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Abstract
Careful orchestration of requests at a datacenter server is
crucial to meet tight tail latency requirements and ensure
high throughput and optimal CPU utilization. Orchestration
is multi-pronged and involves load balancing and schedul-
ing requests belonging to different services across CPU re-
sources, and adapting CPU allocation to request bursts. Cen-
tralized intra-server orchestration offers ideal load balancing
performance, scheduling precision, and burst-tolerant CPU
re-allocation. However, existing software-only approaches
fail to achieve ideal orchestration because they have limited
scalability and waste CPU resources. We argue for a new ap-
proach that offloads intra-server orchestration entirely to the
NIC. We present RingLeader, a new programmable NIC with
novel hardware units for software-informed request load bal-
ancing and programmable scheduling and a new light-weight
OS-NIC interface that enables close NIC-CPU coordination
and supports NIC-assisted CPU scheduling. Detailed experi-
ments with a 100 Gbps FPGA-based prototype show that we
obtain better scalability, efficiency, latency, and throughput
than state-of- the-art software-only orchestrators including
Shinjuku and Caladan.

1 Introduction

Modern cloud services generate thousands of RPCs in re-
sponse to a single external request [35]. The services often
need to provide microsecond-scale tail latencies for these
RPCs to meet service level objectives (SLOs) [4]. What makes
this challenging is that each server in a distributed system run-
ning multiple services receives many RPC requests of varying
importance, and intra-server orchestration, which is neces-
sary to provide low tail latencies and high CPU efficiency,
itself incurs substantial latency and wastes CPU cycles.

Intra-server orchestration entails three aspects (Figure 1a):
request scheduling, load balancing, and core assignment [6,
13, 14, 19, 24, 31, 33]. These tasks play an indispensable role
in maintaining microsecond-scale tail latency, achieving high
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Figure 1: Intra-server orchestration: today vs. Ringleader.

CPU efficiency and high throughput, and enforcing appropri-
ate request prioritization. Request scheduling and load balanc-
ing determine, within and across services, in what order re-
quests are processed and by which worker core [6, 14, 19, 33].
Load balancing reduces tail latencies by reducing worker
queue lengths and improves CPU efficiency as fewer cores in
the system are left idle when they could instead be processing
requests. When requests or services have different SLOs or
priorities, scheduling can eliminate head-of-line (HoL) block-
ing and guarantee tail latencies for critical workloads. Core
re-allocation decides how cores process requests belonging to
different services [13,24,31]. Fast re-allocation maintains low
tail latency and improves CPU efficiency and throughput, as it
can repurpose cores that are not needed by a latency-sensitive
service toward batch services during periods of low load.

Coordinating orchestration tasks is a vision shared by other
recent systems that have either on-loaded orchestration onto
dedicated CPU cores [6, 14, 16, 19, 31, 33] or offloaded some
aspects to SmartNICs [15]. Unfortunately, both sets of ap-
proaches have key limitations (Sections 2 and 8). On-loading
has high latencies, poor scalability, and wastes CPU cycles.
Using a dedicated centralized orchestrator core does not scale
with increasing network line rates and worker core counts.
Offloading orchestration to SmartNICs using on-NIC CPU
cores has similar issues: the wimpy on-NIC cores have high
latency overheads and scalability limitations.

We argue that effective orchestration requires a fundamen-
tally different division of labor than onloading or SmartNIC-
based approaches: Given recent advances in programmable



network hardware, we start with an approach that offloads
as many of the different aspects of orchestration as possible
onto NIC hardware while systematically onloading onto host
cores minimal functionality for precise scheduling and high
performance. As NICs already process all incoming packets,
offloading orchestration tasks can reduce request processing
latency and save CPU cycles. We realize this division-of-
labor in RingLeader, a system for offloading and executing
intra-server orchestration on 100+Gbps NICs (Figure 1b).

In RingLeader, software running on CPUs uses a new OS-
NIC interface to provide the NIC with per-core updates on
request completions and relative priorities across arriving
requests. Custom-built load balancing and scheduling units
on the NIC interface with each other and leverage software-
provided information to schedule precisely and enqueue re-
quests within/across services at cores. By tracking NIC-local
queues of requests waiting to be scheduled, the RingLeader
NIC detects load changes and provides fine-grained realloca-
tion hints to host cores via the same OS-NIC interface.

Several challenges arise in making this division-of-labor
effective (Sec. 2.3): (1) carefully distributing packet buffering
across the NIC and CPU cores to avoid core idling while
tightly controlling request dispatch from the NIC to CPU
cores; (2) coordinating request dispatching among per-core
buffers and the on-NIC load balancing and scheduling en-
gines to meet various load targets and scheduling policies; (3)
developing hardware support to combine load balancing and
scheduling decisions at line-rate; and (4) developing an effi-
cient OS-NIC interface to enable low overhead coordination
between the NIC and host cores. We make several innovations
(Secs. 4 and 5) to overcome these challenges:

1. We leverage shallow per-core request priority queues
alongside limited on-NIC buffering to overcome the chal-
lenges caused by PCIe latency and ensure requests dis-
patched by the NIC are processed quickly and with suit-
able prioritization.

2. We develop a novel load balancing algorithm, Join-
Bounded-Shortest-Ranked-Queue (JBSRQ), which ac-
counts for multi-service isolation/priorities and ensures
good load balance across the per-core buffers. We build
a new first-eligible-out (FEO) line-rate request scheduler
that coordinates with the request load balancer.

3. We develop new NIC hardware that uses a reduction tree
to calculate which core should process the current highest
priority request at the line rate.

4. We introduce an OS-NIC interface with low CPU over-
heads and avoid generating extra PCIe messages. This
provides an API for services to benefit from on-NIC or-
chestration, and achieves ∼ 50M messages-per-second
for OS-NIC communication.

5. We develop simple NIC-assisted algorithms that support
burst-sensitive core re-allocation across high/low priority
requests by leveraging re-allocation hints provided by a
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Figure 2: Illustrations of existing intra-server orchestration.

new on-NIC load monitoring module.
We present a full evaluation of RingLeader’s feasibility

and effectiveness. From experiments performed on a 100
Gbps FPGA-based prototype, we find RingLeader is high-
performance, scalable and CPU-efficient, and RingLeader
provides better latency and throughput than existing state-of-
the-art intra-server orchestrators, including Shinjuku [19] and
Caladan [13]. For example, in an experiment with 30 worker
hyperthreads, RingLeader was able to service 3× as many
requests within a P99 SLO of 45µs as Shinjuku and RSS.
We compare RingLeader’s core allocation with Caladan run-
ning both a latency-sensitive service and a batch service, and
RingLeader achieves up to 50% less latency for the latency-
sensitive service and 1.3× throughput for the batch service.

2 Background and Motivation

Online cloud services such as search, distributed model serv-
ing pipelines, and key-value caches are deployed today across
thousands of physical machines. User requests to these ser-
vices are composed of sequences of RPCs. Each RPC is pro-
cessed using a two-layer scheduling framework: first, RPCs
are assigned to servers, and then RPCs are dispatched to a
service instance running on one of the server cores [43]. The
latter, i.e., intra-server orchestration, which consists of load
balancing requests and scheduling (ordering) them across ser-
vice instances, and reallocating cores across services based
on demand, play a crucial role in the ultimate performance
experienced by requests.

2.1 Intra-server Orchestration Today
State-of-the-art (SOTA) intra-server orchestration relies on
a centralized software-based approach running in user-
space [6, 10, 13, 19, 31, 33]. This approach addresses the un-
predictable/high tail latency issues of conventional in-kernel
approaches [4, 14, 18]. It also addresses both the load imbal-
ance, poor tail latencies, and poor request scheduling issues
of decentralized randomized RSS (receive-side steering) ap-
proaches such as IX and ZygOS [6,33] and the imbalance and
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Figure 3: Simulation results comparing centralized and de-
centralized scheduling. C-ideal uses the ideal centralized
scheduling policy. D-ideal(X,Y) uses X decentralized orches-
trator cores to schedule Y worker cores per orchestrator core.

imprecision that results from the asynchrony of reactively pro-
gramming aRFS (accelerated Receive Flow Steering) rules.

Figure 2 shows how existing orchestration mechanisms
work: (1) Request Load Balancing (Figure 2a): For each
service, one orchestrator core is dedicated to: 1) polling a cen-
tralized receive queue and 2) dispatching packets to worker
cores according to their load. Packets are delivered from the
NIC to the orchestrator core in a centralized, First Come First
Serve manner. (2) Request Scheduling (Figure 2b): The or-
chestrator core identifies different request types and schedules
competing requests, e.g., by suitably prioritizing them. Re-
quest scheduling reduces HoL blocking and ensures RPCs
with higher priority receive service first. (3) CPU Allocation
(Figure 2c): When there are multiple services running on
the host, the orchestrator core detects when services would
benefit from more cores, and reallocates cores to ensure low
latency and high CPU utilization under fast-changing load.

Multiple dedicated busy-polling orchestration cores may
be needed to support demanding service workloads running
across many cores, or when multiple services run on a server.
Limitations: A core that is used as an orchestrator incurs
overhead and is unable to perform service-specific process-
ing; this is problematic because the CPU is the key bottleneck
in today’s network-intensive workloads. Further, a single or-
chestrator core’s maximum throughput determines scalability
w.r.t request processing rates. Shinjuku’s "dispatcher" that per-
forms request scheduling and load balancing only achieves
5M RPS (Requests-Per-Second) with a single core [15, 19].
With µs-scale requests, one orchestrator core can saturate ∼ 5
worker cores. However, servers today may be equipped with
100s of cores and serve 100+Gbps demand.

The overheads of performing reallocations over a large pool
of worker cores are not negligible either, limiting realloca-
tion speed and precision. For example, with 16 worker cores
(hyperthreads), Shenango’s core allocator can only support
packet rates of up to 6.5 Mpps, and this can only saturate a
10 Gbps NIC with 128B packets [31].

To achieve higher throughput, multiple orchestrator cores
could be used. Each orchestrator core handles a set of worker
cores, and the server relies on NIC RSS (Receive-Side Scal-
ing) to spread requests across orchestrator cores. However,

because orchestrator cores operate independently, it is not pos-
sible to simultaneously enforce request scheduling policies
and ensure even load and high core utilization.1

We built a discrete-event simulator to quantify the impact
of using multiple orchestrator cores on a given service. For
simplicity, we focus here on comparing the load balancing
performance between an ideal centralized approach (c-ideal),
and an ideal decentralized approach (that ignores the costs of
using many orchestrator cores). We generate requests with
service times following an exponential distribution with a
mean of 1µs (Exp(1)).

Figure 3 shows the results for 16-core and 96-core systems.
The saturation point of the d-ideal is much earlier than the
c-ideal, especially when the worker core count is high. This is
because the processing time for each request is unpredictable,
and using RSS to partition requests between orchestrator cores
leads to severe load imbalance. This imbalance causes CPU
underutilization, unnecessary queuing, and increased latency.

Recent work improves on RSS by enabling work-stealing
between cores to avoid load imbalance [24]. However, work-
stealing incurs CPU overheads; it is hard to enforce request
weights or priorities under work-stealing; and, as recent work
has shown, centralized orchestration still significantly outper-
forms work-stealing (Fig. 3 in [24]).

2.2 A Case for NIC-Offloaded Orchestration

Using the NIC to perform orchestration has the potential
to solve the key limitations associated with software-based
approaches. Because all incoming requests necessarily pass
through the NIC, the NIC could be an ideal location to per-
form request scheduling and load balancing; the NIC can
buffer incoming requests and, in theory, make centralized
scheduling and load balancing decisions without added la-
tency. In contrast with software-only approaches that must
sacrifice performance and efficiency to operate at scale, high-
performance on-NIC accelerators can be designed to operate
at the hyperscale required by today’s line rates and core counts.
Additionally, offloading orchestration tasks onto NIC hard-
ware can further improve host CPU efficiency by freeing up
host cores, removing inter-thread communication overheads,
and improving the accuracy of scheduling and load balancing
decisions. The NIC is also a good vantage point for fine-
grained network load profiling and queuing delay monitoring,
so the NIC can assist with CPU scheduling by providing hints
regarding incipient load arriving over the network.

We further argue that once a decision has been made to of-
fload load balancing to the NIC, it is necessary to also offload
scheduling and load monitoring. To achieve the c-ideal line in
Figure 3, it is necessary to perform centralized buffering and

1aRFS allows the orchestrator cores to program flow steering rules on
the NIC [8], this cannot prevent load imbalance at short time scales because
rules must be installed reactively and is imprecise because rules are installed
asynchronously.



load balancing. However, once requests are buffered on the
NIC, it is not possible to prevent a high priority request from
being blocked inside the on-NIC buffer, and centralized on-
NIC buffering hides information about buffered requests from
a CPU-based scheduler, precluding informed scheduling.

2.3 On-NIC Orchestration Challenges

Achieveing on-NIC orchestration is challenging:
C1: To Buffer at cores or not: On-NIC orchestration requires
tight coordination between the NIC and the host. A NIC-only
approach where: (1) all incoming packets are buffered on
the NIC, (2) the NIC computes which core and in what or-
der to process incoming requests, and (3) cores pull "ready"
requests from the NIC to process can, in theory, yield good
load balance and adhere to scheduling policies perfectly, but
can experience poor throughput and fallow cores due to PCIe
latency. To improve throughput and utilization, we need to
unload some amount of buffering onto the cores by allowing
the NIC to send new packet descriptors to a core that is not
yet finished processing its current request. But it is unclear
how deep these per-core buffers should be and what queueing
discipline they should implement. Deep FIFO buffers can im-
prove utilization but impose HoL blocking with high-priority
requests stuck behind low priority ones at a core.
C2: Coordination across cores, load balancing, and
scheduling: Per-core buffering also needs to be coordinated
with the load balancing and scheduling algorithms running
at the NIC. For example, a NIC-based load balancer agnostic
of the priorities of requests enqueued at per-core buffers -
e.g., "enqueueing a request at the shortest queue" - can easily
lead to HoL blocking. Likewise, a NIC-based scheduler that
simply dequeues highest priority requests buffered at the NIC
and tries to enqueue them at per-core buffers may inadver-
tently stall both high and low-priority requests and lead to
non-work-conserving behavior when the buffers at the cores
serving high-priority requests are all full (Section 4).
C3: Lack of existing hardware: Existing hardware architec-
tures are insufficient for precise on-NIC load balancing and
scheduling. For example, modern hardware priority queues,
notably PIFO [39], can only be used to provide programmable
packet scheduling; we cannot support both programmable
scheduling and load balancing with just the PIFO abstraction.
C4: Host and NIC Communication Overheads: To effi-
ciently offload request load balancing to the NIC, the CPU
needs to provide load feedback to the NIC at a fine granularity
(e.g., per-packet). Furthermore, with 100+ Gbps NICs, PCIe
throughput can become the performance bottleneck even in
combination with optimized software stacks [29]. Thus, it
is necessary to ensure that the CPU and PCIe overheads of
CPU-NIC communication are low.

Overall, for effective orchestration, we need new NIC archi-
tectures for offloading load balancing and scheduling, coupled
with new algorithms, and new OS-NIC interfaces.

3 RingLeader Overview

RingLeader is a new NIC architecture and OS-NIC interface
that enables efficient and precise orchestration. In RingLeader,
scheduling and load balancing are performed in tandem by an
efficient and precise novel hardware offload on the NIC, and
core allocation is performed by a host datapath OS with infor-
mation from a new OS-NIC interface. We aim our discussion
at servers equipped with a single NIC; we discuss multi-NIC
support in Sections 9 and 12.2.

3.1 System Assumptions

In RingLeader, we assume that an application runs multiple
services, where each service processes a specific type of re-
quest (e.g., latency-sensitive reads vs. throughput sensitive
scans). A service can be replicated using multiple instances
running across cores to handle load (e.g., deploying many
read-oriented instances to serve heavy read traffic). We as-
sume that distinct services can share a core; but our system
also applies to cases where services need to be isolated across
cores.

In RingLeader, the host uses a Demikernel-like single ad-
dress space datapath OS [42]. The datapath OS achieves 1)
fast multiplexing between OS tasks (e.g., buffer management,
I/O processing, core allocation, coroutine scheduling) and
application-specific work, and 2) fast context switching be-
tween different services’ computations. We have chosen to
use a datapath OS to manage host services instead of a kernel-
based OS, as the traditional kernel-based OS abstractions
(such as threads or processes) impose high overhead in multi-
plexing and context switching [42]. Figure 4 shows the sys-
tem running multiple services. Each service launches multiple
coroutines2 on multiple cores; the coroutines are scheduled
and managed by the datapath OS. We assume that each service
is designed to run well on multiple cores.

The datapath OS uses cooperative scheduling: a long-
running coroutine will yield voluntarily after a few microsec-
onds of running. The datapath OS schedules the highest prior-
ity runnable coroutine once a running coroutine yields. The
policy for yielding and scheduling depends on cross-service
priorities.

The RingLeader NIC buffers received packets. This is
reasonable because commercial NICs have a large amount
of memory (tens of MBs of SRAM and 4–16 GBs of
DRAM) [2, 7, 25–27]. If additional buffer capacity is needed,
host DRAM can be used to buffer packet data with the
RingLeader NIC only buffering packet descriptors.

RingLeader is designed to operate regardless of whether
the transport layer is implemented in the NIC or on the CPU.
On-NIC transport enables RingLeader to easily load balance

2As defined in Demikernel, coroutines are light-weight user-level threads
that encapsulate the OS or application computation.



and schedule at the RPC granularity, while on-CPU transport
necessitates load balancing at the flow or flowlet granularity.

3.2 Key Ideas and Design Overview

RingLeader can schedule and load balance requests from
different services in a given application; to this end, inter-
service policies can be specified in RingLeader. We discuss
how RingLeader can support policies across applications
in Section 9. Furthermore, each service provides input to
the RingLeader NIC to assist with scaling up/down the per-
service allocated cores.
Ideas: RingLeader approximates an ideal centralized orches-
tration approach using the following ideas that address the
challenges in Sec.2.3: (1) We employ shallow priority queues
on each core (Sec. 4.2). The per-core coroutine scheduler pri-
oritizes dequeuing certain requests from these queues to avoid
HoL blocking inside the buffer. (2) The NIC uses a new Join-
Bounded-Shortest-Ranked-Queue (JBSRQ) load balancing
algorithm that utilizes the per-core priority queue behavior to
inform load balancing decisions (Sec. 4.2). In addition, we
develop a new priority-based on-NIC request scheduler called
first-eligible-out (FEO) and a simple interface between the
scheduler and the load balancer (Sec. 4.3); this helps coordi-
nate the scheduler’s dequeue actions with the load balancer by
exposing available room at per-core buffers to the scheduler.
(3) We present a novel NIC hardware architecture that uses
a reduction tree to combine scheduling and load balancing
decisions at line rate (Sec. 5). (4) We use memory-mapped
IO and inlining metadata in packet descriptors to develop an
efficient OS-NIC communication interface (Sec. 4.1).
Example: Figure 4 illustrates how RingLeader operates when
network packets are received. For simplicity, we only focus on
load balancing and scheduling. Here, two services are running
on a host. When a request packet enters RingLeader, it is
processed by a programmable match+action (RMT) pipeline,
which parses the packet’s L3-L7 packet headers as necessary
to identify the service that the packet belongs to and compute
appropriate ranks. Then the packet is enqueued into the per-
service packet buffer queue waiting to be scheduled.

The on-NIC request scheduler uses the FEO queue to sched-
ule different services’ requests according to a programmable
policy. FEO schedules the highest priority service for which
there is available room at a core where the service can run
(this "eligibility" is provided via a mask). The on-NIC load
balancer then steers this highest priority service’s request to
an eligible core that has the lowest rank (akin to queuing time)
as computed by JBSRQ.

On each host core, the coroutine scheduler launches the
runnable coroutine corresponding to the highest priority re-
quest. After the request finishes processing, the datapath OS
provides load feedback to the NIC through the TX packet’s
descriptor or a separate MMIO register write.

We conclude the overview with a few more details.
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Figure 4: RingLeader Design.

Policies: RingLeader’s load balancer, scheduler, and core
allocator cooperate from top to bottom to enforce a given
inter-service policy. Scheduling policies in RingLeader are ex-
pressed as a hierarchy of functions that compute the rank, rate,
and/or transmission time for a packet [38–40]. Having a hier-
archy of functions enables policies where multiple services
can be grouped together, e.g., two latency-sensitive services
can be given equal priority over another service but different
weights when competing with each other.
Core assignment: An on-NIC load monitor tracks the queu-
ing condition for each service/request type. Each service
can configure its trigger condition; when the scale-up/down
threshold is met, the NIC sends a scaling hint to the least
loaded core which runs this service/request type. The core
allocator runs inside the datapath OS in a distributed fashion,
e.g., it can run on any core depending on which core receives
the NIC hint.

4 RingLeader Design

We now discuss the design of the individual components
of RingLeader. In Sec 4.1, we introduce the interface and
mechanism that the NIC uses to communicate with the OS.
In Sec 4.2, we introduce RingLeader’s on-NIC request load
balancer and our JBSRQ algorithm. In Sec 4.3, we describe
the design of our FEO request scheduler and the non-blocking
interface between the request scheduler and the load balancer.
In Sec 4.4, we describe our NIC-assisted CPU re-allocation.

4.1 OS-NIC Interface
The OS-NIC interface in RingLeader (Table 1) is designed to
minimize both HoL blocking latency and the CPU overheads
of communicating orchestration metadata. We focus on the
mechanisms here and outline the metadata exchanged over
the interface at relevant places in later subsections.
CPU-to-NIC metadata: The datapath OS communicates
with the NIC by writing to the NIC control registers via
memory-mapped IO (MMIO) and via metadata in descriptors.



OS-to-NIC Interface Description
RegisterService(s_id: X, ip: I, port: P, prio: O) Register a new service X with the NIC.
EnableService(s_id: X, core_id : Y) Notify the NIC that core Y is running service X.
DisableService(s_id: X, core_id : Y) Notify the NIC that core Y is no longer running service X.
LoadFeedback(s_id: X, core_id : Y, count: C) Notify the NIC that service X finishes C packets on core Y.
EnableLoadMonitor(s_id: X, trigger: T) Enable load monitor for service X, with trigger condition T.
RearmLoadMonitor(s_id: X) Notify the NIC that the host is ready to receive the next load hint for service X.

NIC-to-OS Interface Description
LoadHint(s_id: X, hint: H) Notify the host that service X’s load has triggered the scale-up/down condition.

Table 1: RingLeader OS-NIC Interface

Each core accesses a different set of cache-aligned NIC regis-
ters to increase MMIO write performance. Our microbench-
marks in Section 7.4 show the throughput for OS-to-NIC
communication is roughly 50M messages per second.
NIC-to-CPU metadata: The NIC communicates with the OS
through packet descriptors. The NIC-generated reallocation
hint is inlined into the packet descriptor and sent to the per-
core NIC queue. 3 The datapath OS polls the NIC queue and
parses the NIC hint. To avoid HoL blocking, the NIC limits
the number of outstanding unACKed hints per core.

Our interface allows the NIC to monitor and control the
length of each per-core queue despite the inherent asynchrony
caused by PCIe latency. This design also overcomes PCIe
throughput limitations by avoiding generating new PCIe mes-
sages in the common case.

4.2 On-NIC Load Balancing with JBSRQ
RingLeader performs hardware-based request load balancing
for each service using a Join-Bounded-Shortest-Rank-Queue
(JBSRQ) algorithm to decide when and where to send a
packet. JBSRQ is an extension of the Join-Bounded-Shortest-
Queue (JBSQ) algorithm [21] that considers inter-service
inference and priorities.

As defined in R2P2 [21], JBSQ(n) approximates an ideal,
work-conserving single queue policy using a combination of
an on-NIC centralized queue and short, bounded queues at
each worker. Each worker queue has a maximum depth of n
messages. JBSQ(1) is equivalent to a single-centralized-queue
model, whereas JBSQ(∞) is equivalent to JSQ.
Per-core shallow priority queues: JBSRQ approximates
centralized pull-based load balancing (which achieves ideal
load distribution) using a combination of an on-NIC buffer
and shallow bounded-size (e.g., 4 requests) per-core queues.

When multiple services with different priorities co-exist in
the same core, the per-core buffers (no matter how small) can
cause undesirable HoL blocking. To avoid this HoL blocking,
we implement the per-core buffers as software priority queues;
a core’s coroutine scheduler uses the priority queue to enforce
lightweight prioritized scheduling. The enqueue overhead of
this priority queue is minimal given that the queue depth is
≤ 4, and priority calculation overhead is eliminated by the
fact that the NIC scheduler computes priorities (Section 4.3)

3If there is no active packet descriptor being sent from the NIC to the
host, RingLeader will generate a new packet descriptor (for scaling down).

and simply carried along with packet descriptors. Further,
the currently running lower priority request will yield to the
highest priority request, which further reduces HoL blocking.
JBSRQ: Before describing our approach, we outline the
sub-optimality of the classical join-bounded-shortest-queue
(JBSQ) approach.

The main issue is that JBSQ does not consider the behavior
of the host’s priority queue.

Figures 5 (a), (b) show this limitation for two types of JBSQ
algorithms: global-JBSQ and per-service-JBSQ. In global-
JBSQ, which is used in RackSched [43], the NIC tracks per-
core NIC queue lengths and always steers new requests to the
core with smallest queue length. In per-service-JBSQ, which
is used in nanoPU [17], the NIC tracks per-service queue
length on each core and implements a JBSQ per service.

Given two services running on core 1 and core 2 where
service A’s priority is higher than service B, the example in
Figure 5 (a) shows how global-JBSQ prevents new arriving
high priority requests from preempting the on-host low prior-
ity requests. Since core 1’s queue length is larger than core
2, global-JBSQ would dispatch the newly arrived service A’s
request to core 2. However, the optimal decision is to steer
the request to core 1 as A’s request would be served before
B’s request; the low priority request’s queue length has little
impact on the high priority request’s completion time.

Similarly, Figure 5 (b) shows that per-service-JBSQ leads
to sub-optimal performance for low priority requests.

To overcome JBSQ’s limitations, we introduce JBSRQ. For
simplicity, we assume each service has a single request type
and that we are given priorities across services. In JBSRQ,
the NIC tracks same-core services’ queue lengths and service
priorities. Then, for each service’s request, the NIC selects
the core that has the minimal rank, where rank is calculated
as follows for a request for service A:

R[A].c = ∑
Px≥PA

Q[x].c+λ∗ ∑
Px<PA

Q[x].c

Here, R[A].c represents service A’s rank on core c. PA repre-
sents service A’s priority, Q[x].c represents service x’s queue
length on core c. λ is a constant factor between 0 and 1.

The underlying idea in JBSRQ is: when dispatching one ser-
vice A’s packet, the load balancer should consider the amount
of the queue on a core that is contributed by requests of at
least the same priority as A (because A’s request cannot be
scheduled ahead of such requests); the first term captures this.
The rank calculation ignores the queue length contribution
from all lower-priority requests. The factor λ and the sum-
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mation in the second term captures the cost of waiting for
a lower-priority request to yield before the higher-priority
request is scheduled.

We now exemplify the benefit of using the JBSRQ policy.
Figure 5 (c) shows that, when dispatching A’s request, we
could mostly ignore B’s queue length. The calculated core
1’s rank is smaller than core 2. Thus the newly arriving A’s
request is steered to core 1. Figure 5 (d) shows that, at low
load, B’s queue length can influence the load balancing pol-
icy for A’s request; this is because we have added a small
constant factor for the low priority request’s queue length,
which allows B to obtain fair service at low load. In this ex-
ample, selecting idle core 2 is the optimal decision. This is
because the overhead of scheduling or preempting B’s request
is non-negligible; thus choosing core 1 leads to a sub-optimal
decision. Figure 5 (e) shows that when dispatching B’s re-
quest, we should consider A’s queue length, as a high priority
request will always be served before a low priority request.

4.3 Non-blocking On-NIC Request Scheduler

We develop an FEO (First-Eligible-Out) priority scheduler
that provides programmable per-cycle scheduling while sup-
porting a non-blocking interface with the load balancer.

To understand why FEO is needed, consider PIFO [39],
which assumes that, at any given time, all elements are el-
igible for scheduling. PIFO always schedules the smallest
ranked element in the entire list of enqueued requests. How-
ever, given that we use shallow per-core buffers, we require
that, for a given service, if a request’s rank at all worker cores
exceeds the queue-length bound, the load balancer must hold

the request to avoid it getting dropped at a core. In this situa-
tion, the scheduler would block the rest of the lower-priority
requests, which the load balancer could have dispatched to
other potentially-idle cores.

FEO extends PIFO to avoid this problem by interfacing
with the load balancer. As Figure 6 shows, when dequeuing
elements, we first filter the set of elements eligible for dis-
patch and then schedule the smallest ranked element from
that set. To enable this, the load balancer provides a bitmask
that records the dispatching eligibility of each service.

The main difference between PIFO and FEO is the dequeue
operation, which proceeds in two steps. First, we evaluate
each element’s eligibility in parallel by looking up its bit in
the bitmask. Second, FEO uses priority encoding to select
the front-most element whose eligibility is true, pops out the
selected entry, and shifts the array. This design achieves a fast
and parallel evaluation of elements upon dequeue. Addition-
ally, FEO also provides buffer isolation by ensuring that the
lowest priority request is dropped when buffers overflow.

4.4 NIC-assisted CPU Assignment

In RingLeader, each service could enable its own on-NIC load
monitor through the interface defined in Table 1. RingLeader’s
load monitor supports rich triggers based on services’ per-
formance goals (e.g., latency or throughput) or scheduling
policies. By default, scale-up trigger uses the congestion de-
tection policy in Caladan [13]: if any service’s request is
found to be present in the on-NIC queue for two consecutive
intervals, the NIC generates a scale-up hint. The scale-down
policy is more conservative: within a time interval, if the
maximum on-NIC queue length for a service never exceeds a
threshold, the NIC generates a scale-down hint.

When a threshold is reached for a service, the load monitor
generates a scale-up/down hint, inlines into the packet de-
scriptor, and sends it to the buffer of the service’s least-loaded
core; it then disarms hint generation for this service. If no
active packets are sent from the NIC to the cores, RingLeader
will generate a new packet descriptor (to aid scale down).

The datapath OS polls the per-core queue and receives NIC
hints. Then, the OS calls the core allocation function to decide



whether/where to scale up/down this service.
Assignment strategies: In an ideal system with a perfect
load balancing policy and no multiplexing overhead, the best
core allocation policy would be complete-share: similar to
Shinjuku [19], all services run on all the cores, and a service
is immediately granted CPU when its request is dispatched.
This policy can tolerate bursts well and ensure good CPU effi-
ciency. In practice, though, multiplexing overheads (including
preemption and yielding) are non-negligible. For example,
even with state-of-the-art low-overhead interrupt mechanisms,
multiplexing tasks in a core could incur at least 24% over-
head [15,19]. Therefore, frequent switching between services
waste considerable CPU resources under complete-share.

Thus, RingLeader supports two additional core assignment
strategies to balance the trade-off between burst tolerance and
wasted CPU. In the no-sharing dedicated model (similar to
Shenango [31], Caladan [13]), each service has its own dedi-
cated core set. The core allocator reallocates cores between
services at fine-granularity (e.g., 5 µs per reallocation). A ded-
icated core improves cache locality and avoids multiplexing
overhead. But such a system will have worse burst tolerance
since even a 5 µs reallocation interval cannot react to transient
micro bursts [24].

In the allow-sharing hybrid model, each service has some
dedicated cores, as well as cores shared with other services.
The dedicated core is used to handle the long-term constant
load, and the shared core is used when a burst of requests
arrives. This balances multiplexing overhead and burst toler-
ance.

After the datapath OS successfully scales up/down a ser-
vice, it calls the rearm function (Table 1) to rearm the load
monitor for the service. Before being rearmed, the load moni-
tor will not generate further hints for the service; this ensures
only one in-flight hint per service and reduces the synchro-
nization overhead inside the host’s core allocator (e.g., only
one core will receive the hint for a service at a time).

5 Hardware Design

We describe the hardware design of RingLeader’s pro-
grammable load balancer and provide details on how it in-
terfaces with FEO and with software priority queues. We
end with an example to show how requests flow through the
RingLeader hardware. We provide benchmarks in Sec. 7.5.

5.1 Load Balancer Hardware
The load balancer unit uses two fundamental building blocks:
Per-core rank register array: JBSRQ needs to sum up the
queue lengths of all services/request types on a core at or
above a certain priority (Sec 4.2). Instead of spending cy-
cles scanning and summing up different queue lengths, we
maintain a pre-calculated rank register array for each priority
level in the on-NIC SRAM. This register array stores each

priority level’s current rank on each core. When a request
arrives, RingLeader directly reads out its rank according to
the priority. The rank register array is updated asynchronously
either when a request is dispatched or when load feedback is
sent back from the worker core.
Reduction-tree-based “choose min”: We use a hierarchical
tree-based circuit for computing the “choose min” operation
in JBSRQ to select a core. Although PIFOs are typically used
for “choose min” operations in scheduling, using the same
design in our load balancer is not feasible. This is because
ranks are frequently updated as requests are dispatched and
completed, and it is not possible to update the ranks of en-
tries in a PIFO. Using a new reduction-tree-based design in
RingLeader overcomes this limitation and allows for ranks to
be updated frequently and in parallel.

Because the “choose min” operation can also be costly
when the core count is high, RingLeader uses a hierarchical
tree-based circuit to compute this minimum value. This circuit
lends itself to pipelining, and it can calculate a minimal ranked
core at every cycle. In RingLeader, we found that with 64
cores, a 3 staged reduction tree pipeline can fit on a middle-
end FPGA without any utilization or timing issues.

5.2 End-to-End Example
We now present a simple example that puts the hardware
components of RingLeader all together. We have two active
services running on a host with two cores; the services are
prioritized as shown in the top right; all requests in service are
the same priority. Figure 7 (A) shows each service’s priority,
as well as how five existing requests are queued on the host.
We assume the λ in JBSRQ is 0.2, and the depth of each
per-core queue is 3; the scheduling policy is a strict priority.

Our example is shown via the numbered steps in Figure 7:
To start with, in the PIFO unit, both services’ eligibility bit in
the mask is true. Then, (1) PIFO schedules service 1’s queue
descriptor, with the highest priority (see top right). (2) The
request scheduler reads service 1’s request F from the request
buffer. (3) Request F is sent to the load balancer, which then
looks up the priority register and directly reads ranks from the
register array. Priority 2’s rank on core 1 is 0.4 and on core
2, rank is 1.4. (4) The load balancer checks the core bitmask.
If a given service is not running on a core, the rank for this
core is set to infinite. However, in this example, both cores
run service 1, so the rank is not reset or modified.

(5) Per-core ranks are then sent to the hierarchical reduction
tree to identify the destination core with the minimal rank,
core 1. Then, request F is dispatched to core 1. (6) We update
core 1’s priority registers according to the JBSRQ algorithm
(Sec 4.2). As shown in Figure 7’s (B) table and looking at
core 1 queue occupancy before enqueueing F at the top right,
we add one to the ranks of both priority 1 and priority 2, and
we add λ to priority 3’s rank. 4

4F belonged to a service with priority 2; after enqueueing it, priority 1’s
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(7) After the update, priority 1’s rank on core 1 reaches the
rank boundary (which is 3). We then update the per-core eli-
gibility table - where we log which service on which core has
reached the rank bound, meaning that buffers are exhausted
at the core and requests from the service can no longer be
scheduled on the core. Given service 2 is mapped to priority
1 on core 1, we change service 2’s eligibility on core 1 into 0.
(8) Since service 2 is now ineligible to be dispatched on all
the cores (core 2’s queue was already full – see top right), in
the request scheduler, we set service 2’s eligibility bit into 0.
Therefore, PIFO will no longer schedule service 2’s request.
(9) Finally, Figure 7’s (B) table further shows how the rank
array is updated when receiving feedback from core 1 after
processing requests F and A. 5

6 Implementation

Our implementation consists of an FPGA prototype for the
RingLeader NIC, a user space NIC driver, and a library oper-
ating system built over Demikernel.
FPGA-based Prototype: The FPGA prototype is imple-
mented in 4K lines of Verilog code, and uses the DMA Engine,
Ethernet MAC and PHY provided in Corundum [12] run at a
250 MHz frequency with a data width of 512 bits.
RMT pipeline: We implemented a single-stage RMT pipeline
in our FPGA prototype. The datapath OS preinstalls the ap-
propriate rules in the pipeline through the NIC-OS interface.
On-chip Request Buffer: The request buffer is implemented
using high-speed BRAM, which supports concurrent reads
and writes at 128 Gbps. The size of the on-chip BRAM buffer
is set to 800 KB. This buffer size can be increased by utilizing
on-NIC DRAM in the future.
FEO scheduler and reduction tree: In our implementation,
the FEO block runs at a 125 MHz frequency with a queue
size of 64. The reduction tree supports 64 worker cores with
a three-stage pipeline in the dispatcher. In the rank register
array, each core has 8 physical priorities.

rank will see all 3 entries in the queue; priority 2’s rank will see priority 2
requests (1) + λ (=0.2) times priority 1 requests (2); priority 3’s rank will see
priority 3 requests (0) + λ (=0.2) times priority 1 and priority 2 requests (3).

5F’s feedback comes before A because of the software priority scheduler.

User space NIC driver: The user space poll mode driver for
the RingLeader NIC is implemented in 1.5K lines of C code
and provides DPDK-like kernel-bypass access to the NIC for
standard NIC functions, in addition to providing all of the
functions in Table 1.
The Datapath OS: We integrated RingLeader with Demik-
ernel’s catnip libOS using 800 lines of Rust. We made the
following modifications to Demikernel: (1) We extended the
catnip libOS to add support for RingLeader’s user space driver.
(2) We added multi-core support to Demikernel, which previ-
ously only ran on a single core. (3) We extended Demikernel’s
coroutine scheduler to enforce prioritized scheduling between
different services’ coroutines. (4) RPC requests yield to the
coroutine after a fixed amount of work instead of always run-
ning to completion (Section 3).

7 Evaluation

Our evaluation answers the following questions:
(1) Does RingLeader achieve high performance for load
balancing and request scheduling? How does RingLeader’s
tail latency and scalability compare to the state-of-the-art
software-only approaches across different workloads and ser-
vice time distributions? (Sections 7.2 and 7.3)
(2) How much do the individual components of RingLeader
contribute to overall improvements? (Section 7.4)
(3) How do our NIC-assisted core assignment’s resulting CPU
efficiency and burst tolerance compare to the state-of-the-art
software-only approaches? (Section 7.5)
(4) What is the scalability and hardware resource usage of the
RingLeader NIC? (Sections 7.6)

7.1 Methodology
Testbed: We evaluate our system on a server with two Intel
Xeon Gold 6326 16-core (32-thread) CPUs and 128 GB of
RAM. This server runs Ubuntu LTS 20.0.4 with the 5.4.0
Linux kernel. In addition, the server has a 100G Alveo U280
Data Center Accelerator Card [1] atop which we implemented
our 100G FPGA prototype. The server also has a Mellanox
ConnectX-5 Ex 100 Gb NIC, which we use to run the Caladan
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Figure 8: Load balancing performance under Exp(3) workload.

baseline (described below). We use another client machine
with a Mellanox ConnectX-5 Ex 100Gb NIC to generate load
using DPDK. The client has the same CPU and OS version
as the server. Our experiments (Ringleader and baseline ex-
periments) don’t consider NUMA and direct all interrupts,
memory allocations, and threads to the NIC-local socket.
RingLeader configuration: Software priority queue depth is
set to 4, and λ (Sec. 4.2) is set to 0.2. (We study sensitivity
to λ in the appendix (12.1), and find λ = 0.2 to be a good
setting). The yielding interval is set to 5µs.
Baselines: We compare RingLeader to three baselines:
Shinjuku [19]: Shinjuku uses centralized preemptive schedul-
ing to achieve high-performance request load balancing and
scheduling. Shinjuku only supports Intel 10G NICs and Linux
kernel version 4.4.x, and it can only run on Intel cores be-
cause its fast preemption mechanism requires VT-x support.
We use two Cloudlab [34] c6420 nodes (one client and one
server, connected through a ToR switch) to run Shinjuku with
kernel v4.4.0; each node is equipped with two 16-core (32-
hyperthread) Intel Xeon Gold 6142 CPUs, and an Intel X710
10 Gigabit NIC. By default, Shinjuku uses two hyperthreads
for orchestration – one for the network and another for the
load balancer – collocated on the same physical core. The
preemption interval is set to 5µs. To ensure a fair comparison,
we always assign one more physical core (two hyperthreads)
to Shinjuku than RingLeader for running orchestration tasks.
Caladan [13]: Caladan reallocates cores between applications
at a fine granularity to increase CPU efficiency under chang-
ing workloads. We run Caladan on the same server and the
same OS and kernel version as Ringleader.

Caladan runs its IOKernel on a single dedicated core. There-
fore, like Shinjuku, we always assign one more physical core
to Caladan than RingLeader.
RSS: We also study a decentralized RSS-based system. In this
baseline, worker hyperthreads are managed by the Demikernel
datapath OS, and each worker polls its own large receiving
NIC queue. Here, we use a bare metal 100G U280 FPGA
NIC [1] that performs standard NIC functions.
Workloads: We employ both synthetic workloads and
RocksDB.
Synthetic Workloads: (Table 2) Our synthetic workload is a
server application where requests perform dummy work that

Workloads Description

Exp(3) Single request type, service times follows
exp distribution with mean 3µs.

Bimodal 95% requests are high priority, take 5µs.
(95-5,5-100) 5% requests are low priority, take 100µs.

High Bimodal 99% requests are high priority, take 3µs.
(99-3,1-100) 1% requests are low priority, take 100µs.

Table 2: Synthetic Workloads

we can control to emulate any target distribution of service
times. This allows us to run microbenchmarks that systemati-
cally study how RingLeader and different baselines perform
under different performance limits.
RocksDB Workloads: We also performed experiments with
RocksDB, a popular and widely deployed in-memory key-
value store developed by Facebook [11]. We use RocksDB
queries that are either GET/PUT requests or range SCANs.

To generate both the synthetic and RocksDB workloads,
we developed an open-loop load generator similar to Shin-
juku [19] that generates requests over user space UDP. It uses
12 threads to generate requests following a Poisson arrival
process and specific service-time distributions and another 12
user space threads to receive server replies. Request latency
is measured through timestamps carried inside packets. We
ensure that the network speed and the load generator are not
bottlenecks in any experiment by checking for packet drops.

7.2 Load Balancing Performance

First, we evaluate the RingLeader load balancing unit using
an Exp(3) workload that, for simplicity, only has a single
type of request (with service times following an exponential
distribution with a mean of 3µs). We compare RingLeader
against three baselines: Shinjuku, Shinjuku-nopre, and RSS.
In Shinjuku-nopre, we use Shinjuku without preemption.

Figure 8 shows the load balancing results when the server
runs 30, 24, and 16 workers. Each worker is a hyperthread,
and all workers run on the NIC-local socket. Across all
levels of load, RingLeader provides the lowest tail latency.
Also, RingLeader has the highest saturating throughput for
all worker counts. This shows that RingLeader has the best
scalability and load balancing precision. In contrast, the ded-
icated orchestrator core Shinjuku uses for networking and



load balancing becomes a performance bottleneck when the
offered load is > 4.8 MRPS (Million-Request-Per-Second)
and preemption is disabled and when the offered load is > 4
MRPS and preemption is enabled. Figure 8 also shows that
RingLeader consistently outperforms RSS, which distributes
load unevenly across cores, hurting tail latency.

7.3 Scheduling Performance
Synthetic Workload: We now study RingLeader’s ability to
achieve high-performance scheduling across services/request
types. We use the High Bimodal workload (Table 2) with two
types of requests for one service: high priority requests that
follow Exp(3) and low priority requests that follow Exp(100).
We turn off core assignment in these experiments, so the two
types of requests run on all worker hyperthreads.

Figure 9 shows the results from this experiment. For all
worker counts, RingLeader consistently outperforms Shin-
juku. This is because Shinjuku’s orchestrator cores become
bottlenecked when the load is larger than 3.5 MRPS. In con-
trast, RingLeader has better scalability and lower latency.

Also, in RingLeader, high priority requests can still main-
tain low tail latency even when the low priority requests’ load
is saturated (e.g., at load > 3.5 in Fig 9a). This is because
the on-NIC scheduler provides buffer isolation (Sec. 4.3) and
ensures each request type is dropped separately.
RocksDB Workload: Next, we evaluate RingLeader’s
scheduling performance under the RocksDB workload. We
use two request types: GET requests for a single key-value
pair that execute within 5µs; SCAN requests that scan 200
key-value pairs and require 60µs. We also vary the yielding
interval for SCAN across 40 items-per-yield (Y40), 20 items-
per-yield (Y20), and 10 items-per-yield (Y10). Figure 10
shows that RingLeader’s prioritized scheduler allows GET
requests to avoid long queuing times due to SCAN requests.
Aggressive yielding improves tail latency performance for
short requests and adds a constant overhead to scan requests.
RingLeader-assisted core re-allocation is a way to get around
the constant yielding overhead.

7.4 Benefits of RingLeader Components
We now study how the individual components in
RingLeader’s load balancing and scheduling function-
ality contribute to overall performance; core assignment
is turned off here (we study it later in Sec. 7.5). Figure 13
(in appendix) presents a comparison of RingLeader and
reduced versions of RingLeader that remove/replace a single
component . We use the bimodal workload shown in Table 2.
FEO: Here, we turn off our scheduler eligibility bitmask
(Section 4.3), causing it to be degenerate to vanilla PIFO
(Blocking_PIFO). Figure 13 shows that PIFO’s performance
is much worse than RingLeader when the load increases for
high priority requests. This is because, in our two-request-type

setting, low priority requests prevent high priority requests
from entering the load balancer at high load.
Global-JBSQ: Next, we evaluate global-JBSQ(4), a load
balancing algorithm similar to RackSched [43] where the NIC
tracks per-core queue lengths and always steers new requests
to the core with the smallest queue length. The queue length
bound for each core is set to 4. Figure 13 shows that, even
with preemption and the software priority queue enabled, the
high priority request’s tail latency is much worse than JBSRQ
when the offered load is > 2.24 MRPS. Because global-JBSQ
does not consider the behavior of the software priority queue,
a burst of long requests can occupy all per-core NIC queues,
and new arriving high priority requests cannot be dispatched.
Per-service-JBSQ: We evaluate per-service-JBSQ(4), a load
balancing policy that is similar to nanoPU [17] where the NIC
implements JBSQ(4) per service. On each worker, the queue
length limit for a service is 4. Figure 13b shows that low
priority requests have worse performance than RingLeader
because, when dispatching a low priority request, the NIC
ignores the influence of high priority requests on the queuing
delay of low priority ones.
No Software Priority Queue: Figure 13a shows what hap-
pens when we disable per-core software priority queues (and
cooperative yielding). High priority requests suffer a lot be-
cause a burst of low-priority requests can enqueue at currently
idle cores and unduly delay later-arriving sensitive requests.

7.5 NIC-Assisted Core Assignment

We evaluate RingLeader’s ability to detect load changes and
aid in fast core reallocation. We experiment with two types of
services running on the host. One serves high-priority latency-
sensitive RocksDB GET requests. The other runs a best-effort
analytics workload that continuously scans a range of the
RocksDB database and performs data comparisons over the
scanned results. We increase RocksDB GET’s load gradually
and measure offered load averaged over 10s intervals.

We compared RingLeader’s core reallocation performance
with Caladan. In this experiment, Caladan and Ringleader
have 16 worker hyperthreads, and the core assignment de-
cision interval is 8µs. Furthermore, in this experiment,
Ringleader uses the same CPU assignment strategy as Cal-
adan, which is the no-sharing dedicated model.

We evaluate the analytics service’s throughput and the GET
request’s tail latency. Figure 11 shows that RingLeader keeps
the tail latencies of the GET request low while also allowing
for spare CPU cycles to be shared with the best-effort analyt-
ics service. Furthermore, RingLeader yields both better GET
requests tail latency and higher analytics workload through-
put than Caladan because load-imbalance and work-stealing
in Caladan increase latency and CPU load. For example, in
Figure 11b, Caladan’s latency goes up at load 1.44 Mpps
since work-stealing happens most frequently at this point.
In contrast, RingLeader consistently achieves near-optimal
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(c) 16 workers
Figure 9: Load balancing and scheduling performance under High Bimodal workload.
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Figure 10: RocksDB performance.
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Figure 11: Comparison with Caladan.

centralized scheduling and low overhead core assignment.
Next, we use the on-off traffic pattern to compare the perfor-

mance of two CPU allocation policies: allow-sharing hybrid
and no-sharing dedicated (Section 4.4). During the on state,
the traffic source generates GET requests; during the off state,
the traffic source stops sending. The switching time between
the on/off states is 0.8 ms. Under this pattern, core realloca-
tion happens several times every 0.8 ms. Figure 12 shows
that the allow-sharing policy has better analytics throughput
as it allows the two services to coexist in the same core, ac-
commodates small timescale bursts of arrivals, and minimizes
CPU waste. However, the no-sharing has better tail latency for
GET requests because using dedicated cores improves cache
locality and avoids multiplexing overheads; nevertheless, the
allow-sharing tail latency stays relatively low and flat for the
most part. Given this information, an admin can configure
RingLeader to pick a core assignment policy based on the
relative importance of low tail latency for sensitive services
versus not starving batch services.

7.6 Scalability and Resource Usage
We now study RingLeader’s performance upper bound and
it’s hardware resource usage.
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Figure 12: Core reallocation under different policies.

Module Setting LUTs(%) BRAM(%)

Load Balancer (16 priorities * 64 cores) 2.82 0.10
(16 priorities * 128 cores) 2.86 0.10
(32 priorities * 64 cores) 6.07 0.00

Scheduler FEO = 16 0.24 0.01
FEO = 64 1.00 0.01

Packet Buffer 800 KB 0.16 6.54

Table 3: FPGA resource usage for different components.

OS-NIC interface: Figure 16a shows the throughput for
the OS-to-NIC interface. The communication throughput be-
tween a single worker hyperthread and the NIC is 6M register
writes per second, and with 8 workers, the throughput can
reach 50M. The result shows that RingLeader can achieve
low-overhead, fast OS-to-NIC communication.

System Throughput and Latency Overhead: Figure 16b
shows that RingLeader can achieve line-rate load balancing
and scheduling. In this experiment, the host uses 8 worker
hyperthreads, every request finishes immediately, and the rank
bound is set to 16. The result shows that RingLeader achieves
100G with MTU-sized packets and 50Mpps for 64B packets.

We measure RingLeader’s latency overhead by adding hard-
ware timestamps. We find that a request can be scheduled and
dispatched within 150 ns. The end-to-end host ping-pong
latency is 6µs, which is close to commercial NICs.

Hardware Resource Usage: Our U280 FPGA has 1300k
LUTs in total. Table 3 shows different components’ resource
usage under different settings. The load balancer and sched-
uler occupy most of RingLeader’s on-chip logic. When the
load balancer is configured with 16 priorities and 64 worker
counts, it consumes around 2.82% of the logic area. With
32 priorities, it consumes 6.07%. Furthermore, when FEO
uses 16 entries, it consumes 0.24% of the logic area, and
when the size is 64, it consumes 1.00%. Overall, we find that
RingLeader can easily fit on an FPGA.



8 Related Work

Software approaches: RingLeader addresses the key scalabil-
ity and performance limitations of other orchestration systems
like IX [6], ZygOS [33], Shenango [31], and Shinjuku [19].
ghOSt [16] and Syrup [20] use userspace CPU scheduling
policies; they are complementary with RingLeader.
Hardware approaches: Shinjuku-on-SmartNIC [15] pro-
vides centralized preemptive request scheduling on an ARM-
based SmartNIC, but scheduling requests on wimpy on-NIC
cores has limited processing speed and introduces tens of
microseconds of latency [22].

PIEO [38] extends PIFO to support efficient extraction for
time-based scheduling algorithms, but it cannot simultane-
ously support scheduling and load balancing. This is because
it only supports packet extraction as a function of time and
hence cannot be used to support an eligibility mask.

Recent related works, such as nanoPU [17], Rach-
Sched [43], Shinjuku-Offload [15], and R2P2 [21], use JBSQ
to offload load balancing in systems with communication
latency. However, as demonstrated in Section 7.4, JBSQ is
suboptimal when requests have different priorities. Our new
JBSRQ algorithm can improve performance under multi-
priority scenarios. Related works, such as RackSched, RPC-
Valet [9], and nanoPU, offloads request scheduling. However,
RackSched and RPCValet do not use centralized scheduling,
which can cause high-priority requests to suffer more from
HoL blocking. In the case of nanoPU, request scheduling re-
quires changes to the CPU architecture by using the hardware
thread scheduler. In contrast, RingLeader achieves centralized
scheduling with no need for changes to the CPU architecture.

Elastic RSS [36] uses a NIC to perform both load balancing
and core allocation. However, it buffers packets at CPU cores
and not on the NIC, leading to load-imbalance, and it does
not schedule packets, leading to HoL blocking.
Transports: Improvements in transport protocols are com-
plementary to RingLeader. Both new transport protocols like
MTP [41] and EQDS [30] and projects that offload transport
protocols to SmartNICs [3, 28, 32, 37] can enable message-
level load balancing and scheduling in an orchestration sys-
tem, so RingLeader would benefit from their adoption.

9 Discussion

Multi-NIC support: Although our design as presented so
far assumes a single NIC per server, there are a few different
ways RingLeader can be configured to support multiple NICs
in a single server: 1) a master/slave configuration (described
below), 2) hard-partitioning workers (Section 12.2), or 3) a
cooperative configuration (Section 12.2). In a master-slave
configuration, each NIC will transfer data to main memory
independently but not perform dispatching. Instead, each slave
NIC sends descriptors about pending requests to the master
NIC, which is solely responsible for orchestration.

Multiplexing Mechanism: RingLeader uses cooperative
scheduling, requiring developers to insert yield statements
for low priority services. However, RingLeader is also com-
patible with other multiplexing mechanisms, such as: 1) op-
timized APIC interrupts [15], and 2) compiler interrupts [5].
Optimized APIC interrupts are a low priority service that can
set a timer that will deliver a low-overhead interrupt once
the time slice expires. Compiler interrupts use compile-time
instrumentation to allow programs to call an interrupt handler
at a regular intervals with little performance impact.
Multi-process Support: RingLeader inherits a key assump-
tion in Demikernel today [42], namely that the data path OS
and services run in a single process. However, similar to
recent work like Snap [23], we can extend RingLeader to sup-
port multiple processes by using Demikernel as a standalone
process that multiplexes I/O across client processes through
shared memory regions. Such an extension would naturally
enable RingLeader to support policies across applications (as
opposed to policies across services in an application).
Applicability to a general kernel: Fine-grained multiplexing
between services on the same core is too expensive for µs-
scale applications in a traditional kernel. This is why many
previous works [13, 19, 31, 42] and RingLeader use highly
specialized data path OSes. However, our system can also be
applied to existing Linux kernels. With a general kernel, users
may want to avoid processor sharing by isolating services
across cores, and our load balancer and CPU allocator still
work effectively.

10 Conclusions

Existing intra-server orchestration approaches have limited
scalability, poor precision, and high overheads. We address
these problems by introducing RingLeader, a new system
that efficiently offloads orchestration in their entirety to a
programmable NIC while minimally onloading limited func-
tions to host cores. RingLeader introduces a novel OS/NIC
interface, a new load balancing algorithm and scheduler, and
a hardware element that combines the decisions of the two.
Our experiments with a prototype on a 100 Gbps FPGA NIC
show that RingLeader offers good tail latency, high through-
put, good CPU utilization, and effective core reallocation.
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Figure 13: Comparison of RingLeader and reduced versions.
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Figure 14: JBSRQ’s performance under different λ.
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Figure 15: JBSRQ’s performance under different λ (0< λ <1).

12 Appendix

12.1 JBSRQ Policy parameters

We evaluate how the constant factor λ in JBSRQ influences
system throughput and tail latencies under the Bimodal work-
load. Figure 14 shows that, for both high priority and low
priority requests, a constant λ between 0 and 1 brings sig-
nificant performance gain over λ = 0 or λ = 1. When λ = 0,
the rank calculation does not consider preemption overheads.
Under low load (load < 2.24), λ = 0 leads to unnecessary pre-
emption, increasing tail latency for both high priority and low
priority requests. When λ = 1, JBSRQ equals global-JBSQ.
This prevents new arriving high priority requests from pre-
empting the on-host low priority requests when load > 2.24,
increasing tail latencies for high priority requests. An inter-
mediate λ is necessary to achieve good performance under
both high and low load. Figures 15 shows how different λs
between 0 and 1 influence JBSRQ’s performance. There is
not much difference between λ = 0.2 and λ = 0.4. When λ
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Figure 16: Scalability of RingLeader

grows to 0.6, performance drops because of the same issue
with λ = 1.

12.2 Supporting Multiple NICs
While our design aimed at servers equipped with a single
NIC, we believe that it can be extended to support multi-NIC
settings as well. We discuss a few options below.
Hard-partitioning workers: The simplest approach is to
partition workers across NICs. Here, for example, each NIC
orchestrates its local NUMA node. This allows each NIC to
perform ideal centralized scheduling independently. However,
this requires all network traffic for a service to be sent to a
specific NIC.
Cooperative multi-NIC orchestration: In this scenario, each
worker can receive packets from multiple NICs. The control
message in Table 1 is replicated across all NICs to achieve
cooperative orchestration. When a request finishes, the worker
sends load feedback to all NICs, so that every NIC knows up-
to-date worker queue lengths. Also, when a NIC dispatches
a request to a worker, the NIC notifies other NICs of this
action. Replicating control messages is the primary trade-off
introduced by this approach. However, this is unlikely to be a
bottleneck given that control messages are small and MMIO
throughput ( 16a) over PCIe is high.
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