the ones which maximize effi-
ciency are chosen by the scheduler. However, the filter value
requires onerous hand-tuning; furthermore, even with careful
tuning, using a fixed filter can lead to sub-optimal efficiency
and fairness (§2).

We design Shockwave, a scheduler that leverages market
theory to jointly optimize efficiency and fairness for ML train-
ing jobs in a systematic and principled fashion. We formulate
a Fisher market [5] where every job receives an equal budget
to purchase resources from a central arbiter. The arbiter then
computes prices such that the market reaches an equilibrium;
i.e., each job’s budget is spent to maximize its performance
(e.g., training throughput) and all resources are completely
sold. Formulating resource allocation using market theory
is powerful because achieving market equilibrium guaran-
tees both fairness and efficiency. Each job has equal purchas-
ing power in acquiring resources, ensuring fairness. Further,
market-clearing equilibrium ensures work conservation and
that each job’s performance is maximized given its budget.

While economic theory has been the basis of many prior
systems (e.g., DRF [17], Themis [29], and REF [43]), they
all assume jobs have known static resource requests. This
assumption is no longer true for elastic ML training jobs [24,
30,36] whose resource requirements dynamically change over
time; further, the changes in resource requirements depend
on model update patterns, and thus they are unknown apriori.

For example, training jobs can dynamically scale their batch
size by computing the gradient noise scale (GNS) [30, 31].
OpenAI has used batch size scaling (from 32 to 32M) to
accelerate GPT-3 training by 500x [7] and similarly, BERT-
Large training uses dynamic batch sizes (256 to 4096) to
achieve a 2.5x speedup [37]. In this paper, we extend market
theory to develop an efficient and fair scheduler for ML jobs
with elastic resource requirements.

Existing schedulers are either agnostic or reactive to dy-
namic changes and our experiments show (§3) that they fail
to guarantee fairness or significantly degrade efficiency. The
key reason for this is that an optimal schedule or weight as-
signment [10] at the current instant can be suboptimal in the
future, and reactively re-prioritizing jobs can be too late to
compensate for the under-prioritization in the early phases.
State-of-the-art schedulers that accommodate dynamism, e.g.,
Pollux [36] do so automatically on behalf of jobs, e.g., by
automatically scaling batch sizes. We find that this can hurt
training accuracy [1, 11] (§2.3); thus, our aim is to let users
perform elastic changes as their algorithms demand. Achiev-
ing fair allocation under dynamism without assuming any
control over said dynamism is challenging, and is not studied
in existing research. We present a detailed comparison be-
tween Shockwave and other schedulers such as Themis [29],
AFS [24] and Pollux [36] in Section 2.

To support dynamic changes in resource requirements over
time, we extend the classic, static Fisher market and propose
a new discrete-time, dynamic market that can ensure long-
term efficiency and fairness. Using discrete time helps us
capture the effects of running a market repeatedly over many
rounds and a dynamic market helps us capture time-varying
utility1 for jobs. For example, consider a scenario where we
are running 20 rounds of scheduling for a job. If a job’s per-
GPU batch size increases by 2× after 10 rounds due to GNS
scaling, its utility from being allocated one GPU (𝑢0) will also
double after 10 rounds (𝑢1 = 2𝑢0). A static market will assume
time-invariant utility, and will compute the accrued utility over
20 rounds for the job as 20𝑢0; in contrast, a dynamic market
can capture the change in utility for the job over time, and can
accurately compute the accrued utility over 20 epochs as 30𝑢0.
Accurately computing the utility can enable the dynamic
market to optimize fairness and efficiency over time. We prove
that our dynamic market formulation (§4.2) guarantees long-
term efficiency and fairness properties such as maximized
Nash social welfare over time, Pareto optimality over time,
and sharing incentive.

Implementing the dynamic market formulation in real sys-
tems is challenging for two main reasons. First, the market for-
mulation needs to know utility values in the future to compute
market equilibrium. Dynamic adaptations in jobs are non-
deterministically triggered, as they are dependent on gradient
values that vary across models and datasets, which makes

1A utility function maps a job’s allocated resource (e.g., GPU) to the
resulting performance (e.g., throughput).

it challenging to predict utility in the future. Second, solv-
ing the dynamic market equilibrium for an (infinitely) long
time horizon is difficult and impractical. It is computation-
ally prohibitive and requires forecasting every job’s future
performance characteristics. Further, as jobs arrive and com-
plete online, we need to periodically solve for the market
equilibrium while maintaining low scheduling overheads.

To bridge the gap between theory and systems, Shockwave
addresses these challenges and implements a dynamic adap-
tation predictor and an approximate dynamic market. First,
we observe that dynamic adaptation for real-world ML work-
loads follows a handful of patterns, and these patterns can be
predicted using Bayesian statistics. We then develop methods
to integrate these predictions into our dynamic market for-
mulation. Second, while performing round-based scheduling,
we find that planning a schedule for an (infinitely) long time
horizon can introduce significant overheads. To maintain low
scheduling overheads, Shockwave only plans the schedule for
a finite length window (e.g, 30-60 minutes), and we design
estimators that can capture the effects on long-term fairness
and long-term efficiency that arise from short-term planning.
This design helps us balance the system overheads without
sacrificing long-term objectives.

We evaluate Shockwave on a 32-GPU cluster testbed and
use a simulator to study large-scale GPU clusters. Using multi-
ple workloads derived from prior, real-world systems [33,36],
we find that Shockwave improves makespan by 1.3× and
fairness by 2× compared to existing fair DNN cluster sched-
ulers including Themis [29], Gavel [33], AlloX [28], etc. We
further evaluate Shockwave on differently sized clusters. Us-
ing a simulator built with the same scheduler as in a phys-
ical cluster we find that Shockwave scales to schedule 900
active DNN training jobs on 256 GPUs and maintains the
benefits in makespan (1.26-1.37×) and fairness (2.5-3.1×)
when compared to existing schedulers. We show that our
solver overhead remains low and is less than 12.5% of a two-
minute-long round duration.2 Shockwave is open sourced at
https://github.com/uw-mad-dash/shockwave.

2 Motivation
We begin by motivating the need to design a new cluster
scheduler for machine learning workloads.

Filter 𝑓 Worst FTF-𝜌 SI Avg. JCT Makespan
Adaptive - 1/ 1

3 / 2
3 0.83 ✓ 5 7

Fixed - 1/3 1.0 ✓ 5.7 7
Fixed - 2/3 1.1 × 5.7 7
Fixed - 1 1.1 × 6.0 7

Table 1: Themis example: using a fixed filter yields subop-
timal JCT and/or fairness compared with an adaptive filter.
Figure 1 visualizes the schedule for 𝑓 = 2/3, showing the
cluster and job setting, and demonstrates how a filter works.

2The solver runs asynchronously in a separate thread and does not block
the main scheduling loop.

https://github.com/uw-mad-dash/shockwave

GPU ID \ round ID 0 1 2 3 4 5 6
0 A B A A B A A
1 A B A A B A A
2 B C C B C A A
3 B C C B C
f 2/3 2/3 2/3 2/3 2/3 2/3 2/3

Cluster setting: 4 GPUs. Jobs: A, B, C are three DNN training jobs with one iteration.
Serial (1-GPU) iteration times for A, B, and C are 12, 8, and 6.

The number of requested GPUs per iteration for A, B, and C are 3, 2, and 2.

Figure 1: Example - Themis [29] with a static filter (𝑓 = 2/3).
In each round of allocation, the filter (grey color) selects 2/3
of the jobs unfairly treated so far. The resulting FTF-𝜌 values
for jobs (A, B, C) are (0.78, 0.83, 1.1), showing a static filter
hurts fairness. As in Themis, we assume a linear slowdown
when the number of allocated GPUs is less than requested.

2.1 Jointly Optimizing Fairness and Efficiency

Existing scheduling mechanisms lack a systematic approach
to jointly optimize fairness and efficiency. We first formally
define a fairness metric: we adopt the definition of fairness
used in recent work such as Themis [29], Gavel [33], and
Pollux [36]: Finish Time Fairness (FTF) 𝜌(𝐺) = 𝑡𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒

𝑡𝑒𝑔𝑎𝑙𝑖𝑡𝑎𝑟𝑖𝑎𝑛
;

where 𝑡𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 represents the job finish time resulting from
a policy 𝐺, and 𝑡𝑒𝑔𝑎𝑙𝑖𝑡𝑎𝑟𝑖𝑎𝑛 is 𝑡𝑒𝑥𝑐𝑙𝑢𝑠𝑖𝑣𝑒 ·𝑁; 𝑁 indicates the
number of contending jobs, 𝑡𝑒𝑥𝑐𝑙𝑢𝑠𝑖𝑣𝑒 indicates run time when
running exclusively with requested resources. FTF 𝜌 > 1
(𝜌 <= 1) indicates that a job is unfairly (fairly) scheduled.
Note that while we focus on FTF, Shockwave’s underlying
market formulation can be extended to support other fairness
metrics. For example, by assigning different budgets to jobs
we can support weighted proportional fairness [27] with the
budgets encoding priorities.

Second, we define a policy as efficient if it minimizes
makespan, or correspondingly, maximizes cluster utilization
given a sequence of jobs.
Instantaneous fair-share sacrifices efficiency. Existing fair
sharing policies, such as Processor-Sharing (PS) [40] and its
multi-dimensional extension, Dominant Resource Fairness
(DRF) [17], guarantee that at each instant, any job in the sched-
ule obtains exactly a 1/𝑁 share of the (dominant) resources.
However, restricting schedulers to instantaneous fair share
can adversely degrade long-term efficiency. Previous work
in Altruistic Scheduling (AS) [20] has shown that sacrificing
instantaneous fair share and letting some jobs altruistically
contribute resources can improve efficiency by 26% [20].
Using filters to balance fairness and efficiency is sub-
optimal. Given the limitations of instantaneous fair sharing
schemes, recent work [28,29] has proposed using round-based
schemes that optimize instantaneous efficiency and long-term
fairness. Within each round of scheduling, AlloX [28] and
Themis [29] select for allocation a fixed fraction (𝑓) of jobs
that have attained the least resource share in the past. Within
these filtered jobs, the scheduler tries to maximize efficiency.
Across rounds, the filter compensates for jobs unfairly sched-
uled in the past and thus pursues fairness in the long run.

Existing studies pre-specify a fixed value for filter 𝑓 across

rounds, but we find that adopting a fixed filter can incur a
loss in average JCT or makespan [29], and filter tuning is
challenging. Table 1 uses a simple example with three jobs
to show how different filters yield very different performance
outcomes: fixed filter values 𝑓 = 1 and 𝑓 = 2

3 violate finish
time fairness (𝜌 > 1) while 𝑓 = 1/3 leads to worse JCT. We
included the full toy examples in Appendix B. Tuning the
hand-crafted fairness filter is challenging without any insight
into the resulting performance outcomes, and it is more diffi-
cult when the workload varies.

Overall, this argues for a rigorous, systematic approach that
jointly and intrinsically (i.e., without knob-tuning) optimizes
efficiency and fairness in resource sharing.

2.2 Handling Dynamic Batch Size Scaling

The above goal of optimizing for fairness and efficiency is
made further challenging in the presence of dynamism. Dy-
namism can result in a number of different scenarios. For
example, dynamism can result from job arrivals leading to
time-variant cluster contention, and systems like AFS [24]
are designed to improve JCT by adjusting shares based on job
arrivals. On the other hand, dynamism can arise from training
jobs that can change their training configurations dynamically.
For example, if a job uses gradient noise scale (GNS) [30,31],
the batch size used can change dynamically. This can affect
fair scheduling because when a job switches to using a large
batch size, the per epoch time will decrease, and thereby its re-
maining running time will also decrease (Figure 2(a)). Unlike
prior systems which only handle dynamism that arise from
job arrivals, Shockwave (and prior work in Pollux [36]) focus
on handling dynamic changes in batch sizes of training jobs.
Being agnostic or reactive to dynamic adaptation breaks
finish time fairness. We show that being agnostic or reactive
to dynamic changes (or dynamic adaption) can yield severe
unfairness. Finish time fairness (FTF) implies a soft dead-
line 𝑡𝑒𝑔𝑎𝑙𝑖𝑡𝑎𝑟𝑖𝑎𝑛 = 𝑡𝑒𝑥𝑐𝑙𝑢𝑠𝑖𝑣𝑒 ·𝑁 for job completion; the later
the job finishes after the deadline, the more unfair the sched-
ule is. Computing FTF requires computing the exclusive run
time (i.e.,𝑡𝑒𝑥𝑐𝑙𝑢𝑠𝑖𝑣𝑒), which is straightforward for static jobs
since run time roughly equals training throughput (samples
per second) times the remaining amount of work (remain-
ing number of epochs). However, for jobs that use dynamic
adaptation, future training epochs could be significantly faster
because of using a larger batch size. Agnostic scheduling and
reactive scheduling are both unaware of future speedups and
hence overestimate run time, and thus mistakenly extend the
deadline 𝑡𝑒𝑔𝑎𝑙𝑖𝑡𝑎𝑟𝑖𝑎𝑛 leading to significant unfairness.

Figure 2b uses a job from our trace to show the difference
between Themis, which uses a reactive approach, and Shock-
wave, which uses a proactive approach. The job dynamically
doubles batch size three times from 32 to 256, and gradually
boosts training speed by up to 1.7× (Figure 2a). Themis is
notified and updates the job’s throughput immediately after
each batch size scaling, and recomputes the estimated finish

(a) Dynamic Adaptation
(b) 𝑇𝑒𝑔𝑎𝑙𝑖𝑡𝑎𝑟𝑖𝑎𝑛 - Interpolated finish time
under 1/𝑁 cluster share (c) GPU Allocation

Figure 2: Example - Reactive scheduling (Themis [29]) for dynamic adaptation breaks finish time fairness. Proactive scheduling
(Shockwave) for dynamic adaptation preserves finish time fairness.

Figure 3: Comparing model accuracy (ResNet18-CIFAR-10)
for vanilla training, expert-set batch size scaling, and Pollux
autoscaling. The legends in the bottom figure indicate batch
size.

time based on that (red dashed line in Figure 2b). Changes in
the estimated finish time lead Themis to detect that the job
has received less than its fair share and Themis attempts to
prioritize this job in future scheduling rounds. However, the
job has already suffered from under-prioritization in its early
phases and misses the fairness deadline by 2.07× (Figure 2c).
Agnostic scheduling is even worse and increases the job’s
FTF 𝜌 to 3.07; we omit this from the figure.
Being agnostic or reactive to dynamic adaptation degrades
system efficiency. Many makespan-minimizing algorithms,
such as Mixed Integer Linear Programming (MILP), Longest
Processing Time (LPT) [14], and JCT (Job Completion Time)
minimization algorithms such as Shortest Remaining Time
(SRPT) and AlloX [28], rely on the exact job run time, or the
ordering of jobs’ run time to derive a schedule.

However, dynamic adaption adaptively changes a job’s
throughput, and thus a job’s run time can be reduced (when
batch size is increased) or prolonged (when batch size is de-
creased) on the fly. This means that when making scheduling
decisions, the job run time estimated using initial or current
throughput is only valid for the current instant, and if it is used
beyond that system efficiency can be significantly undermined.
In Figure 4, the example shows that for MILP makespan mini-
mization, being reactive to dynamic adaptation yields a 22.3%

Job 1 vanilla training, bs=16

bs=16 bs=128

Job 3 vanilla training, bs=32

Job 2 vanilla training, bs=40

bs=40

1 1
32 2

1
1

3
2 2

1 1
3

2 2

⬇

⬇

G
PU

1
G

PU
0

G
PU

1
G

PU
0

G
PU

1
G

PU
0

(b) Agnostic scheduling

(c) Reactive scheduling

(d) Proactive scheduling

(a) Jobs 1 & 2 apply dynamic
adaptation after 2s,
accelerating training

0 1 2 3 4 5 6 7 8 9 10 t

0 1 2 3 4 5 6 7 8 9 10 t

0 1 2 3 4 5 6 7 8 9 10
t

0 1 2 3 4 5 6 7 t

bs=80

Figure 4: Being agnostic and/or reactive to dynamic adapta-
tion undermines efficiency while proactive scheduling mini-
mizes makespan and maximizes efficiency.

worse makespan and 28% worse cluster utilization compared
to proactive scheduling. Reactive scheduling considers 𝐽1
and 𝐽2 as long-running jobs from their initial throughput and
prioritizes them to minimize makespan. But due to dynamic
adaptation, 𝐽1 and 𝐽2 become shorter than 𝐽3 in their second
epoch, and it is too late to compensate and re-prioritize 𝐽3.
Being completely agnostic to dynamic adaption is even worse,
yielding a 30% worse makespan.

Overall, the above points motivate the need for a scheduler
that can model future dynamic adaptation and account for this
uncertainty while optimizing for both fairness and efficiency.

2.3 Supporting User-defined Dynamic Ddaptation

While dynamic adaptation with batch size scaling is a key
enabler for efficient training of large-scale DNNs, improper
changes to the batch size can adversely impact convergence
properties and degrade model accuracy. Thus, unlike systems
such as Pollux [36] which automatically modify the batch
size of training jobs, we argue that schedulers should support
user-defined dynamic adaptation schedules to avoid affect-
ing training accuracy. This is mainly because no adaptive
batch size scaling technique works consistently well across
all datasets and optimizers. As a result, ML researchers have
developed many different batch sizing scaling policies includ-
ing linear scaling rule [7], Accordion [1], Gradient Noise scale
(GNS) [36], SimiGrad [37], Hessian eigenspectrum [42], etc.

We next study an example of how choosing an incorrect
batch size schedule can affect accuracy. In Figure 3, we con-
sider a CIFAR-10 training job on 2 GPUs with ResNet18 with
an initial batch size of 32. When using Pollux [36], the end-to-
end training time reduces by 5× as Pollux scales up the batch
size from 32 to 64 at epoch 1, and then up to 314 at epoch 2,
then to 690 at epoch 30, and finally up to 1682 at epoch 70 till
completion. However, this aggressive scaling leads to a 2-3%
accuracy loss. Plotting the statistical efficiency (as defined in
Pollux [36]), we find that using large batch sizes in the first 30
epochs leads to accuracy degradation. Our conversation with
the authors of Pollux suggests that the accuracy degradation
depends on the initial batch size used (32 in this case) and
can thus vary across jobs.3

We also tested an expert heuristic for batch size scaling
of ResNet18 training on CIFAR-10. The heuristic scales up
the batch size when the gradient norm [1] has insignificant
(<50%) changes, and does not scale in the initial epochs 20
epochs and the 10 epochs before and after each learning rate
decay. This expert-defined scaling schedule has minimal ac-
curacy loss and is 3× faster than vanilla training. Such expert
heuristic and the associated thresholds vary across models and
datasets; the above heuristic is specific to ResNet-18-CIFAR-
10 training and is not easily transferable. For example, for
ResNet-50-ImageNet training, the experts propose a different
heuristic that scales up the batch size by a factor of ten at the
30th, 60th, and 80th epoch, respectively [38]. Thus, while
prior work has developed scheduling mechanisms for specific
dynamic adaptation techniques, in Shockwave, on the other
hand, we assume no preference for any technique and respect
any choice made by users regarding how to dynamically scale
a training job’s batch size.

In summary, we find that automatically performing dy-
namic adaptation runs the risk of accuracy degradation. Hence
in this work, we aim to develop a scheduler that can observe
and forecast future scaling events but treats dynamic adapta-
tion as a part of the user’s program that cannot be modified.

3 Overview
We next present an overview of Shockwave, a new scheduling
framework that jointly optimizes efficiency and fairness for
machine learning workloads in shared clusters.
Using Market Theory for Efficiency and Fairness In Shock-
wave we propose using market theory to provably guaran-
tee efficiency and fairness for resource sharing. While prior
schedulers [29, 44] have also leveraged market theory for
fair sharing, they are built on static market models which
assume that resource requests for a job don’t change over
time. We find that the fairness and efficiency guarantees of a
static market do not hold when jobs dynamically change over
time [15]. Thus, Shockwave extends the classic, static market

3We also found that the statistical efficiency metric in Pollux can be
incorrect for Neural-MF models [22]. We include details of this experiment
in Appendix A.

to a discrete-time, dynamic market, to support efficient and
fair resource sharing under dynamic adaptation.
Predicting Dynamic Adaptation Building a dynamic market
alone is not enough as it presumes perfect future knowledge of
jobs’ dynamic adaptation behavior; that is, the market needs
to know when and how much jobs’ performance (e.g., train-
ing throughput) is changed by dynamic adaptation as training
progresses. As ML training itself is a stochastic process, the
trajectory of dynamic scaling is intrinsically uncertain. We
address this problem in Shockwave by forecasting the trajec-
tory of dynamic adaptation and developing methods to use
these forecasts in the dynamic market.
Scalable System Implementation Solving a dynamic mar-
ket and predicting dynamic adaptation introduces scheduling
overhead. We build a centralized, round-based scheduler [33]
and incorporate tractable approximations that can ensure the
overhead remains low even as we scale the number of GPUs
and cluster size. We find that Shockwave can maintain low
overhead while scheduling every 120 seconds and scale to
handle 900 active jobs running on a cluster of 256 GPUs.

4 Dynamic Market Theory Formulation
We begin by describing our theoretical formulation of a
discrete-time, dynamic market and the properties it provides.

4.1 Volatile Fisher Market

Market theory provides a fundamental approach to provably
guarantee efficiency and fairness in resource sharing. The
equilibrium of a Fisher Market [5], which is solved by max-
imizing Nash Social Welfare (NSW) [8], is a strong condi-
tion that implies all fairness guarantees used in prior sys-
tems. It is known that Fisher market equilibrium (under equal
endowment) implies Pareto Optimality (PO), Envy-freeness
(EF), and Proportionality (PR), which are fairness properties
adopted by existing systems like DRF [17].

We define efficiency in terms of the utility of a job, where
utility is a function that maps allocated resources to the result-
ing job progress (e.g., throughput improvement if we allocate
more resources). The market equilibrium for a Fisher market
has also been shown to maximize efficiency [6]. Thus, we
explore the applicability of Fisher markets for DL jobs.
From static market to dynamic markets: Volatile Fisher
Market. Classic Fisher Market assumes static, time-invariant
utility for jobs, and a recent study [15] shows that efficiency
and fairness guarantees can be violated for dynamic, time-
variant utilities. Prior work [2,3] on dynamic markets has also
studied settings where goods (resources) arrive online, while
our market considers a different setting where buyers in the
market have time-variant utilities over goods.

To perform efficient fair sharing under dynamic adapta-
tion, we extend the static Fisher market to a discrete-time,
dynamic market. We name this new market Volatile Fisher
Market (VFM). We prove that maximizing Nash Social Wel-
fare Over Time (i.e., NSWOT in Equation 1) solves the market

equilibrium of VFM and establishes long-term efficiency and
fairness properties, such as Proportionality Over Time, i.e.,
PROT, which has strong implications for finish time fairness
and sharing incentive. We leave the formulation and related
proofs of VFM in Appendix C-D, and provide a succinct
description below.

VFM operates at discrete time intervals 𝑡 = 1, . . . ,𝑇 . At each
time instant, a central seller (the scheduler) sells resources
(e.g., GPUs and/or CPUs) to buyers (jobs). All resources are
volatile. That is, resources bought by a job at time 𝑡′ cannot be
carried over to the future time steps 𝑡 > 𝑡′. To model dynamic
adaptation, the utility for any job 𝑖 is a sequence of time-
variant functions 𝑢𝑖𝑡 (𝑡 = 1, . . . ,𝑇). For example, a job might
have a utility 𝑢0 when the batch size is 16 and its utility
could double 𝑢1 = 2𝑢0 when the batch size doubles at 𝑡 = 1.
Since jobs’ utilities can change over time, this creates dynamic
changes in demands over time, and thus, resource price, which
is achieved at equilibrium, is also time-variant. We assume
that each job is endowed with an initial budget to spend across
rounds. The budget for a job reflects its purchasing power and
different budgets can reflect scheduling priority.

Given the resource demands, budget, and utility for each
job, at every time instant, the VFM solves for an allocation
and assignment of prices that can lead to market equilibrium.
We define the market to have reached an equilibrium when
two conditions are satisfied. (a) Optimal Spending: Each
job’s utility accrued over time, i.e,

∑𝑇
𝑡=1 𝑢𝑖𝑡 , is maximized

under its budget. (b) Work-conserving: There are no leftover
resources if the price for the resources is non-zero.

4.2 Equilibrium Properties

The market equilibrium achieved by VFM has a number of
powerful properties that we define below. Proofs for them are
in Appendix C-E.
Cluster-level performance. The equilibrium of VFM maxi-
mizes Nash Social Welfare Over Time(NSWOT) which is an
indicator of cluster-level performance.

NSWOT (𝑈1 (𝑋𝑋𝑋111), . . . ,𝑈𝑁 (𝑋𝑋𝑋𝑁𝑁𝑁)) =
∏
𝑖

𝑈𝑖 (𝑋𝑋𝑋 𝑖𝑖𝑖)
𝐵𝑖∑
𝑖 𝐵𝑖 ,

𝑈𝑖 (𝑋𝑋𝑋 𝑖𝑖𝑖) =
∑︁
𝑡

𝑢𝑢𝑢𝑖𝑡 (𝑥𝑖𝑡)
(1)

Let 𝑈𝑖 (𝑋𝑖) =
∑
𝑡 𝑢𝑖𝑡 (𝑥𝑥𝑥𝑖𝑡) represent the utility (e.g., epoch

progress) for a job 𝑖 accrued over rounds 𝑡 = 1, . . . ,𝑇 , 𝑋𝑋𝑋 𝑖𝑖𝑖
represent the sequence of allocations 𝑥𝑥𝑥𝑖1, . . . , 𝑥𝑥𝑥𝑖𝑡 , . . . , 𝑥𝑥𝑥𝑖𝑇
received for individual rounds, and 𝐵𝑖 represent the budget
provided for the job. Maximized NSWOT guarantees that the
(weighted) geometric mean of job progress is maximized for a
𝑇-round-long time horizon. In effect, this property guarantees
that the overall cluster-wide utility is maximized across all
jobs, thus leading to improved utilization.
Pareto Optimality over time. We prove that maximized
NSWOT also implies Pareto Optimality Over Time (POOT),
which guarantees resource allocation efficiency. Specifically,
POOT ensures that each job has no surplus resources at each

instant; i.e., we cannot increase one job’s training progress
without depriving that of another job.
Finish Time Fairness (FTF) over time. We also show that
maximized NSWOT minimizes the product of FTF across all
jobs and that this directly leads to sharing incentive (assuming
budgets are equal). A formal statement is in Corollary 4.0.1
and the proof is in Appendix E.

Corollary 4.0.1. The equilibrium of the Volatile Fisher Mar-
ket with linear or Leontief utility at each instant (a) minimizes
the product of FTF (𝜌) across all jobs (i.e.,

∏
𝑖 𝜌𝑖); (b) when

the budgets assigned to jobs are equal, the equilibrium prov-
ably guarantees Sharing Incentive (SI), i.e., all jobs’ FTF 𝜌

are no greater than 1, i.e., 𝜌𝑖 ≤ 1, ∀𝑖.
Thus, our formulation of volatile Fisher markets can cap-

ture time-varying utility for jobs while providing a number of
powerful guarantees in terms of fairness and efficiency.

4.3 Handling Uncertainty

The Volatile Fisher Market model described above assumes
perfect knowledge of the future. That is, the model requires
knowing at which time point 𝑡 will the throughput change due
to dynamic adaptation. However, dynamic adaptation in jobs
is non-deterministically triggered, as they are dependent on
stochastic gradient values and can thus vary across models and
datasets. To handle this, in §5, we develop methods to predict
dynamic adaptation in jobs. But given that the predictions are
random variables, we further extend our above formulation
to derive a VFM that can handle uncertainty in future request
demands. We show that this extension guarantees Maximized
Nash Social Welfare Over Time in Expectation (MNSWOTE).
Details are provided in Appendix F.

5 Predicting Dynamic Adaptation
In this section, we develop techniques to predict the dynamic
adaptation of the batch size that occurs in elastic ML training
workloads. Our key insight in developing a predictor is to
leverage our knowledge about techniques that are used for
batch size scaling [1, 31] and thereby restrict the search space
of possible batch size changes. We next define how changes
in batch size over time can be viewed as trajectories and then
describe how we can use Bayesian statistics to predict which
trajectories are most likely.
Dynamic adaption, regimes, and randomness. We define a
regime of training 𝑅 as a tuple 𝑅 = (𝑐, 𝑓); where 𝑐 indicates
the job configuration (e.g., batch size) used in the regime and
𝑓 represents the duration (as a fraction of the total epochs)
that this regime lasts. For example, if a 100-epoch-long DNN
training job starts with batch size 32 (denoted 𝐵𝑆32) for epoch
1-20, then the first regime is denoted as 𝑐1 = 𝐵𝑆32, 𝑓 1 = 0.2.
We define a trajectory as a sequence of regimes. For example,
if the same job scales up to 𝐵𝑆64 for epoch 21-80, and finally
scales down to 𝐵𝑆32 for epoch 81-100, then its trajectory
is represented as (𝑐1 = 𝐵𝑆32, 𝑓 1 = 0.2)→(𝑐2 = 𝐵𝑆64, 𝑓 2 =

0.6)→(𝑐3 = 𝐵𝑆32, 𝑓 3 = 0.2). Thus, given a new job, each

Figure 5: Shockwave Dynamic Adaptation Modeling Error.

regime 𝑐𝑖 , 𝑓𝑖 is a tuple of random variables.
Leveraging domain knowledge. We leverage domain knowl-
edge about techniques used for batch size scaling to constrain
the random variables. Techniques for scaling batch size have
deterministic patterns. (a) Accordion [1] only alternates be-
tween two configurations 𝑐1 for small batch size and 𝑐2 for
large batch size. When gradient values change slowly (below
a threshold) during training, Accordion scales up the batch
size from 𝑐1 to 𝑐2, and when gradient values change rapidly,
Accordion scales from 𝑐2 back to 𝑐1. (b) GNS [31] only scales
up the batch size up to the pre-specified limit and never scales
down. Existing studies show that the gradient noises tend to
grow throughout training, implying that GNS will gradually
scale up the batch size and never scale down [30, 31]. We use
a simple model of GNS scaling where, as the gradient noise
grows above a relative threshold, the batch size doubles.

We choose Accordion and GNS as representative batch size
scaling patterns as they have been used in prior systems like
KungFu [30] and Pollux [36]. Further, their scaling decisions
are completely determined by gradient states (i.e., gradient
norms and noises), which encode the stochasticity induced
in back-propagation algorithms. Most other dynamic batch
sizing policies also adapt to gradient states and we plan to
add support for more policies in the future.
Prior for regime transition. Given that batch size scaling
rules have deterministic configuration transitions, the only
random variable is a regime’s duration. For a job with 𝐾
regimes, we define a probabilistic model 𝑃(𝑓1, . . . , 𝑓𝐾) to
represent the probability that regime 𝑘 (𝑘=1, . . . , 𝐾) lasts for
𝑓𝑘 fraction of epochs. We also note that the sum of all regimes’
epoch fractions needs to sum up to 1 4. Given this formulation,
we use an approach based on Bayesian statistics to predict
regime duration. At a high level, our approach is to define
a prior distribution of regime duration and then update the
posterior distribution in real time as training progresses. The
key challenge here is in determining how we can update the
posterior as training progresses.
The restatement posterior update rule. Given our prob-
lem formulation, we adopt the commonly used Dirichlet prior
𝐷𝑖𝑟 (𝑛1, . . . , 𝑛𝐾). A standard Bayesian posterior update rule

4We don’t make any stationary assumptions about the distribution.

assumes the epoch samples of individual regimes are inde-
pendently and randomly drawn as training progresses. But
this does not hold in practice. Epochs of the 𝑘-th regime
can only emerge if the 𝑘 −1-th regime finishes. To deal with
the temporal-dependence issue, we design a simple update
rule, named the restatement rule, for posterior updates. The
restatement rule only updates the prior’s parameters that
correspond to completed epochs, while continuing to be-
lieve that the ongoing and future regimes will evenly split
the remaining epochs. Specifically, suppose a user specifies
that at a maximum, 𝐾 regimes can exist, the prior is set as
𝐷𝑖𝑟 (𝑁/𝐾, . . . , 𝑁/𝐾) for the 𝐾 potential regimes. When the
𝑘-th (𝑘=1, . . . , 𝐾 −1) regime finishes, suppose the observed
epochs for past regimes 1, . . . , 𝑘 are 𝑚1, . . . ,𝑚𝑘−1, we up-
date the posterior distribution to 𝐷𝑖𝑟 (𝑚1, . . . ,𝑚𝑘 , 𝑆𝑘 , . . . , 𝑆𝑘),
where 𝑆𝑘 = (𝑁 − ∑𝐾

𝑘=1𝑚𝑘)/(𝐾 − 𝑘). We compare the
Bayesian update rule with the restatement rule in Figure 5
and find the restatement rule has a lower interpolation error;
the interpolation error is averaged over 200 jobs randomly
drawn from the Gavel workload trace (Section 8.1), each with
a batch size scaling schedule imposed by Accordion or GNS.
Predicting job remaining time. Given the predictions from
the Bayesian model, we next predict the remaining runtime
for a job. This is necessary for estimating finish time fairness.
We sum up individual regimes’ expected duration to calculate
total job runtime. Total job time minus cumulative run time
in the past (i.e., 𝑇𝑗) gives the remaining time.
Computational tractability. Finally, as each job can com-
prise of many possible regime trajectories, at the cluster level,
the trajectory space for all jobs is combinatorially large. To
avoid space explosion, the scheduler only considers a single
regime transition trajectory for each job, which is the mean
(expectation) of its posterior distribution model [4].
Evaluating prediction accuracy. Figure 5 shows the online
prediction (i.e., mean of posterior distribution) accuracy for
regime transition and job run time. We compare Shockwave’s
restatement rule with two baselines. The first is a standard
Bayesian posterior update rule; the second is a greedy ap-
proach that forecasts future job run time only using the most
up-to-date job throughput, which is used by all reactive sched-
ulers. The evaluation includes 200 Accordion and GNS jobs
with real dynamic adaptation trajectories. Shockwave’s re-
statement rule converges to the oracle job run time and the
oracle dynamic adaptation trajectory faster than the baselines.
Throughout the training, the error in modeling the duration
of each regime is on average 6%, which results on average
an 84% accuracy in run time prediction. In summary, we see
that our proposed predictor for elastic training jobs is able to
accurately capture the total run time without prior training
and by only observing job progress across epochs. We next
discuss how our predictor can be integrated with the market
formulation.

6 Shockwave Design
Overview. Figure 6 presents the overall system design of
Shockwave. When a new job arrives (1), the Bayesian predic-
tor will construct a prior model for the job’s batch size scaling
schedule and the job is added to the active pool.

As a job makes progress, upon epoch completion or when
the job triggers a dynamic batch size scaling (2), the job’s
Dirichlet posterior model is updated using the restatement
rule (3). The posterior model then forecasts the future batch
size schedule for this job and delivers it to the scheduler solver.
Further, the posterior model predicts the job’s (remaining) run
time under dynamic batch size scaling and delivers this to the
long-term efficiency and fairness estimator.

We design two estimators: a long-term efficiency estimator
(4) that can estimate the makespan (time to finish all active
jobs) and a long-term fairness estimator (5) that can estimate
FTFs for all active jobs. The schedule solver converts the
predicted batch size schedules into the utility for each job
and synthesizes a generalized Nash social welfare function
(6) that uses jobs’ FTF estimate as weights and the makespan
estimate as a regularizer. Finally, the output of the solver is a
schedule for the next 𝑇 rounds, and this schedule is used by
the cluster manager to launch jobs (more details in §7).

We next discuss some design details of how the generalized
Nash social welfare function is derived from its inputs. We
also present an overview of how the efficiency and fairness
estimators work. We include a more detailed explanation in
Appendix G.

6.1 Schedule Solver

Output. The solver plans the schedule for a configurable
number of future rounds 𝑇 (the default is 20 two-minute-long
rounds). Thus, the output is a 𝑁 ×𝑇 binary matrix X, where
𝑁 is the total number of active jobs available for scheduling.
X[𝑗 , 𝑡] = 1 (X[𝑗 , 𝑡] = 0) represents scheduling (descheduling)
job 𝐽 𝑗 in round 𝑡.
Objective. The inputs to the schedule solver include the batch
size schedule for all jobs, which can be used to derive their
utility (epoch progress) UTIL 𝑗 , the estimated FTFs 𝜌 𝑗 , and
the estimated makespan 𝐻.

The objective of the solver is to maximize the gen-
eralized Nash social welfare as shown in Equation 2.∑
𝑡 UTIL 𝑗 (X[𝑗 , 𝑡]) represents the summed utility of all active

jobs. The utility increases when a job is scheduled for more
rounds within the planning window, and the sum of the loga-
rithm of utilities, across all jobs, represents the Nash social
welfare. We use the k-th (default: 5) power of FTF values 𝜌 𝑗
as weights to prioritize jobs that are at risk of violating FTF
(e.g., jobs that have been waiting in the queue for a long time).
Finally, we add a regularization term that penalizes schedules
(in the planning window) that could potentially increase the
makespan estimate 𝐻 (𝑋). Coefficient _ (default: 1e−3) con-
trols the magnitude of the regularizer, 𝑍0 is a normalization
factor that renders the regularizer insensitive to the scale of

Figure 6: Design of Shockwave showing how the different
components interact with each other to derive a schedule.

𝐻 (𝑋), and 𝑀 is the total number of GPUs in the cluster:

Maximize
X

∑𝑁
𝑗=1 �̂�(𝑗)𝑘 𝑙𝑜𝑔

∑
𝑡 UTIL 𝑗 (X[𝑗 , 𝑡])

𝑁𝑀
− _H(X)

𝑍0
(2)

We tune the hyperparameters over a large range and find
that Shockwave performs consistently well around the default
hyperparameter values (𝑘 in [1,10] and _ in [1e−4,1e−2]).
Exceedingly large or small hyperparameters make the reg-
ularization term dominate the Nash social welfare term (or
vice versa) and push Shockwave away from the Pareto frontier
of fairness and efficiency, while the default values strike a
balance between them.

Similar to prior work [29,33,36], the solver recomputes the
program in Equation 2 either when the planned rounds elapse,
or when jobs arrive or complete. If dynamic adaptation is
predicted to occur within the planning window, the scheduler
needs to incorporate dynamic changes in jobs’ throughputs
when computing the utility. To account for dynamic changes,
we decompose a job’s schedule into regimes, where each
regime has a fixed batch size and throughput. The generalized
Nash social welfare (Equation 2) can then be implemented at
a regime level, where the utility of a job equals the summed
utility over all regimes.

6.2 Long-term Fairness and Efficiency Estimators

Finish time fairness estimator. We estimate job 𝐽 𝑗 ’s finish
time fairness (FTF) �̂�(𝑗) as its predicted job completion time
(the sum of attained service time, waiting time, and the pre-
dicted remaining run time), divided by its predicted total job
run time. Note that a job’s predicted runtime is related to its
predicted batch size scaling schedule. Shockwave plugs in
FTF 𝜌s of jobs into social welfare function (see Equation 2)
as weights. The weights in the social welfare function act as
the budgets assigned to jobs in the volatile Fisher market. If
a job is predicted to be unfairly scheduled (large FTF 𝜌) in
long term, VFM correspondingly assigns a higher budget for
it and proactively prioritizes the job in the planning window.
Makespan estimator. The efficiency estimator estimates the
makespan to complete all active jobs and penalizes schedules
in the planning window that increase the makespan. How-
ever, it is challenging to estimate the makespan for all active
jobs at a given instant. Thus, in practice, Shockwave uses a
lower bound [12] of the makespan as a proxy and penalizes

Model Task Dataset Batch Size(s)

ResNet-50
Image
Classification

ImageNet 16 - 128

ResNet-18
Image
Classification

CIFAR-10 16 - 256

LSTM
Language
Modeling

Wikitext-2 5 - 80

Transformer
Language
Translation

Multi30k
(DE-EN)

16 - 256

Recoder
Autoencoder

Recommen-
dation

ML-20M 512 - 8192

Table 2: Workloads used in the evaluation.

increasing the lower bound. More details are in Appendix G.

7 Implementation
Scheduler and worker. Shockwave scheduler and worker im-
plement time-sharing of cluster resources with round-based
scheduling. Each round is a fixed interval (default: 2 minutes).
In each round, the scheduler selects a set of jobs from the ac-
tive job pool to run. The lease manager translates the schedule
to job leases and notifies the workers to launch, suspend, or
resume jobs. Each worker binds to a single GPU device.

We adopt a simple job placement engine along with Gavel.
The placement engine tries to tightly pack jobs’ workers over
the machines to minimize fragmentation, and it also tries to
place scheduled jobs on their previously executed machines
to maximize job locality.
Scheduler solver, lease manager, and model dispatcher. If
a job does not run in round 𝑇 , but is scheduled for round 𝑇 +1,
the scheduler will notify the lease manager to create a new
lease for it, and dispatch the job to GPU workers before the
next round starts. The assigned workers will launch the job
when the next round begins. If a job is actively running in
round 𝑇 and the scheduler continues to schedule it for round
𝑇 + 1, the lease manager will send a lease extension signal
to the job’s workers. This job will stay running on the same
workers in round 𝑇 +1. If a job is actively running in round
𝑇 , but the scheduler decides to suspend it in round 𝑇 +1, the
job’s workers will stop it since its lease will not be renewed.

Shockwave also penalizes frequent restarts as it adds over-
heads in dispatching models and datasets to workers. The
schedule solver prefers to schedule jobs to continuous rounds
in the window and penalizes scattering the job’s execution
across rounds. Furthermore, the underlying device placement
engine prefers mapping a job to its previously allocated work-
ers to reduce restarts.
Dynamic adaptation support. When a training job triggers
dynamic adaption (i.e, batch size scaling), it notifies the sched-
uler solver of the occurrence of the event. The cluster manager
can configure Shockwave’s responsiveness to dynamic scaling.
The reactive mode requires Shockwave to invalidate its cur-
rent schedule and immediately trigger resolving in response
to dynamic adaptation. The lazy mode continues the original

schedule and postpones resolving until the next rescheduling
interval. Shockwave is by default configured in reactive mode.
Prototype. Shockwave is implemented in Python atop ML
cluster manager Gavel [33]. We integrate Shockwave into
Gavel by implementing a schedule solver, meta-data collector,
and schedule translator, which translates Shockwave’s pro-
duced schedule to job leases. Furthermore, Shockwave pro-
vides an interface for users to monitor gradients and trigger
batch size scaling. Scaling requests are sent to the sched-
uler with gRPC. The schedule solver is implemented with
Gurobi [34]. Shockwave uses Linux NFS to store model check-
points. Our checkpointing overhead is less than 3%.

8 Evaluation
We next evaluate Shockwave using ML job traces derived from
real-world clusters and compare Shockwave to state-of-the-art
deep learning schedulers.

8.1 Experiment Setup

Testbed. We conduct experiments using a 32-GPU, 8-node
cluster on TACC [9]. Each node has 4 NVIDIA Quadro RTX
5000 GPUs (16GB GRAM), 2 Intel Xeon E5-2620 v4 “Broad-
well” CPUs, and 128GB DDR4 RAM. The network band-
width is 200 GB/s inter-switch and 100 GB/s inter-node.
Workload. Shockwave ’s evaluation uses two separate work-
loads to reinforce its practical applicability. These traces in-
clude diversity in job sizes, model types, and arrival patterns.
Unless otherwise specified, we use Gavel’s workload genera-
tor [33] to construct synthetic distributed training workloads.
Job information is detailed in Table 2. The jobs used in this
paper range from 0.2 to 5 hours long, with 1, 2, 4, or 8 work-
ers for distributed training, and the arrival of jobs follows a
Poisson arrival process with an inter-arrival rate _ ranging
from 0.1 to 0.2 [33]. We use a mix of job durations also de-
rived from prior work [36]. We categorized jobs based on
total GPU-time, and similar to prior work, we set the proba-
bility of generating Small (0.2-8 GPU-hours), Medium (8-16
GPU-hours), Large (16-72 GPU-hours), and Extra Large (>72
GPU-hours) jobs to be 0.72, 0.2, 0.05, 0.03, respectively. Each
job is configured with one of the three modes: Static, Accor-
dion [1], or GNS [31]. We increase the total batch size by
increasing the per-GPU batch size while preserving the num-
ber of workers. In addition to traces generated by Gavel, we
also evaluate a production trace of real job duration and ar-
rival timestamps used by Pollux [36] in Appendix J. We also
tune the hyperparameters 𝑘 and _ with the range discussed in
Section 6.1.

8.2 Baseline Schedulers

We compare Shockwave to six schedulers: OSSP (Open Shop
Scheduling) [18], AlloX [28], Themis [29], Gavel [33], MSS
(Max-Sum-Throughput) [33], Gandiva-Fair [10], and Pol-
lux [36]. All baselines, except Pollux, do not change the num-
ber of workers, whereas Pollux dynamically tunes the number
of workers (and batch size) to adapt to varied resource avail-

0 20000 40000
Makespan (s)

1.0
1.01

1.24
1.37

1.27
1.37

0 10000 20000
Average JCT (s)

1.0
1.7

1.04
1.15

0.91
0.92

0 1 2 3 4 5 6 7 8
Worst FTF (ρ)

1.0
3.17

1.56
1.9

2.54
2.85

0 20 40 60 80
Unfair Job Fraction (%)

1.0
8.5

2.0
3.2
3.0
3.0

Shockwave OSSP Themis Gavel AlloX MST

Figure 7: [Physical] Evaluating Shockwave’s scheduling effi-
ciency and fairness in a 32-GPU physical cluster. The anno-
tated number beside each bar is the relative value compared
to Shockwave.

ability. To perform a fair comparison against the scheduling
policies of most baselines, in our Shockwave prototype, we
only perform time-sharing and maintain a fixed number of
workers through a job’s lifetime, even though the Shockwave
market formulation can be easily re-parameterized to support
worker scaling. Nevertheless, we compare our "constrained"
version of Shockwave to Pollux in §8.7 and show significant
fairness gains and matching efficiency.

Efficiency baseline: makespan. OSSP minimizes
makespan using MILP. As minimizing makespan usually
translates to maximizing cluster utilization, OSSP provides a
baseline for efficiency, but with no guarantee of fairness.

Efficiency baseline: throughput. Max-Sum-Throughput
(MST) maximizes the cluster-level throughput at each instant,
which is the sum of throughput across all training jobs. MST
is an instantaneous efficiency baseline.

Fairness baseline. Gavel [33] implements Max-Min-
Fairness [32], an algorithm that performs fair sharing of clus-
ter resources within each allocation round.

Fairness and responsiveness baseline. AlloX [28] min-
imizes average job completion time with maximal bipar-
tite matching and provides a baseline for responsiveness.
Pollux [36] maximizes cluster-wide goodput and uses the
𝑝−𝑛𝑜𝑟𝑚 of individual jobs’ training goodput for improved
responsiveness, while tuning 𝑝 to penalize unfair allocations.

Fairness and efficiency baseline. Themis [29] uses Par-
tial Allocation [13] for efficient and fair allocation. We use
the default filter value for Themis. We also compare against
Gandiva-Fair [10], a framework that uses lottery scheduling
to guarantee a proportionally fair share of resources and effi-
ciency by being work-conserving.
Performance metrics. We quantify efficiency using
makespan and utilization. We measure fairness using two
metrics: The first is the fraction of unfairly scheduled jobs,
i.e., the fraction of jobs with FTF 𝜌 > 1.0; The second is the
worst-case FTF 𝜌, which is the worst-case slowdown due to
unfair scheduling. The smaller the unfair fraction and worst
FTF 𝜌 are, the better a scheduler is at preserving sharing
incentive. We quantify responsiveness using average JCT.

8.3 Evaluating Efficiency and Fairness

We first study the benefits of Shockwave using experiments
on the physical TACC cluster.

[Cluster - 32 GPUs, 120 Jobs] Efficiency. (cf., Figure 7)
Shockwave is more efficient than existing fair schedulers with
a makespan on average 1.3× less than Themis, Gavel, and
AlloX. Compared to our efficiency baselines that have no
fairness constraints, Shockwave achieves a 37% improvement
in makespan over MST and produces a similar makespan as
OSSP. Analyzing cluster utilization data we also find that
Shockwave outperforms Themis, Gavel, and AlloX in cluster
utilization by 28% on average.

[Cluster - 32 GPUs, 120 Jobs] Finish time fairness (cf.,
Figure 7). Shockwave is fairer than existing fair schedulers.
Shockwave’s worst-case FTF (Finish Time Fairness) 𝜌 is 1.82,
outperforming Themis, Gavel, and AlloX by 2× on average.
OSSP and MST are not fair schedulers, and severely break
finish time fairness, the worst-case FTF 𝜌 of which reach 5.79
and 5.2. In addition, Shockwave keeps the fraction of unfairly
scheduled jobs (i.e., the fraction of jobs with FTF 𝜌>1) low,
outperforming Themis, Gavel, and AlloX by 2.7× on average.
OSSP and MST unfairly schedule jobs, and their fraction of
jobs that have FTF 𝑟ℎ𝑜 larger than 1 are 70.8% and 25%.

[Cluster - 32 GPUs, 120 Jobs] Average job completion
time (cf., Figure 7). Shockwave does not sacrifice system
responsiveness in exchange for improved makespan and fin-
ish time fairness. Shockwave produces a similar average job
completion time when compared with Themis, Gavel, and
MST. AlloX achieves a better average JCT by aggressively
prioritizing short jobs (but at the cost of delaying long jobs),
while in contrast, OSSP achieves the worst average JCT due to
aggressively prioritizing long jobs for tight resource packing
over time (but at the cost of delaying short jobs).

Overall, we find that by solving for the optimal efficiency-
fairness trade-off, Shockwave can improve efficiency and fair-
ness when compared with existing schedulers. By analyzing
the scheduling decisions, we find that with Shockwave, jobs
are opportunistically prioritized to improve long-term effi-
ciency if such prioritization does not affect finish time fairness.
Second, we find that Shockwave’s solver improves fairness
by smart arbitrating. “Rich” jobs (i.e., jobs which have lower
chances of violating FTF) yield resources to “poor” jobs
which have a higher chance of violating FTF. We next take
a closer look at the schedule decisions on a smaller trace to
further distill the benefits of Shockwave.

8.4 A Closer Look at Shockwave’s Schedule

We compare the schedules for a batch of 50 jobs and the FTF
𝜌 between Shockwave and baselines to further understand the
wins in efficiency and fairness. We categorize jobs into four
groups based on their sizes (GPU-time): (X)Large, Medium,
Small, and (X)Small (different colors in Figure 8a).
Understanding efficiency improvement. AlloX optimizes
system responsiveness (average JCT) by prioritizing small
jobs. In Figure 8a, in the first 100 rounds, most of the jobs
scheduled are XSmall jobs. The filter in AlloX ensures
medium and large jobs do not get starved but these jobs are

(a) Visualized schedules.

0.0 0.5 1.0 1.5 2.0
FTF ρ

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 Jo

bs

Gavel
OSSP

Allox
Shockwave

(b) FTF 𝜌 CDF
Figure 8: A closer look at how Shockwave prioritizes jobs of different lengths while meeting the fairness constraints.

not prioritized. Large jobs trail until round 230 and leading to
worse makespan and cluster utilization.

Gavel’s max-min fair scheduling prioritizes the least per-
formant jobs. In Figure 8a, throughout the schedule, Gavel
prioritizes neither small nor large jobs; jobs of all sizes evenly
partition GPUs when compared with other policies. However,
restricting scheduling to instantaneous fairness significantly
hurts long-term efficiency, and large jobs run on a mostly idle
cluster from round 170 to round 220.

Shockwave improves efficiency by opportunistically
scheduling (X)Large jobs across rounds but without hurting
small and medium jobs’ sharing incentive (Figure8b shows
the CDF of FTF). In Figure 8a, between round 0 and 50, and
50 to 120, large jobs are opportunistically scheduled by Shock-
wave, and the cluster is tightly packed over the time horizon,
resulting in a low makespan. Note that Shockwave also pre-
serves responsiveness since most XSmall and small jobs are
completed fast (before round 50 and 110, respectively), which
is comparable to AlloX.

OSSP over-prioritizes (X)Large and medium jobs through-
out the timeline, but significantly delays XSmall jobs’ comple-
tion (see delayed blocks at the end of the schedule). Delaying
small jobs significantly breaks the sharing incentive and un-
dermines cluster responsiveness.
Understanding fairness improvement. Figure 8b shows the
FTF 𝜌 CDFs of different policies for the batch of jobs visu-
alized in Figure 8a. Shockwave improves efficiency without
sacrificing the sharing incentive: the worst-case FTF 𝜌 for
the batch of jobs is 1.23, and the fraction of unfair jobs is
low. In Figure 8a, AlloX and Gavel’s CDF grows faster than
Shockwave’s for 𝜌 <= 1, although more than 20% of jobs have
𝜌 > 1. AlloX and Gavel over-prioritize some jobs and this
results in an allocation that exceeds sharing incentive. Shock-
wave avoids over-prioritization and is thus able to have more
jobs meet the sharing incentive. Shockwave also improves
fairness by predicting dynamic adaptation for a more accurate
estimate of the FTF deadline. Figure 2 shows an example
where Shockwave produces an accurate prediction of the FTF
deadline and enables the job to finish on time.

Makespan (s) Average JCT (s) Unfair Fraction (%)
4.97% 4.62% 3.83%

Table 3: Fidelity of Shockwave’s simulator – difference be-
tween simulator and physical cluster.

8.5 Scaling to Large Clusters

We next use simulation to compare Shockwave’s and baseline
algorithms’ efficiency and fairness in larger-scale cluster set-
tings. We scale both the cluster size and the number of jobs
and study 64 GPUs with over 220 jobs, 128 GPUs with over
460 jobs, and 256 GPUs with over 900 jobs. We preserve
the contention factor as roughly three to maintain a constant
level of resource contention regardless of scale. Note that
our physical cluster implementation and the simulator use the
same scheduling code base and solver engine. We begin by
validating our simulator’s fidelity.
Simulation Fidelity

We evaluate the simulation fidelity by comparing our sim-
ulator’s results with the 32 GPU physical cluster results (Ta-
ble 3). We run all policies supported by our system under
different workloads, and the average difference is reported
in Table 3. Overall, the performance difference between a
simulated and physical cluster run is around 5%.
[Simulation - 64-256 GPUs, 220-900 Jobs] Efficiency. As
shown in Figure 9, Shockwave scales to large cluster settings
and preserves the improvement in makespan over baseline
algorithms. Shockwave achieves 1.26-1.35×, 1.3-1.34×, 1.35-
1.37×, and 1.21-1.3× speedup in makespan when compared
with Themis, Gavel, AlloX, and Gandiva-Fair respectively.
Shockwave achieves a marginally worse (5%-9%) makespan
compared with OSSP.
[Simulation - 64-256 GPUs, 220-900 Jobs] Finish time
fairness. The worst-case FTF 𝜌 for Shockwave when scal-
ing to large clusters is on average 1.32, outperforming fair
scheduling policies Themis, Gavel, AlloX, and Gandiva-Fair
by 2.5×, 2.4×, 3.1×, and 3.9× respectively. In addition, Shock-
wave maintains the fraction of unfairly scheduled jobs (FTF
𝜌 > 1) on average at 4%, outperforming other fair scheduling
baselines by 6×.
[Simulation - 64-256 GPUs, 220-900 Jobs] Average job

0 15000 30000 45000
Makespan (s)

25
6

GP
Us

12
8

GP
Us

64
 G

PU
s

1.0

1.0

1.0

0.91

0.95

0.93

1.26

1.35

1.3

1.3

1.34

1.3

1.37

1.36

1.35

1.39

1.4

1.44

1.22

1.3

1.21

0 7500 15000 22500
Average JCT (s)

25
6

GP
Us

12
8

GP
Us

64
 G

PU
s

1.0

1.0

1.0

1.95

2.12

2.05

1.05

1.06

1.09

0.99

1.02

1.05

0.97

0.97

1.01

0.97

1.0

1.17

1.16

1.19

1.22

0 2 4 6 8 10 12
Worst FTF (ρ)

25
6

GP
Us

12
8

GP
Us

64
 G

PU
s

1.0

1.0

1.0

6.92

7.99

4.94

3.21

2.53

1.77

2.85

2.79

1.78

3.64

3.39

2.13

4.3

4.37

4.64

1.52

1.31

1.08

0 20 40 60 80
Unfair Job Fraction (%)

25
6

GP
Us

12
8

GP
Us

64
 G

PU
s

1.0

1.0

1.0

21.56

26.69

18.75

6.28

7.77

3.88

4.81

6.92

3.25

7.53

9.92

5.12

6.66

9.38

6.13

9.5

11.28

3.61

Shockwave OSSP Themis Gavel AlloX MST Gandiva-Fair

Figure 9: [Simulation] Evaluating Shockwave’s scheduling
efficiency and fairness in differently sized large clusters.

0 15000 30000
Makespan (s)

(S
,D

)=
0.

0,
1.

0
(S

,D
)=

0.
3,

0.
7

(S
,D

)=
0.

6,
0.

4
(S

,D
)=

1.
0,

0.
0

1.0

1.0

1.0

1.0

1.02

1.0

1.0

0.99

1.28

1.22

1.16

1.15

1.3

1.2

1.18

1.17

1.33

1.21

1.19

1.19

0 7500 15000 22500
Average JCT (s)

(S
,D

)=
0.

0,
1.

0
(S

,D
)=

0.
3,

0.
7

(S
,D

)=
0.

6,
0.

4
(S

,D
)=

1.
0,

0.
0

1.0

1.0

1.0

1.0

1.59

1.8

1.88

1.84

0.96

0.98

1.03

0.98

0.95

0.96

1.0

1.0

0.89

0.9

0.94

0.94

0 2 4 6 8
Worst FTF (ρ)

(S
,D

)=
0.

0,
1.

0
(S

,D
)=

0.
3,

0.
7

(S
,D

)=
0.

6,
0.

4
(S

,D
)=

1.
0,

0.
0

1.0

1.0

1.0

1.0

4.26

6.31

5.91

5.92

1.29

1.55

1.63

1.68

1.38

1.56

1.58

1.59

1.69

2.0

1.82

1.95

0 20 40 60 80
Unfair Job Fraction (%)

(S
,D

)=
0.

0,
1.

0
(S

,D
)=

0.
3,

0.
7

(S
,D

)=
0.

6,
0.

4
(S

,D
)=

1.
0,

0.
0

1.0

1.0

1.0

1.0

5.67

8.75

11.67

36.0

2.0

3.0

3.67

8.0

1.5

2.25

3.0

9.0

1.67

2.5

3.0

10.0

Shockwave OSSP Themis Gavel AlloX

Figure 10: [Simulation] Effects of varying the mix of static
and dynamic Jobs. (S, D)=(x, y) indicates x fraction of static
jobs and y fraction of dynamic jobs.

completion time. At a large scale, Shockwave maintains sim-
ilar responsiveness when compared with fair schedulers. One
exception here is Gandiva-Fair which prolongs average JCT
by 16-22%. Gandiva-Fair uses stride scheduling [39] where,
by default, a job’s number of tickets is equal to the job size
(i.e., the number of workers). Thus, large jobs have a higher
proportional share when compared with small jobs, and can
delay small jobs, thereby degrading system responsiveness.

We study the solver overhead with large clusters in §8.9.

8.6 Benefits of Proactive Scheduling

We next compare Shockwave and baseline policies while vary-
ing the mix of static and dynamic jobs in simulation.
All static jobs. We first analyze the case where all jobs disable
dynamic adaptation. This isolates Shockwave’s win due to so-
cial welfare maximization. The results (Figure 10) show that
all fair scheduling policies, i.e., Shockwave, Themis, Gavel,
and AlloX exhibit a relatively low fraction (<18%) of unfairly
scheduled jobs (FTF 𝜌>1.0), but Shockwave outperforms the
baseline algorithms by limiting the unfair fraction to less
than 5%. Shockwave has on average an 18% improvement
in makespan over Themis, Gavel, and AlloX, with no loss in
average JCT. Overall, these results show how maximizing so-
cial welfare over time can achieve a better fairness-efficiency
trade-off when compared to existing approaches.
Fairness and efficiency while being proactive. Shockwave

0 30000
Makespan (s)

1.0
0.93

0 10000
Average JCT (s)

1.0
0.32

0.0 0.5 1.0 1.5 2.0
Worst FTF (ρ)

1.0
1.58

0 10 20 30 40
Unfair Job Fraction (%)

1.0
33.33

Shockwave Pollux

Figure 11: [Simulation] Evaluating Shockwave’s and Pollux’s
efficiency and fairness.

sees a larger win in makespan as the fraction of dynamic
jobs increases. The speedup over Gavel, Themis, and AlloX
increases to 1.3× when the fraction of dynamic jobs grows
from 0.4 to 1.0. Our results also show that existing schedulers
that are reactive to dynamic scaling have suboptimal fairness
outcomes. Both Themis and AlloX exhibit an increased unfair
job fraction as the number of dynamic jobs increases. When
all jobs are dynamic, Themis schedules 28% of jobs unfairly
and AlloX schedules 22% of jobs unfairly, while Shockwave
has a relatively (9%) low fraction of unfairly-scheduled jobs.

8.7 Shockwave versus Pollux

To compare the scheduling policies used by Pollux and Shock-
wave, we run both systems using the same workload trace
provided by Pollux. We also first run the Pollux simulator
to collect the batch size schedule observed at runtime and
use that as an input to the Shockwave simulator. Thus, both
systems see the same set of input jobs and the same batch size
schedule, and hence, job processing times should match even
with dynamic scaling.

JCT. From Figure 11, we see that Pollux has a 3× improve-
ment in average JCT over Shockwave. Pollux can scale the
number of workers of a job, which leads to reduced resource
contention and improved responsiveness. In fact, we found
that Pollux reduces the requested GPU hours per job by 2.4×
when compared to the original trace. As our Shockwave pro-
totype does not change the number of workers used by a job,
it preserves the contention level in the trace (2.4× larger than
Pollux) and thus exhibits inferior responsiveness. We note
that as seen in Figure 7, Shockwave has comparable JCTs
with other baselines and the Pollux paper [36] also reports a
3× speedup over the baselines.

Finish time fairness. Shockwave significantly outperforms
Pollux w.r.t finish time fairness. This is because Pollux fo-
cuses on instantaneous fairness at each allocation but does
not systematically address long-term fairness. At every round,
Pollux’s 𝑝 − 𝑛𝑜𝑟𝑚 formulation penalizes unfair allocations
that lead to low instantaneous throughput for jobs but does not
preserve long-term fairness over multiple allocation rounds.
On the other hand, Shockwave’s dynamic market formulation
provably guarantees long-term fairness.

Makespan. Shockwave benefits from optimizing for long-
term efficiency and has a similar makespan as Pollux despite
not changing the number of workers dynamically.

Finally, we note that as discussed in 2.3 and Appendix A.2,
Pollux’s approach of automatically tuning the batch size and
the number of workers can lead to accuracy loss (e.g., 2% for

Figure 12: Solver Overhead.

0 15000 30000
Makespan (s)

1.0
0.99

1.14
1.22
1.23
1.36

0 5000 10000
Average JCT (s)

1.0
1.01
1.01
1.03
1.03
1.06

0 1 2 3
Worst FTF (ρ)

1.0
1.01
1.11
1.04
1.07

1.51
0 10 20 30 40 50

Unfair Job Fraction (%)

1.0
1.5
1.67
2.0

3.0
3.5

Oracle 0% noise 20% noise 40% noise 60% noise 100% noise

Figure 13: Shockwave’s scheduling efficiency and fairness
under different levels of prediction errors.

ResNet18 and up to 4% for DeepSpeech [36]). We argue that
Pollux’s accuracy loss and poor fairness properties make it
less attractive for practical deployments.

8.8 Varying Cluster Contention and Workload

We also vary the workload contention factor and compare
all policies on a smaller 14-GPU physical cluster. We find
that Shockwave’s fairness and efficiency win over the baseline
schedulers increases (decreases) as cluster contention grows
(drops). We include more details in Appendix I. We also com-
pared Shockwave using arrival patterns from the Pollux [36]
trace. Appendix J includes these results.

8.9 Solver Overhead

Shockwave uses a timeout knob (default 15s) to limit the over-
head of solving our market formulation. Figure 12 uses simu-
lation to show that on a 256 GPU cluster, the solver quality
improves with diminishing returns as we increase the solver
timeout from 1 second to 15 seconds. We measure solver
quality using the bound gap (how far the solution found at
the timeout is from the optimal). The relative bound gap at 15
seconds is small (0.03%, and 0.11%) for 500 and 1000 active
jobs. The bound gap at 15 seconds for 2000 jobs increases to
0.44%. While this exceeds the criterion (0.1%) recommended
by Gurobi [34], our results show a limited impact on effi-
ciency and fairness. We note that our solver runs in a separate
thread and is proactively invoked in the middle of the current
round. Thus, the solver overhead is hidden when it is less than
half-round duration.

8.10 Resilience to Prediction Error

Figure 13 shows Shockwave’s resilience to prediction errors
when varying levels of random noises (i.e., ± p%) are injected
into its interpolated job run time (under dynamic adaptation).
The experiment settings in Figure 13 are similar to those
in Figure 10 with all jobs enabled for dynamic batch size
scaling (i.e., (S, D)=(0, 1.0)). First, we observe that as the
injected errors grow, Shockwave’s worst-case FTF 𝜌 and the
fraction of unfairly scheduled jobs inflate slowly. A similar
steady trend holds for Shockwave’s average JCT. We argue

such robustness originates from the design principle of Nash
social welfare, which emphasizes common ownership and fair
sharing of cluster resources; the penalty is huge if skewed
training progress is present in the cluster and it leads the
scheduler to be conservative to jobs’ interpolated schedule
slacks that are predicated by the biased FTF estimates. Second,
we find that Shockwave’s scheduling efficiency drops as the
errors grow. Shockwave opportunistically prioritizes long-
running jobs over the short ones to improve makespan. Having
100% injected noise affects Shockwave’s estimation of job
length and lowers its scheduling efficiency by over 30%. Note
that this deteriorated efficiency is still on par with the baseline
schedulers (e.g., Themis, Gavel, and AlloX in Figure 10).

9 Related Work
We detail the comparison between Shockwave and exist-
ing schedulers (e.g., Gandiva [41], Optimus [35], DRF [17],
REF [43], Themis [29], AlloX [28], Tiresia [21], Gandivar-
Fair [10]) in Section 2, and spotlight Shockwave’s contribu-
tion from two angles. First, Shockwave is built on Nash social
welfare, a theoretically-grounded approach to co-optimize
long-term, rather than instantaneous, fairness and efficiency.
Second, Shockwave proactively plans schedules for dynamic
adaptation, while most existing schedulers only react to dy-
namic adaptation. Section 2 presented more details on the
limitations of existing DL cluster schedulers.

AFS (Apathetic Future Share) [24] is another elastic shar-
ing mechanism proactive to system dynamics. However, dy-
namic changes in AFS refer to job arrival and time-variant
cluster contention, while jobs themselves do not change.
Shockwave has a different focus: jobs’ resource demands
(and efficiency) dynamically change due to batch size scaling.
Further, AFS primarily focuses on improving average JCT
while Shockwave maximizes social welfare over time.

10 Conclusion
We presented Shockwave, a market-theory-based efficient and
fair scheduling framework for DNN training workloads. We
showed how existing schedulers fail to preserve fairness and
degrade efficiency by being reactive to dynamic adaption. To
address these challenges, we proposed a proactive approach
that uses dynamic markets and Bayesian statistics for schedul-
ing. Our experiments show that Shockwave can improve effi-
ciency and fairness compared to state-of-the-art schedulers.

Acknowledgements: We would like to thank the anony-
mous reviewers and our shepherd Zhihao Jia for their con-
structive comments that helped improve our paper. We would
also like to thank Zhao Zhang for helping us run experiments
on TACC resources and Mosharaf Chowdhury for feedback
on an earlier draft of this paper. This work was supported in
part by a University of Wisconsin Fall Research Competition
grant, by NSF grants CNS-2106199 and CNS-2105890 and
by the CIFellows program, organized by the Computing Re-
search Association and Computing Community Consortium.

References
[1] AGARWAL, S., WANG, H., LEE, K., VENKATARAMAN,

S., AND PAPAILIOPOULOS, D. Adaptive gradient
communication via critical learning regime identifica-
tion. Proceedings of Machine Learning and Systems 3
(2021).

[2] ANGELOPOULOS, S., SARMA, A. D., MAGEN, A.,
AND VIGLAS, A. On-line algorithms for market equi-
libria. In International Computing and Combinatorics
Conference (2005), Springer, pp. 596–607.

[3] AZAR, Y., BUCHBINDER, N., AND JAIN, K. How
to allocate goods in an online market? In European
Symposium on Algorithms (2010), Springer, pp. 51–62.

[4] BARABÃASI, A., ALBERT, R., AND JEONG, H. Mean-
field theory for scale-free random networks. Physica A
272 (1999), 173–187.

[5] BRÂNZEI, S., CHEN, Y., DENG, X., FILOS-RATSIKAS,
A., FREDERIKSEN, S., AND ZHANG, J. The fisher mar-
ket game: Equilibrium and welfare. In Proceedings of
the AAAI Conference on Artificial Intelligence (2014),
vol. 28.

[6] BRANZEI, S., GKATZELIS, V., AND MEHTA, R. Nash
social welfare approximation for strategic agents.
In Proceedings of the 2017 ACM Conference on
Economics and Computation (New York, NY, USA,
2017), EC ’17, Association for Computing Machinery,
p. 611–628.

[7] BROWN, T., MANN, B., RYDER, N., SUBBIAH, M.,
KAPLAN, J. D., DHARIWAL, P., NEELAKANTAN, A.,
SHYAM, P., SASTRY, G., ASKELL, A., ET AL. Lan-
guage models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877–1901.

[8] CARAGIANNIS, I., KUROKAWA, D., MOULIN, H.,
PROCACCIA, A. D., SHAH, N., AND WANG, J. The
unreasonable fairness of maximum nash welfare. ACM
Transactions on Economics and Computation (TEAC)
7, 3 (2019), 1–32.

[9] CAZES, J., EVANS, R. T., DUBROW, A., HUANG, L.,
LIU, S., AND MCLAY, R. Preparing frontera for texas-
cale days. Computing in Science & Engineering (2021).

[10] CHAUDHARY, S., RAMJEE, R., SIVATHANU, M., KWA-
TRA, N., AND VISWANATHA, S. Balancing effi-
ciency and fairness in heterogeneous gpu clusters for
deep learning. In Fifteenth European Conference on
Computer Systems (EuroSys’20) (April 2020), ACM,
pp. 1–16.

[11] CHIN, T.-W., DING, R., AND MARCULESCU, D. Adas-
cale: Towards real-time video object detection using
adaptive scaling. In Systems and Machine Learning
Conference (2019).

[12] COFFMAN, JR, E. G., GAREY, M. R., AND JOHNSON,
D. S. An application of bin-packing to multiprocessor
scheduling. SIAM Journal on Computing 7, 1 (1978),
1–17.

[13] COLE, R., GKATZELIS, V., AND GOEL, G. Mecha-
nism design for fair division: Allocating divisible items
without payments. In Proceedings of the Fourteenth
ACM Conference on Electronic Commerce (New York,
NY, USA, 2013), EC ’13, Association for Computing
Machinery, p. 251–268.

[14] DELLA CROCE, F., AND SCATAMACCHIA, R. The
longest processing time rule for identical parallel ma-
chines revisited. Journal of Scheduling 23, 2 (2020),
163–176.

[15] FIKIORIS, G., AGARWAL, R., AND TARDOS, É. In-
centives in resource allocation under dynamic demands.
arXiv preprint arXiv:2109.12401 (2021).

[16] FRANKLE, J., DZIUGAITE, G. K., ROY, D. M., AND
CARBIN, M. Stabilizing the lottery ticket hypothesis.
arXiv preprint arXiv:1903.01611 (2019).

[17] GHODSI, A., ZAHARIA, M., HINDMAN, B., KON-
WINSKI, A., SHENKER, S., AND STOICA, I. Dom-
inant resource fairness: Fair allocation of multi-
ple resource types. In Proceedings of the 8th
USENIX Conference on Networked Systems Design
and Implementation (USA, 2011), NSDI’11, USENIX
Association, p. 323–336.

[18] GONZALEZ, T., AND SAHNI, S. Open shop scheduling
to minimize finish time. Journal of the ACM (JACM)
23, 4 (1976), 665–679.

[19] GORDON, G., AND TIBSHIRANI, R. Karush-kuhn-
tucker conditions. Optimization 10, 725/36 (2012), 725.

[20] GRANDL, R., CHOWDHURY, M., AKELLA, A., AND
ANANTHANARAYANAN, G. Altruistic scheduling in
multi-resource clusters. In 12th USENIX Symposium
on Operating Systems Design and Implementation
(OSDI 16) (Savannah, GA, Nov. 2016), USENIX Asso-
ciation, pp. 65–80.

[21] GU, J., CHOWDHURY, M., SHIN, K. G., ZHU, Y.,
JEON, M., QIAN, J., LIU, H., AND GUO, C. Tiresias:
A {GPU} cluster manager for distributed deep learn-
ing. In 16th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 19)
(2019), pp. 485–500.

[22] HE, X., LIAO, L., ZHANG, H., NIE, L., HU, X., AND
CHUA, T.-S. Neural collaborative filtering. In
Proceedings of the 26th International Conference on
World Wide Web (Republic and Canton of Geneva,
CHE, 2017), WWW ’17, International World Wide Web
Conferences Steering Committee, p. 173–182.

[23] HOFFER, E., HUBARA, I., AND SOUDRY, D. Train
longer, generalize better: Closing the generalization
gap in large batch training of neural networks. In
Proceedings of the 31st International Conference on
Neural Information Processing Systems (Red Hook,
NY, USA, 2017), NIPS’17, Curran Associates Inc.,
p. 1729–1739.

[24] HWANG, C., KIM, T., KIM, S., SHIN, J., AND PARK, K.
Elastic resource sharing for distributed deep learning.
In 18th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 21) (2021), pp. 721–
739.

[25] JEON, M., VENKATARAMAN, S., PHANISHAYEE, A.,
QIAN, U., XIAO, W., AND YANG, F. Analysis of
large-scale multi-tenant gpu clusters for dnn train-
ing workloads. In Proceedings of the 2019 USENIX
Conference on Usenix Annual Technical Conference
(2019), USENIX ATC ’19, p. 947–960.

[26] KESKAR, N. S., MUDIGERE, D., NOCEDAL, J.,
SMELYANSKIY, M., AND TANG, P. T. P. On large-
batch training for deep learning: Generalization gap
and sharp minima. The International Conference on
Learning Representations (ICLR) (2017).

[27] KUSHNER, H. J., AND WHITING, P. A. Convergence of
proportional-fair sharing algorithms under general con-
ditions. IEEE transactions on wireless communications
3, 4 (2004), 1250–1259.

[28] LE, T. N., SUN, X., CHOWDHURY, M., AND LIU, Z.
Allox: Allocation across computing resources for hybrid
cpu/gpu clusters. SIGMETRICS Perform. Eval. Rev.
46, 2 (Jan. 2019), 87–88.

[29] MAHAJAN, K., BALASUBRAMANIAN, A., SINGHVI,
A., VENKATARAMAN, S., AKELLA, A., PHAN-
ISHAYEE, A., AND CHAWLA, S. Themis: Fair and
efficient GPU cluster scheduling. In 17th USENIX
Symposium on Networked Systems Design and
Implementation (NSDI 20) (Santa Clara, CA, Feb.
2020), USENIX Association, pp. 289–304.

[30] MAI, L., LI, G., WAGENLÄNDER, M., FERTAKIS, K.,
BRABETE, A.-O., AND PIETZUCH, P. Kungfu: Mak-
ing training in distributed machine learning adaptive.
In 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 20) (Nov. 2020),
USENIX Association, pp. 937–954.

[31] MCCANDLISH, S., KAPLAN, J., AMODEI, D., AND
TEAM, O. D. An empirical model of large-batch train-
ing. CoRR abs/1812.06162 (2018).

[32] NACE, D., AND PIÓRO, M. Max-min fairness and its
applications to routing and load-balancing in commu-
nication networks: A tutorial. IEEE Communications
Surveys & Tutorials 10, 4 (2008), 5–17.

[33] NARAYANAN, D., SANTHANAM, K., KAZHAMI-
AKA, F., PHANISHAYEE, A., AND ZAHARIA, M.
Heterogeneity-aware cluster scheduling policies for
deep learning workloads. In 14th USENIX Symposium
on Operating Systems Design and Implementation
(OSDI 20) (Nov. 2020), USENIX Association,
pp. 481–498.

[34] PEDROSO, J. P. Optimization with gurobi and
python. INESC Porto and Universidade do Porto„
Porto, Portugal 1 (2011).

[35] PENG, Y., BAO, Y., CHEN, Y., WU, C., AND GUO, C.
Optimus: An efficient dynamic resource scheduler for
deep learning clusters. In Proceedings of the Thirteenth
EuroSys Conference (New York, NY, USA, 2018), Eu-
roSys ’18, Association for Computing Machinery.

[36] QIAO, A., CHOE, S. K., SUBRAMANYA, S. J.,
NEISWANGER, W., HO, Q., ZHANG, H., GANGER,
G. R., AND XING, E. P. Pollux: Co-adaptive cluster
scheduling for goodput-optimized deep learning. In 15th
USENIX Symposium on Operating Systems Design
and Implementation (OSDI 21) (July 2021), USENIX
Association, pp. 1–18.

[37] QIN, H., RAJBHANDARI, S., RUWASE, O., YAN, F.,
YANG, L., AND HE, Y. Simigrad: Fine-grained adap-
tive batching for large scale training using gradient sim-
ilarity measurement. Advances in Neural Information
Processing Systems 34 (2021).

[38] SMITH, S. L., KINDERMANS, P.-J., AND LE, Q. V.
Don’t decay the learning rate, increase the batch size. In
International Conference on Learning Representations
(2018).

[39] WALDSPURGER, C. A. Lottery and stride scheduling:
Flexible proportional-share resource management.
PhD thesis, Massachusetts Institute of Technology,
1995.

[40] WIERMAN, A., AND HARCHOL-BALTER, M. Clas-
sifying scheduling policies with respect to un-
fairness in an m/gi/1. In Proceedings of the
2003 ACM SIGMETRICS international conference
on Measurement and modeling of computer systems
(2003), pp. 238–249.

[41] XIAO, W., BHARDWAJ, R., RAMJEE, R., SIVATHANU,
M., KWATRA, N., HAN, Z., PATEL, P., PENG, X.,
ZHAO, H., ZHANG, Q., YANG, F., AND ZHOU, L. Gan-
diva: Introspective cluster scheduling for deep learn-
ing. In Proceedings of the 13th USENIX Conference on
Operating Systems Design and Implementation (USA,
2018), OSDI’18, USENIX Association, p. 595–610.

[42] YAO, Z., GHOLAMI, A., LEI, Q., KEUTZER, K., AND
MAHONEY, M. W. Hessian-based analysis of large
batch training and robustness to adversaries. Advances
in Neural Information Processing Systems 31 (2018).

[43] ZAHEDI, S. M., AND LEE, B. C. Ref: Resource elastic-
ity fairness with sharing incentives for multiprocessors.
In Proceedings of the 19th International Conference on
Architectural Support for Programming Languages and
Operating Systems (New York, NY, USA, Feb. 2014),
p. 145–160.

[44] ZAHEDI, S. M., LLULL, Q., AND LEE, B. C. Am-
dahl’s law in the datacenter era: A market for fair proces-
sor allocation. In 2018 IEEE International Symposium
on High Performance Computer Architecture (HPCA)
(2018), IEEE, pp. 1–14.

A Dynamic Batch Scaling Degrades Accuracy
A.1 When does batch size scaling degrade accuracy

Improper batch size scaling can adversely affect convergence
and degrade the accuracy of the trained model. This is known
as generalization gap [23, 26] and its underlying reasons
are still not well understood. We next list different analyses
on when batch size scaling can affect final model quality:
(a) scaling up the batch size by 𝑘× reduces the number of
iterations per epoch by 𝑘×, and given a pre-specified number
of epochs, it reduces the overall iterations of back-propagation
by 𝑘×. Accuracy loss stems from a reduced number of model
updates [23]. (b) Scaling up the batch size reduces the noise
in the gradient estimate, but noise serves to regularize training
and can navigate the optimizer away from local minima. Batch
size scaling thus hurts generalization by reducing healthy
gradient noises. (c) Scaling up the batch size causes training to
converge to sharp minima, and the model outputs are sensitive
to small perturbations in the input. This results in a poorer
generalization [26].

Researchers have developed heuristics [1, 38] and adaptive
batch size scaling techniques (e.g., Gradient Norm [1], GNS
(Gradient Noise Scale) [31] and Heissan Eigenspectrum [42])
to mitigate generalization gap, but no single technique han-
dles all models, datasets and optimizers. Thus, today, there
are many different batch size scaling techniques in the ML
community. Pollux adopts GNS while recent work points out
some of the limitations in applying GNS [37] for batch size
scaling.

A.2 Example: Pollux’s automatic batch size scaling leads
to accuracy loss in NeuMF-m1-lm training

Figure 14: Comparing model accuracy (NCF-ml-1m) for
vanilla training (no batch size scaling), expert-set batch size
scaling, and Pollux’s autoscaling. The legends in the bottom
figure indicate batch size.

Figure 14 shows that statistical efficiency minimally de-
grades when scaling up from a batch size of 256 to 32768, and
that this is true even for early training epochs. Therefore, Pol-
lux immediately scales up the batch size from 256 to 32768
at epoch 1. However, we found that such early, aggressive

scaling leads to inferior validation accuracy, i.e. lower HR
(Hit Rate) and NDCG (Normalized Discounted Cumulative
Gain), when compared with vanilla training where dynamic
batch size scaling is disabled. An expert-set dynamic scaling
schedule that scales up the batch size to 32768 at epoch 3 and
this helps match the validation accuracy of vanilla training.

B Static Filters Degrade Efficiency, Fairness

GPU ID \ round ID 0 1 2 3 4 5 6
0 A A A B A A A
1 B B A B A A A
2 C B A C A B
3 C C C C B B
f 1/3 1/3 1/3 1/3 1/3 1/3 1/3

(a) Themis with 𝑓 = 1/3.

GPU ID \ round ID 0 1 2 3 4 5 6
0 A A A A A A A
1 A B B A B A A
2 B B C B B A
3 C C C C C B
f 1.0 1.0 1.0 1.0 1.0 1.0 1.0

(b) Themis with 𝑓 = 1.0.

GPU ID \ round ID 0 1 2 3 4 5 6
0 B B B A A A A
1 B B B A A A A
2 C C C A A A A
3 C C C B B
f 2/3 2/3 2/3 1/3 1/3 1/3 1/3

(c) Shockwave with a dynamic filter 𝑓 .

Figure 15: Visualizations of schedules produced by using
different filters in Table 1. The cluster and job setting are the
same as those in Figure 1.

C Volatile Fisher Market (VFM)
C.1 Market formulation

VFM is a dynamic market and continues through rounds in-
dexed by 𝑡 = 1, . . . ,𝑇 . Each round is a fixed time interval, e.g.,
120s. Within each round, a central seller (i.e., the scheduler)
sells multiple types of resources (e.g., GPUs and/or CPUs) to
buyers (i.e., the contending jobs). 5 All resources are volatile.
Resources bought by a job in round 𝑡 cannot be carried over to
future rounds. There is a dynamic price for each resource type
in each round, and each job is endowed with an initial budget
to spend across rounds. The amount of endowment reflects
the priority of jobs. VFM assumes divisible resources [8].
(a) Buyers, Seller, and Resources. There exist 𝑁 buyer jobs
competing for 𝐽 different types of resources. (b) Allocation
(Purchase). Let 𝑥𝑖 𝑗𝑡 denote the allocation (purchase) of job 𝑖
for resource 𝑗 in round 𝑡. The resource provision is normalized
to one unit. For brevity, let 𝑥𝑥𝑥𝑖𝑡 denote the allocation vector
[. . . , 𝑥𝑖 𝑗𝑡 . . .] for job 𝑖 in round 𝑡, and let 𝑋𝑋𝑋 𝑖𝑖𝑖 denote the 𝐽 ×𝑇
allocation matrix for job 𝑖 over rounds, with rows and columns
corresponding to the resource types and round indices. (c)

5VFM supports multiple-resource allocation, but evaluation in this paper
is carried out only for GPU allocation.

Budget, Price, and Payment. Job 𝑖 is endowed with a budget
𝐵𝑖 to spend over rounds. The price for resource 𝑗 in round 𝑡 is
𝑝 𝑗𝑡 ; The accrued payment over rounds for job 𝑖 is

∑
𝑗 ,𝑡 𝑝 𝑗𝑡𝑥𝑖 𝑗𝑡 .

Let 𝑃𝑃𝑃 denote a 𝐽 ×𝑇 price matrix, with 𝑃𝑃𝑃[𝑗 , 𝑡] = 𝑝 𝑗𝑡 . (d)
Performance (Utility) Function for Dynamic Adaptation.
We use the performance (utility) function 𝑈𝑖𝑡 (𝑥𝑥𝑥𝑖𝑡) to map
received resources, that is, 𝑥𝑥𝑥𝑖𝑡 , to the performance gain of job
𝑖 (e.g., epoch progress). Note that 𝑈𝑖𝑡 can be different over
rounds to model time-variant performance under dynamic
adaptation. We limit performance functions in the CES family
[5], which are extensively used in system research.6

C.2 Solving Equilibrium of VFM

The market equilibrium captures the optimal allocation for
the 𝑁 jobs in each round, i.e. 𝑋𝑋𝑋∗

111, . . . , 𝑋𝑋𝑋
∗
𝑁𝑁𝑁

, and the op-
timal prices 𝑃𝑃𝑃∗ for different types of resources in each
round. An equilibrium is established if the following two
properties are satisfied. (a) Maximized Performance Un-
der Budget Constraint (Optimal Spending): Each job’s
performance is maximized under budget constraints. 𝑋𝑋𝑋∗

𝑖𝑖𝑖 =

argmax𝑋𝑋𝑋𝑖𝑖𝑖
𝑈𝑖 (𝑋𝑋𝑋 𝑖𝑖𝑖), 𝑠.𝑡.,

∑
𝑡

∑
𝑗 𝑝 𝑗𝑡𝑥𝑖 𝑗𝑡 ≤ 𝐵𝑖 , ∀𝑖. (b) Work-

conserving (Market Clearing): There is no leftover resource
if the price for the resource type is non-zero. That is, if 𝑝 𝑗𝑡 > 0,
then

∑
𝑖 𝑥𝑖 𝑗𝑡 = 1, ∀ 𝑗 , 𝑡.

Theorem C.1. For Volatile Fisher Market with linear or Leon-
tief (e.g., DRF [17]) utility, the solution of (3) captures the op-
timal allocation in the market equilibrium and the Lagrangian
dual to capacity constraints (i.e.,

∑
𝑖 𝑥𝑖 𝑗𝑡 ≤ 1, ∀ 𝑗 , 𝑡) captures

the equilibrium price.

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒
𝑋𝑋𝑋111 ,...,𝑋𝑋𝑋𝑁𝑁𝑁

∑︁
𝑖

𝐵𝑖 𝑙𝑜𝑔𝑈𝑖 (𝑋𝑖) 𝑠.𝑡., 𝑈𝑖 (𝑋𝑖) =
∑︁
𝑡

𝑢𝑖𝑡 (𝑥𝑥𝑥𝑖𝑡),∀𝑖,{
𝑢𝑖𝑡 (𝑥𝑥𝑥𝑖𝑡) =

∑
𝑗 𝑢𝑖 𝑗𝑡𝑥𝑖 𝑗𝑡 ,∀𝑖, 𝑡 (Linear)

𝑢𝑖𝑡 (𝑥𝑥𝑥𝑖𝑡) = 𝑚𝑖𝑛 𝑗
𝑥𝑖 𝑗𝑡

𝑎𝑖 𝑗𝑡
,∀𝑖, 𝑡 (Leontief)

,∑︁
𝑖

𝑥𝑖 𝑗𝑡 ≤ 1, ∀ 𝑗 , 𝑡, 𝑥𝑖 𝑗𝑡 ≥ 0, ∀𝑖, 𝑗 , 𝑡

(3)
For VFM with linear and Leontief performance function

at each instant, Theorem C.1 states that the solution of an
Eisenberg-Gale [5] styled program defined in (3) captures
the market equilibrium (cf., proof in Appendix D). Note that
even if the instantaneous utility is Leontief, the summed
utility over time is not Leontief in general.

D Proof of Theorem C.1
D.1 Linear Utility

Volatile Fisher Market (VFM) with linear utilities reduces to
a special case of static Fisher market, if we consider volatile
resource 𝑗 at each different time 𝑡 a unique type of resource.
Upon substituting the tuple of resource and time index (𝑗 , 𝑡)

6Themis [29] and Gavel [33] uses linear utility, Dominant Resource Fair-
ness (DRF) [17] uses Leontief utility, and REF (Resource Elasticity Fair-
ness) [43] uses Cobb-Douglas utility, which are all CES utility functions.

with a new resource index 𝑘 (i.e., (𝑗 , 𝑡) → 𝑘), the Eisenberg-
Gale program defined in (3) is equivalent to the program (4).

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒
𝑥𝑥𝑥

∑︁
𝑖

𝐵𝑖 𝑙𝑜𝑔𝑢𝑖 (𝑥𝑥𝑥𝑖𝑖𝑖) 𝑠.𝑡.

𝑢𝑖 (𝑥𝑥𝑥𝑖𝑖𝑖) =
∑︁
𝑘

𝑢𝑖𝑘𝑥𝑖𝑘∑︁
𝑖

𝑥𝑖𝑘 ≤ 1, ∀𝑘

𝑥𝑖𝑘 ≥ 0, ∀𝑖, 𝑘

(4)

Existing work [5] has proven that program (4) captures the
market equilibrium of a static Fisher market, and thus, it also
captures the market equilibrium of the equivalent VFM.

D.2 Leontief Utility

However, VFM with Leontief utilities has no direct link to
the classic static Fisher market. We prove the Eisenberg-Gale
(EG) program defined in (3) captures market equilibrium by
characterizing the Karush–Kuhn–Tucker (KKT) [19] condi-
tions. We rewrite (3) in a standard convex optimization form
and number the constraints as follows:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝑋𝑋𝑋111 ,...,𝑋𝑋𝑋𝑁𝑁𝑁

−
∑︁
𝑖

𝐵𝑖 𝑙𝑜𝑔𝑈𝑖 (𝑋𝑖) 𝑠.𝑡. (5a)

𝑈𝑖 (𝑋𝑖) ≤
∑︁
𝑡

𝑢𝑖𝑡 (𝑥𝑥𝑥𝑖𝑡), ∀𝑖 (5b)

𝑢𝑖𝑡 (𝑥𝑥𝑥𝑖𝑡) ≤ 𝑥𝑖 𝑗𝑡/𝑎𝑖 𝑗𝑡 , ∀𝑖, 𝑗 , 𝑡 (5c)∑︁
𝑖

𝑥𝑖 𝑗𝑡 ≤ 1, ∀ 𝑗 , 𝑡 (5d)

𝑥𝑖 𝑗𝑡 ≥ 0, ∀𝑖, 𝑗 , 𝑡 (5e)
Let 𝛽𝑖 , _𝑖𝑡 , 𝑝 𝑗𝑡 , [𝑖 𝑗𝑡 denote the Lagrangian multipliers cor-

responding to constraints (5b), (5c), (5d),(5e), respectively.
The Lagrangian dual function is

𝐿 (𝑥, 𝛽𝛽𝛽,___, 𝑝𝑝𝑝,[[[) = −
∑︁
𝑖

𝐵𝑖 𝑙𝑜𝑔𝑈𝑖 (𝑋𝑖)+∑︁
𝑖, 𝑗 ,𝑡

(𝑢𝑖𝑡 (𝑥𝑥𝑥𝑖𝑡) −
𝑥𝑖 𝑗𝑡

𝑎𝑖 𝑗𝑡
)_𝑖 𝑗𝑡

+
∑︁
𝑖

(𝑈𝑖 (𝑋𝑋𝑋 𝑖𝑖𝑖) −
∑︁
𝑡

𝑢𝑖𝑡 (𝑥𝑥𝑥𝑖𝑡))𝛽𝑖+∑︁
𝑗 ,𝑡

(
∑︁
𝑖

𝑥𝑖 𝑗𝑡 −1)𝑝 𝑗𝑡 −
∑︁
𝑖, 𝑗 ,𝑡

𝑥𝑖 𝑗𝑡[𝑖 𝑗𝑡

First, KKT requires a first-order condition of the La-
grangian function; the gradients to all primal variables and
Lagrangian multipliers should be zero. This implies that

𝜕𝐿

𝜕𝑈𝑖 (𝑋𝑋𝑋 𝑖𝑖𝑖)
= 0 =⇒ − 𝐵𝑖

𝑈𝑖 (𝑋𝑋𝑋 𝑖𝑖𝑖)
+ 𝛽𝑖 = 0 =⇒ 𝛽𝑖 =

𝐵𝑖

𝑈𝑖 (𝑋𝑋𝑋 𝑖𝑖𝑖)
𝜕𝐿

𝜕𝑢𝑖𝑡 (𝑥𝑥𝑥𝑖𝑡)
= 0 =⇒

∑︁
𝑗

_𝑖 𝑗𝑡 − 𝛽𝑖 = 0 =⇒ 𝛽𝑖 =
∑︁
𝑗

_𝑖 𝑗𝑡

𝜕𝐿

𝜕𝑥𝑖 𝑗𝑡
= 0 =⇒ −

_𝑖 𝑗𝑡

𝑎𝑖 𝑗𝑡
+ 𝑝 𝑗𝑡 −[𝑖 𝑗𝑡 = 0

The combination of the first two equations implies that∑︁
𝑗

_𝑖 𝑗𝑡 =
𝐵𝑖

𝑈𝑖 (𝑋𝑋𝑋 𝑖𝑖𝑖)
, ∀𝑖, 𝑡

Lagrangian multipliers are nonnegative, and thus, [𝑖 ≥ 0
implies

𝑝 𝑗𝑡𝑎𝑖 𝑗𝑡 ≥ _𝑖 𝑗𝑡
Combining the last equation and the last inequality implies

that ∑︁
𝑗

𝑝 𝑗𝑡𝑎𝑖 𝑗𝑡 ≥
∑︁
𝑗

_𝑖 𝑗𝑡 =
𝐵𝑖

𝑈𝑖 (𝑋𝑋𝑋 𝑖𝑖𝑖)
, ∀𝑖, 𝑡

=⇒ 𝑈𝑖 (𝑋𝑋𝑋 𝑖𝑖𝑖) ≥
𝐵𝑖∑

𝑗 𝑝 𝑗𝑡𝑎𝑖 𝑗𝑡
, ∀𝑖, 𝑡

=⇒ 𝑈𝑖 (𝑋𝑋𝑋 𝑖𝑖𝑖) =
𝐵𝑖

𝑚𝑖𝑛𝑡 ′ {
∑
𝑗 𝑝 𝑗𝑡 ′𝑎𝑖 𝑗𝑡 ′ }

, ∀𝑖

This states that for any job 𝑖, its overall utility is achieved
by purchasing resources only in certain time periods that
guarantee MBB (Maximal Bang-Per-Buck) [5] for the job,
where

∑
𝑗 𝑝 𝑗𝑡𝑎𝑖 𝑗𝑡 represents the unit cost to obtain one unit

of utility. MBB guarantees that any job’s utility accrued over
time is maximized given a fixed budget 𝐵𝑖 .

We have proved optimal spending (i.e., maximized utility
under budget limit) for each job at the solution of program
(D). The last step is to prove market clearing. KKT conditions
also require complementary slackness:

𝑝 𝑗𝑡 (
∑︁
𝑖

𝑥𝑖 𝑗𝑡 −1) = 0, ∀ 𝑗 , 𝑡 =⇒

if 𝑝 𝑗𝑡 > 0 then
∑︁
𝑖

𝑥𝑖 𝑗𝑡 = 1, ∀ 𝑗 , 𝑡

This implies that if a resource 𝑗 is traded in time period
𝑡, then it must be exhaustively allocated to the jobs and the
amount of leftover resources is zero. Therefore, we prove MC
(Market Clearing). An extra fact implied by the solution of
the EG program (D) is that since the objective is to maximize
social welfare (budget-weighted geometric mean of jobs’ util-
ities), and thus, there should be no money left by a job in the
solution of (D). This proves BC (Budget Clearing). That is,
the budget for all jobs will be completely burnt over periods.

In summary, proving Maximal Bang-Per-Buck, Market
Clearing and Budget Clearing establishes the VFM market
equilibrium produced by solving program (5).

E Proof of Theorem 4.0.1

Proof of (a):
∏
𝑖

𝜌𝑖=
∏
𝑖

𝑈𝑖 (𝐶𝑁) ·
∏
𝑖

𝑈𝑖 (𝑋𝑋𝑋𝑖𝑖𝑖

𝑁
)
−𝐵𝑖
𝐵 =

∏
𝑖𝑈𝑖 (𝐶𝑁)

NSWOT
−1. Since

∏
𝑖𝑈𝑖 (𝐶/𝑁) is a constant independent of

𝑋𝑖 , VFM equilibrium that maximizes NSWOT equivalently
minimizes the product of FTF (Finish Time Fairness) metrics
over all jobs, i.e.,

∏
𝑖 𝜌𝑖 .

Proof of (b). At VFM equilibrium, any job 𝑖 has maximized
utility under budget. When all job have an equal budget, job 𝑖
will not prefer any other jobs 𝑗’s allocation, since job 𝑖 can
afford to buy any other job’s allocation under same budget.
Formally, we get that𝑈𝑖 (𝑋𝑋𝑋 𝑖) ≥ 𝑈𝑖 (𝑋𝑋𝑋 𝑗), ∀𝑖, 𝑗 . Since the mar-

ket clears in VFM equilibrium, it is not possible that all jobs
have a strictly smaller resource share than 𝐶/𝑁 , and there
must exist a job 𝑘 such that its resource share is greater than
or equal to 𝐶/𝑁 , then we know𝑈𝑖 (𝑋𝑋𝑋 𝑗) ≥ 𝑈𝑖 (𝑋𝑋𝑋 𝑘) ≥ 𝑈𝑖 (𝐶𝑁),
and thus, Finish Time Fairness if proved.

F Stochastic Dynamic Program for Efficiency
and Fairness in Expectation

(a) State. Each job has a private, finite set of states.
For dynamic scaling of the batch size, a state is a tuple
(BatchSize,Epoch), which denotes the current batch size and
the current epoch (index). Let 𝑠𝑖𝑡 (𝑠𝑠𝑠𝑡) denote the state of
job 𝑖 in round 𝑡. (b) Policy. Let 𝑥𝑥𝑥𝑖𝑡 (𝑥𝑥𝑥𝑡) denote the resource
allocated to job 𝑖 in round 𝑡. An allocation policy 𝜋(𝑠𝑠𝑠𝑡 , 𝑥𝑥𝑥𝑡𝑡𝑡)
indicates the probability of making allocation 𝑥𝑥𝑥𝑡𝑡𝑡 to the jobs,
conditional on job states 𝑠𝑠𝑠𝑡 , in round 𝑡. We further limit 𝜋 to
be a deterministic policy in this study. (c) Transition Prob-
ability. We model the state transition with a probability ma-
trix 𝑃𝑖 (𝑠𝑖𝑡+1 |𝑠𝑖𝑡 , 𝑥𝑥𝑥𝑖𝑡), which indicates the probability of job 𝑖
transitioning to state 𝑠𝑖𝑡+1 from state 𝑠𝑖𝑡+1, under resource al-
location 𝑥𝑖𝑡 . Let 𝑃(𝑠𝑠𝑠𝑡+1 |𝑠𝑠𝑠𝑡 , 𝑥𝑥𝑥𝑡) denote the transition probabil-
ities for all the jobs. (d) Performance (Utility) Function for
Dynamic Adaptation. Let𝑈𝑖 (𝑠𝑖𝑡 , ·, 𝑠𝑖𝑡+1) denote the perfor-
mance gain (e.g., epoch progress) of job 𝑖 when transitioning
from state 𝑠𝑡 to the next state 𝑠𝑡+1. Let 𝑈𝑖 (𝑠𝑠𝑠𝑡𝑡𝑡 , ·, 𝑠𝑠𝑠𝑡+1) denote
the performance function for all jobs.

Maximized Nash social welfare in expectation. We con-
struct a linear program in (6) to search for an optimal pol-
icy that maximizes Nash social welfare in expectation, i.e.,
NSW𝑂𝑇𝐸 . Maximized NSW𝑂𝑇𝐸 co-optimizes efficiency and
fairness in expectation sense. The first constraint in (6) de-
fines expected cumulative utility under the policy; The second
constrains the summed allocation at each period 𝑡 not exceed-
ing resource provision, and allocation should be non-negative.
The third constrains valid probability transition between states.
Other constraints are omitted.

𝜋∗ = 𝑎𝑟𝑔𝑚𝑎𝑥
𝜋

∑︁
𝑖

𝐵𝑖 𝑙𝑜𝑔 E𝜋 [𝑈𝑖], 𝑠.𝑡. (6)

E𝜋 [𝑈𝑖] =
𝑇−1∑︁
𝑡=1

∑︁
𝑠𝑠𝑠𝑡𝑡𝑡 ∈𝑆

∑︁
𝑥𝑥𝑥𝑡𝑡𝑡 ∈𝑋

∑︁
𝑠𝑠𝑠𝑡+1∈𝑆

[𝜋(𝑠𝑠𝑠𝑡𝑡𝑡 , 𝑥𝑥𝑥𝑡𝑡𝑡) ·𝑃(𝑠𝑠𝑠𝑡+1 |𝑠𝑠𝑠𝑡𝑡𝑡 , 𝑥𝑥𝑥𝑡𝑡𝑡)

·𝑈𝑖 (𝑠𝑠𝑠𝑡𝑡𝑡 , 𝑥𝑥𝑥𝑡𝑡𝑡 , 𝑠𝑠𝑠𝑡+1)], 𝜋(𝑠𝑠𝑠𝑡 , 𝑥𝑥𝑥𝑡) ≥ 0 and 𝜋(𝑠𝑠𝑠𝑡𝑡𝑡 , 𝑥𝑥𝑥𝑡𝑡𝑡) = 0
if | |𝑥𝑡 | |𝓁1 > 1 or 𝑥𝑡 < 0, ∀𝑠𝑠𝑠𝑡𝑡𝑡 ∈ 𝑆,∀𝑥𝑥𝑥𝑡𝑡𝑡 ∈ 𝑋, 𝑡 = 1, . . . ,𝑇∑︁

𝑥𝑥𝑥111

𝜋(𝑠𝑠𝑠111, 𝑥𝑥𝑥111) = 𝑏(𝑠𝑠𝑠111),∑︁
𝑥𝑥𝑥𝑡

𝜋(𝑠𝑠𝑠𝑡 , 𝑥𝑥𝑥𝑡) =
∑︁
𝑠𝑠𝑠𝑡−1

∑︁
𝑥𝑥𝑥𝑡−1

𝑃(𝑠𝑠𝑠𝑡 |𝑠𝑠𝑠𝑡−1, 𝑥𝑥𝑥𝑡−1)𝜋(𝑠𝑠𝑠𝑡−1, 𝑥𝑥𝑥𝑡−1),

𝑡 = 2, . . . ,𝑇

G Shockwave Design Details
Shockwave plans the schedule for a configurable number (𝑇)
of future rounds (default 𝑇 : 30 two-minute rounds) and re-

computes the schedule when the planned rounds elapse or
when jobs arrive or complete. Shockwave’s solved schedule is
a 𝑁 ×𝑇 binary matrix X[𝑗 , 𝑡]. 𝑁 is the total number of active
jobs available for scheduling. X[𝑗 , 𝑡] = 1 (X[𝑗 , 𝑡] = 0) repre-
sents scheduling (descheduling) job 𝐽 𝑗 in round 𝑡 (𝑡 = 1, . . . ,𝑇).
We next describe the logic in one shot of schedule solving.
Decomposing job schedules to regime schedules. If dy-
namic adaptation is predicted to occur within the future
planning window, the scheduler must incorporate dynamic
changes of jobs’ throughputs when solving the schedule.

Example - A job’s dynamic adaptation process has two
regimes. The job is currently in the first regime at epoch 5 and
the scheduler predicts that the second regime will start from
epoch 15. Suppose the planning window is 30-minute long
and the epoch duration for the first and second regime are 2
minutes and 1 minute, respectively. Then dynamic adaptation
can start as early as the 20th minute in the window, and a 2×
change in throughput should be concerned.

To support dynamic changes in job throughputs, we de-
compose a job’s schedule into its regimes’ schedules, such
that each regime is a micro-job with static throughput. In
our above example, epochs 5 to 14 will be one micro-job
while epoch 15 onward will be the second micro-job. We
build a 𝐾 ×𝑇-dimensional binary matrix Y 𝑗 [𝑘, 𝑡] to represent
the schedule of job 𝐽 𝑗’s 𝐾 regimes that can fit in the plan-
ning window. Y 𝑗 [𝑘, 𝑡] = 1 (Y 𝑗 [𝑘, 𝑡] = 0) indicates scheduling
(descheduling) the 𝑘-th regime of job 𝐽 𝑗 to the 𝑡-th round in
the window. Note that partial order constraints are needed to
preserve the sequential order between regimes.

G.1 Implementing Nash Social Welfare over Time

We compute the utility of job 𝐽 𝑗 under schedule Y 𝑗 [·, ·] as:

UTIL 𝑗 (Y 𝑗 [·, ·]) =
𝐹𝑗

𝐸 𝑗
+

𝑇∑︁
𝑡=1

𝐾∑︁
𝑘=1

Y 𝑗 [𝑘, 𝑡] ·𝐷 ·TH(𝑗 , 𝑘)
𝑄 𝑗 ·𝐸 𝑗

(7)

Job 𝐽 𝑗 ’s utility equals its current epoch progress percentage
(num. finished epochs 𝐹𝑗 divided by total num. epochs 𝐸 𝑗),
plus the resulting epoch progress percentage under allocation;
the latter sums up the progress percentages for the job across
regimes and rounds in the window.7. At the cluster level,
the (logarithm of) Nash social welfare over time (NSWOT)
integrates the utilities of individual jobs. Y[·, ·, ·] is a three-
dimensional array that includes the schedule variable for all
active jobs’ regimes, at all rounds, in the planning window.
As stated in §4.2, maximizing NSWOT yields an equilibrium
and establishes efficiency and fairness guarantees.

WELFARE(Y[·, ·, ·]) =
𝑁∑︁
𝑗=1
𝑙𝑜𝑔UTIL 𝑗 (Y 𝑗 [·, ·]) (8)

7The epoch progress at a single round 𝑡 for the 𝑘-th regime equals the
duration of each round (𝐷 𝑗) times if the regime is scheduled to the round
(Y[𝑘, 𝑡]), then divided by epoch duration Q(𝑗)/THPT(𝑗 , 𝑘)

G.2 Implementing Estimators for Long-Term Effects

As previously stated, maximizing social welfare for an (in-
finitely) long time horizon is difficult due to prohibitive com-
putational overhead and limited predictability. Another rea-
son is that jobs arrive and complete online, and frequent re-
planning is unavoidable. In practice, Shockwave only plans the
schedule for a finite length window (e.g, 30-60 minutes), and
we design estimators that can capture the long-term fairness
and long-term efficiency that arise from short-term planning.
An estimator for long-term fairness.

�̂�(𝑗) =
𝐿 𝑗 +𝑊 𝑗 + R̂(j) ·Navg (𝑗)

P̂(j) ·Navg (𝑗)
(9)

We estimate the finish time fairness (FTF) �̂�(𝑗) of job 𝐽 𝑗 as
its predicted job completion time (the sum of attained service
time 𝐿 𝑗 , waiting time 𝑊 𝑗 , and the interpolated remaining
run time R̂(j)𝑁𝑎𝑣𝑔 (𝑗)), divided by its predicted job run time
(P̂(j)𝑁𝑎𝑣𝑔 (𝑗)).

P̂(j) (R̂(j)=P̂(j) − 𝐿 𝑗) is the total (remaining) run time un-
der isolated resources predicted using the Bayesian posterior.
Similarly to prior work [29], we linearly scale the isolated
run time with a contention factor 𝑁𝑎𝑣𝑔 (𝑗) to compute the run
time under contention. In this paper, we define the contention
factor as, within a fixed time range, the ratio between the
number of jobs requesting GPUs and the overall number of
GPUs provisioned in the cluster, and a job’s contention factor
𝑁𝑎𝑣𝑔 (𝑗) only accounts for the time range it is either queued
or running.

Shockwave plugs in the 𝑘-th power of FTF 𝜌s of jobs into
social welfare function (see Equation 11) as weights. The
weights in the social welfare function act as the budgets as-
signed to jobs in the volatile Fisher market. If a job is pre-
dicted to be unfairly scheduled (large FTF 𝜌) in the long
term, VFM correspondingly assigns a higher budget for it and
proactively prioritizes the job in the planning window.
An estimator for long-term efficiency. The efficiency esti-
mator estimates the final makespan to complete all current
jobs’ training epochs and penalizes schedules (in the plan-
ning window) that potentially increase the makespan estimate.
However, the final makespan is unknown at the current instant
and, in practice, Shockwave penalizes increasing the lower
bound of it. Shockwave uses the lower bound given in [12].
Let R(Y 𝑗 [·, ·]) denote the remaining run time of job 𝐽 𝑗 from
the planning window. The lower bound of makespan (for the
remaining epochs) is estimated as the maximum between the
sum of the remaining run time divided by the number of GPUs
in the cluster (i.e., 𝑀), and the longest remaining run time
among jobs. Intuitively this takes the maximum between the
longest job remaining and the makespan if all remaining jobs
were evenly spread out across the cluster.

H(Y[·, ·, ·]) = 𝑚𝑎𝑥{
∑
𝑗 R(Y 𝑗 [·, ·])

𝑀
, 𝑚𝑎𝑥 𝑗R(Y 𝑗 [·, ·])} (10)

Finally, we plug in the long-term efficiency estimator to so-

0 15000 30000
Makespan (s)

CF
=3

CF
=2

CF
=1

.5

1.0

1.0

1.0

1.03

0.9

0.92

1.33

1.16

1.07

1.35

1.17

1.07

1.36

1.23

1.11

1.12

1.09

1.1

0 7500 15000 22500
Average JCT (s)

CF
=3

CF
=2

CF
=1

.5

1.0

1.0

1.0

1.67

1.52

1.12

1.01

1.06

0.98

0.96

0.94

0.96

0.86

0.93

0.96

0.93

0.98

1.0

0 2 4 6 8
Worst FTF (ρ)

CF
=3

CF
=2

CF
=1

.5

1.0

1.0

1.0

3.74

4.05

1.6

1.42

1.33

1.16

1.29

1.04

1.14

2.19

1.45

1.15

3.25

3.38

1.83

0 25 50 75 100
Unfair Job Fraction (%)

CF
=3

CF
=2

CF
=1

.5

1.0

1.0

1.0

5.57

17.0

25.0

2.14

10.0

5.0

1.71

6.0

5.0

1.71

5.0

5.0

2.57

3.0

15.0

Shockwave OSSP Themis Gavel AlloX MST

Figure 16: [Physical] Evaluating the scheduling efficiency
and fairness of Shockwave under different contention factors
(CF) in a 14-GPU physical cluster.

cial welfare maximization as a regularizer (See Equation 11).
_ is a tunable coefficient that controls the degree of regular-
ization. Shockwave yields similar makespan and fairness for
different workloads when _ is between 1e-1 and 1e1.

G.3 An End-to-End Schedule Optimizer

Finally, Equation 11 shows the optimization problem solved
by Shockwave in a given round. The output of the solver is
schedule for each regime and the job schedule for the round
can be simply translated from the regime schedule.

Maximize
𝑌1 ,...,𝑌𝑁

1
𝑁𝑀

𝑁∑︁
𝑗=1
𝜌(𝑗)𝑘 𝑙𝑜𝑔[UTIL 𝑗 (Yj [·, ·])]

− _

𝑍0
H(Y1 [·, ·], . . . ,YN [·, ·])

(11)

𝑍0 is a normalization coefficient, which is the sum of the
interpolated run time across all jobs. More details about the
constraints can be found in Appendix H.

Handling dynamic job arrival. Similar to existing sched-
ulers, such as Themis [29], Tiresias [21], Pollux [36] and
Gavel [33], Shockwave periodically adds newly arriving jobs
to the schedule solver (Equation 11). The fairness objective
in Shockwave (Equation 9) automatically handles selecting
between newly-arrived short jobs or jobs that have been wait-
ing in the queue for a long time, according to their pressure
on breaking finish time fairness.

H Constraints Of Program 11
Program 11 requires the following constraints (details omit-
ted). (1) Preserving the order of regimes. Any regime is pro-
hibited to run before precedent regimes are complete. (2)
Work-conserving (Market Clearing). Idle resources are not
allowed when there are ready jobs. (3) Capacity Limits. GPUs
assigned to jobs should not exceed the overall provision.

I Varying Contention Factor
We define the contention factor as, within a fixed time range,
the ratio between the number of jobs requesting GPUs and
the overall number of GPUs provisioned in the cluster. A
larger contention factor indicates more jobs competing GPU
resources at an instant. So far, we have assumed a default

0 30000 60000
Makespan (s)

1.0
1.09
1.13
1.15
1.14
1.15
1.1

0 25000 50000
Average JCT (s)

1.0
2.86

1.11
1.12
1.08
1.0

1.32
0 3 6 9 12 15

Worst FTF (ρ)

1.0
8.05

2.37
3.07
3.54
3.47

1.51
0 20 40 60 80 100

Unfair Job Fraction (%)

1.0
10.5

3.17
3.92

5.08
4.75

6.92

Shockwave OSSP Themis Gavel AlloX MST Gandiva-Fair

Figure 17: [Simulation] Evaluating Shockwave’s scheduling
efficiency and fairness for Pollux trace on a 32-GPU cluster.

contention factor (three). We next vary the contention factor
and compare policies on a smaller 14-GPU physical cluster.

Shockwave’s win in efficiency decreases as there is more
resource slack and less contention in the cluster. Shockwave’s
improvement in makespan over Gavel, AlloX, and Themis
decreases (from 35% for contention factor 3) to 19% (8%)
when the contention factor is lowered to 2 (1.5) (cf. Figure 16).
A similar trend for cluster utilization is found. Shockwave’s
improvement in cluster utilization drops to 19% (5%). Al-
though the finish time fairness of all policies improves as the
contention factor decreases, Shockwave still performs better
than the baselines. Shockwave keeps the fraction of unfairly
scheduled jobs (i.e., the fraction of jobs with FTF 𝜌>1) low
when varying the contention factor. The average fraction of
unfairly scheduled jobs for Shockwave is 8.67% when vary-
ing the contention factors, outperforming the baselines by
2.85× (see Figure 16). When the contention factor is lowered
to 2, Shockwave maintains a worst-case FTF 𝜌 of 1.2, out-
performing Themis, Gavel, and AlloX by 1.27×. When the
contention factor is further lowered to 1.5, Shockwave and all
the baselines worst-case FTF approach 1 and the difference
is insignificant.

J Varying the Cluster Trace
In previous subsections, we presented the results of Shock-
wave using synthetic traces generated by the Gavel [33] work-
load generator. In this subsection, we extend the evaluation
using real DNN training traces provided by the Pollux [36]
system. The Pollux trace provides the duration and arrival
timestamps for training jobs and is extracted from a previous
workload analysis [25]. Figure 17 shows the comparison be-
tween Shockwave and the baseline algorithms and we can see
a similar trend as in previous sections. However, the win in
makespan over Themis, Gavel, and AlloX drops from 30-35%
to 20% on the Pollux trace. In previous synthetic traces, the
duration of jobs has a greater diversity (2×) than in the Pol-
lux trace, and thus long-running jobs have a larger impact on
final makespan and cluster utilization. Therefore, opportunis-
tically prioritizing these long-running jobs leads to greater
improvement when there is more diversity among jobs.

	Introduction
	Motivation
	Jointly Optimizing Fairness and Efficiency
	Handling Dynamic Batch Size Scaling
	Supporting User-defined Dynamic Ddaptation

	Overview
	Dynamic Market Theory Formulation
	Volatile Fisher Market
	Equilibrium Properties
	Handling Uncertainty

	Predicting Dynamic Adaptation
	Shockwave Design
	Schedule Solver
	Long-term Fairness and Efficiency Estimators

	Implementation
	Evaluation
	Experiment Setup
	Baseline Schedulers
	Evaluating Efficiency and Fairness
	A Closer Look at Shockwave's Schedule
	Scaling to Large Clusters
	Benefits of Proactive Scheduling
	Shockwave versus Pollux
	Varying Cluster Contention and Workload
	Solver Overhead
	Resilience to Prediction Error

	Related Work
	Conclusion
	Dynamic Batch Scaling Degrades Accuracy
	When does batch size scaling degrade accuracy
	Example: Pollux's automatic batch size scaling leads to accuracy loss in NeuMF-m1-lm training

	Static Filters Degrade Efficiency, Fairness
	Volatile Fisher Market (VFM)
	Market formulation
	Solving Equilibrium of VFM

	Proof of Theorem C.1
	Linear Utility
	Leontief Utility

	Proof of Theorem 4.0.1
	Stochastic Dynamic Program for Efficiency and Fairness in Expectation
	Shockwave Design Details
	Implementing Nash Social Welfare over Time
	Implementing Estimators for Long-Term Effects
	An End-to-End Schedule Optimizer

	Constraints Of Program 11
	Varying Contention Factor
	Varying the Cluster Trace

