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ABSTRACT
A large amount of popular content is transferred repeatedlyacross
network links in the Internet. In recent years,protocol-independent
redundancy elimination, which can remove duplicate strings from
within arbitrary network flows, has emerged as a powerful tech-
nique to improve the efficiency of network links in the face of
repeated data. Many vendors offer such redundancy elimination
middleboxes to improve the effective bandwidth of enterprise, data
center and ISP links alike.

In this paper, we conduct a large scale trace-driven study ofpro-
tocol independent redundancy elimination mechanisms, driven by
several terabytes of packet payload traces collected at12 distinct
network locations, including the access link of a large US-based
university and of 11 enterprise networks of different sizes. Based
on extensive analysis, we present a number of findings on the ben-
efits and fundamental design issues in redundancy elimination sys-
tems. Two of our key findings are (1) A new redundancy elimina-
tion algorithm based on Winnowing that outperforms the widely-
used Rabin fingerprint-based algorithm by 5-10% on most traces
and by as much as 35% in some traces. (2) A surprising finding
that 75-90% of middlebox’s bandwidth savings in our enterprise
traces is due to redundant byte-strings from within each client’s
traffic, implying that pushing redundancy elimination capability to
the end hosts, i.e.an end-to-end redundancy elimination solution,
could obtain most of the middlebox’s bandwidth savings.

Categories and Subject Descriptors:C.2.m [Computer Commu-
nication Networks]: Miscellaneous

General Terms: Algorithms, Measurement.

Keywords: Traffic Redundancy, Traffic Engineering.

1. INTRODUCTION
Network traffic exhibits large amount of redundancy when dif-

ferent users on the Internet access same or similar content.Many
diverse systems have explored how to eliminate this redundant con-
tent from network links and improve network efficiency. Several of
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these systems operate at the application- and object-levels. For ex-
ample, Web proxy caches [27] and the more recent P2P caches [6]
store frequently accessed objects and serve repeated requests from
cache. Dictionary-based algorithms such as GZIP [30] remove du-
plicate bytes from within objects. Numerous studies have explored
the effectiveness of such application-layer and object-level systems
and have developed algorithms for optimizing their designs(see,
for example, [28, 29, 17, 30, 15]).

In recent years, a new class ofprotocol-independent redundancy
eliminationalgorithms have been developed that can identify and
remove strings of bytes that are repeated acrossnetwork packets.
First pioneered by Spring et al. [26], and later developed into “WAN
Optimization” middleboxes by multiple vendors [7, 8, 3, 1, 5, 4],
these approaches operate in a transparent fashion below theap-
plication layer and suppress any repeated strings of bytes that ap-
pear on a network link. Since these approaches subsume multiple
object-level and application-specific techniques they areboth more
effective at removing redundant bytes and also more flexibleto use.

Protocol-independent redundancy elimination is becomingin-
creasingly popular [2, 9]. Redundancy elimination middleboxes are
being widely deployed to improve the effective bandwidth ofnet-
work access links of enterprises and data centers alike, andfor im-
proving link loads in small ISP networks. Driven by the high effec-
tiveness of these systems, recent efforts have also considered how
to make these systems first-class network entities. For instance,
Anand et al. proposed that protocol-independent redundancy elimi-
nation be deployed on a wider scale across multiple network routers
enabling an IP-layer redundancy elimination service [12].This ex-
pands the benefits of redundancy elimination to multiple end-to-
end applications. It could also enable new routing protocols [12].
Li et al. similarly considered how to modify Web applications by
introducing data markers that help in-network redundancy elimi-
nation mechanisms to identify and remove redundancy more ef-
fectively [19]. Ditto [16] similarly proposes to use application-
independent caching at nodes in city-wide wireless mesh networks
to improve the throughput of data transfers.

As redundancy elimination techniques become more widely de-
ployed and more tightly integrated into network infrastructure and
protocols, it becomes crucial to understand the benefits, trade-offs
and design issues in these systems. Unfortunately, there isvery
little insight into even the basic issues underlying these systems to-
day: What is the optimal level of performance one can expect from
protocol-independent packet-level techniques? Do currently popu-
lar techniques [26] perform close to optimal or do better-performing
algorithms exist? When is network-based redundancy elimination—
which is the currently popular model of deployment and usage—
most effective and under what situations do end-to-end approaches
offer better cost-performance trade-offs? What fundamental traffic



redundancy patterns drive the design and bound the effectiveness
of redundancy elimination systems? Understanding these issues
is central not only for improving the design and ensuring cost-
effective usage of current redundancy elimination techniques, but
also in guiding future redundancy elimination-based network ar-
chitectures such as those proposed in [12, 19, 16].

In this paper, we conduct a large scale trace-driven study ofpro-
tocol independent redundancy elimination techniques to shed light
on some of the above fundamental issues. Our large-scale study is
driven by packet payload traces collected at12distinct network lo-
cations, including the access link of a large US-based university and
of 11 enterprise networks of different sizes (up to 100+ IPs). These
traces, described in §3 and Table 1, span diverse user populations
and cover multiple days and terabytes worth of traffic, giving us a
comprehensive view into traffic redundancy and the effectiveness
of redundancy elimination.

Our study consists of three parts. In the first part, presented in
§4, we focus on the redundancy elimination algorithms. We com-
pare the popular algorithm due to Spring et al. with a new algo-
rithm based on Winnowing [25], as well as with a hypotheticalal-
gorithm that can identify the optimal amount of redundancy.In
the second part, presented in §5, we study the macroscopic ben-
efits of redundancy elimination, focusing on whether and howre-
dundancy elimination improves the average and peak utilizations
for different networks’ links. We also examine the impact ontem-
poral variations in traffic volumes and compare redundancy elim-
ination against protocol-specific approaches such as HTTP object
compression and caching. Finally, in §6, we take an in-depthmi-
croscopic look into network traffic redundancy. We study a vari-
ety of issues which have direct implications on the design ofre-
dundancy elimination systems. These include various properties of
redundant content ranging from origin of redundant strings, preva-
lence and importance of partial packet matches, and temporal and
frequency distribution of the redundant strings. In all cases, we
study traces from the full set of 12 network locations to ensure that
our empirical insights are broadly applicable.

We present a full list of the findings and implications of our study
in §7. Two of our key findings are(1) A new redundancy elimina-
tion algorithm that provides more uniform selection of chunks for
indexing outperforms the widely used fingerprint selectionalgo-
rithm proposed in [26] by 5-10% on most traces and by as much as
35% in some traces. (2) A surprising finding that 75-90% of mid-
dlebox’s bandwidth savings in our enterprise traces is due to redun-
dant chunk matches from within each client’s traffic. This implies
that pushing redundancy elimination capability to end hosts, i.e.an
end-to-end redundancy elimination solution, could obtainmost of
the middlebox’s bandwidth savings, diminishing the need for de-
ployment of expensive middleboxes in enterprisesand sidestepping
the attendant problems such as encryption. Some of our otherob-
servations include: (1) While average bandwidth savings ofredun-
dancy elimination can be as high as 60%, it may not result in similar
savings in peak usage, and more generally, the burstiness oftraffic
after redundancy elimination is not commensurately reduced. (2)
Redundant segment matches follow a Zipf-like distributionwith
the implication that small caches can capture bulk of the bandwidth
savings, while it takes increasing amount of cache size and index-
ing effort in order to obtain incremental gains.

2. RELATED WORK
Several papers have looked at various aspects of redundancyin

network traffic. Some of the approaches have focused on object-
level redundancy, while the more recent ones examine packet-level
redundancy. Next, we compare these papers with our work.

Object-level approaches. Object-level caching and its effect on
wide-area performance has been extensively studied. Several stud-
ies have examined that user accesses of Web objects are Zipfian
in nature [14]. Other studies have considered the impact of these
access patterns on caching and the effectiveness of caching. For
instance, Wolman et al. considered the sharing of Web documents
among users at the University of Washington [29]. They showed
that users are more likely to request objects that are sharedacross
departments than objects that are only shared within a department.
In follow-up work, Wolman et al. [28] showed that while shar-
ing of Web objects across departments or divisions in organization
can improve Web object hit rates, there is a strong evidence of di-
minishing returns when the population of clients sharing the cache
crosses a certain limit. Redundancy elimination during filedown-
loads has also received a large amount of attention [21, 22].The
basic idea behind these approaches is to divide files into content-
based chunks and download only those chunks that are not already
present locally. In contrast with these object-level approaches, our
work takes a more information centric view by focusing on therep-
etition in content within packets. We study the popularity of strings
contained in packets, how the packet level content is sharedby dif-
ferent pools of users, and whether similar evidence of diminishing
returns exists when we consider greater amounts of caching and
sharing of packet level content.

Packet-level approaches.As mentioned in §1, Spring et al. de-
veloped the first protocol independent approach for identifying re-
dundant bytes in network traffic [26]. We describe this approach
and other candidate approaches in more detail in §4. Applying
this approach to traces collected at an enterprise network,Spring
et al. found that, on average, 20% of the bytes were redundantin
the inbound direction, and 50% were redundant in the outbound
direction [26]. They also showed that protocol-independent tech-
niques are more effective than object level caching. In our work,
we consider a much broader data set including both directions of a
University access link and 11 enterprise networks of various sizes.
Our work also goes beyond just identifying the amount of redun-
dancy identified by a specific packet-level algorithm and examines
several fundamental issues. These include: what is the amount of
redundancy that a packet-level approach can identify in thebest
case? How close to optimal do practical algorithms get? Whatben-
efits do packet level techniques offer in managing link loads? What
trade-offs do they impose? What are the fundamental characteris-
tics of the duplicate strings? How do these characteristicsimpact
the design of practical redundancy elimination mechanisms?

More recently, Anand et al. [12] explored the benefits of deploy-
ing Spring et al.’s mechanism on all Internet routers. Such ade-
ployment would enable redundancy elimination as a primitive ser-
vice that is accessible to all end-to-end flows. They showed that
such a service can improve the performance of end-to-end flows,
improve link loads everywhere and also enable new routing and
traffic engineering mechanisms. Our work informs the designof
such wide-spread redundancy elimination services. In particular,
our work shows where middleboxes are beneficial, how to design
those caches and how much cache to provision to obtain reasonable
redundancy elimination. Our observations regarding the sources of
redundancy and the temporal and spatial variations could belever-
aged when designing new “redundancy-aware” protocols suchas
the ones outlined in [12].

WAN Optimization. Bandwidth requirements of network entities
such as small ISPs and enterprise networks have seen steep in-
creases in recent years. However, augmenting WAN capacity to
meet the growing demand can be an expensive proposition. To
meet these requirements, small ISPs and enterprises are increas-



ingly turning toward WAN optimization middleboxes which can
simultaneously improve the effective capacity of network links and
lower link usage costs. Different vendors like Riverbed, Cisco,
Juniper etc. are involved in this increasingly competitivemarket
(see [7, 8, 3, 1, 5, 4] for descriptions of the products, and a longer
list of products at [10]). The core techniques used by these op-
timizers are similar to those in packet-level redundancy elimina-
tion such as the ones we describe in §4. In addition, some prod-
ucts employ domain-specific data compression by effectively rep-
resenting known data patterns, protocol specific optimizations like
protocol spoofing by bundling multiple requests of chatty appli-
cations to one, etc. While these products are presumed to offer
substantial benefits at the locations where they are deployed, very
little is known in the open literature about the quantitative extent
of benefits, the underlying tradeoffs involved in using these ap-
proaches, and the challenges and design considerations in imple-
menting WAN optimization. Our measurement observations shed
light on these important issues.

3. DATA SETS
Our empirical study is based on full packet traces collectedat

several distinct network edge locations. One is from a largeuniver-
sity’s access link to the commercial Internet, while the others are
from access links of enterprises of various sizes. The key charac-
teristics of our traces are shown in Table 1.

Enterprise Traces. We monitored access links at 11 corporate en-
terprise locations and collected several days worth of traffic going
into and out of these sites. We classify the enterprises as small,
medium or large based on the number of internal host IP addresses
seen (less than 50, 50-100, and 100+, respectively) in a typical 24
hour trace at each of these sites. While this classification is some-
what arbitrary, we use this division to study if there are redundancy
properties that are dependent on the size of an enterprise. Note
that the total amount of traffic in each trace is also approximately
correlated to the number of host IP addresses, though there is a
large amount of variation from day to day. Typical incoming traffic
numbers for small enterprises were about 0.3-3GB/day, for medium
enterprises were about 2-12GB/day and for large enterprises about
7-50GB/day. The access link capacities at these sites varied from a
few Mbps to several tens of Mbps. Note that even the largest enter-
prise site in our trace is one or more orders of magnitude smaller
than the University site in terms of number of IPs, traffic or access
link capacity. Finally, the total volume of enterprise network traffic
collected and analyzed is about 3TB.

University Traces. We monitored the access link of a large Univer-
sity located in the US. The University has a 1Gbps full-duplex con-
nection to the commercial Internet and has roughly 50,000 users.
We logged entire packets (including payloads) going in either di-
rection on the access link. Due to some limitations of our collec-
tion infrastructure (our disk array was unable to keep up with traffic
rate at peak utilization), we were only able to log traffic from one
direction at a time. Thus, we alternatively logged a few minutes of
traffic in each direction.

We collected two sets of traces at the University access link.
First, we collected several 60s-long traces between 6am on Friday,
Dec 15 and 9pm on Saturday Dec 16, 2006. On average, we col-
lected 3 traces per hour for either direction, resulting in atotal of
147 traces for each direction. We alternated between inbound and
outbound traffic, with a gap of 30s between the traces for the two
directions. The total size of these traces is 558GB. Henceforth, we
shall use termUniv-In-60sto refer to the inbound traffic traces, and
the termUniv-out-60sfor the outbound traffic traces.

Second, during Jan 23-25, 2007, we collected 1.1TB worth of
traffic during different hours between 10am and 7pm. Again, we al-
ternated between the incoming and outgoing directions; each trace
spanned≈ 600 seconds on average. Henceforth, we shall use the
termsUniv-In-longandUniv-Out-longto describe these traces.

Other uses of the traces.We also focus on the subset of the Uni-
versity traces involving traffic to and from a certain high volume
/24 prefix owned by the University. Several of the most popular
Web servers in the University are located on this /24. We use these
University trace-subsets as potential logs for evaluatinghow redun-
dancy suppression may help data centers.
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Figure 1: Protocol distribution over five days at the incoming
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In order to provide a flavor of these traces, we show the trace
composition by protocols across five week days for a large enter-
prise trace in Figure 1. These protocols were identified using TCP
port numbers. This figure highlights the significant differences in
network access link traffic since the 1999 enterprise tracesthat were
analyzed by Spring et al. in [26]. First, while [26] observeda
dominant fraction of traffic comprised of HTTP (64% of incom-
ing traffic), we see HTTP traffic is significant but not dominant
today, with large variations seen from day to day (20-55%). Sec-
ond, while [26] hardly observed any file transfer traffic (FTP1.9%),
the traffic over our enterprise access links comprise a significant
amount (25-70%) of file transfer traffic (SMB, NetBios, Source



Trace name Description Dates/Times Span of each trace Number of traces Total Volume (GB)

Small Enterprise Inbound/Outbound 1PM on 07/28/08 24 hours 8 100
( 3 sites, 0-50 IP) to 7PM on 08/08/08
Medium Enterprise Inbound/Outbound 1PM on 07/28/08 24 hours 8 400
( 5 sites, 50-100 IP) to 7PM on 08/08/08
Large Enterprise Inbound/Outbound 1PM on 07/28/08 24 hours 8 500
( 2 sites, 100+ IP) to 7PM on 08/08/08
Large Research Lab Inbound/Outbound 10AM on 06/16/08 24 hours 17 2000
( 1 site, 100+ IP) to 10AM on 07/03/08
Univ-In-60s Inbound traffic 6:00 AM on 12/15/06 60s worth of traffic 147 253

at university access link to 9:00 PM on 12/16/06
Univ-Out-60s Outbound traffic 6:00 AM on 12/15/06 60s worth of traffic 147 305

at university access link to 9:00 PM on 12/16/06
Univ-In-long Inbound traffic 10:00 AM to 7:00 PM, ≈600s worth of traffic 27 550

at university access link between 01/23/07 and 01/25/07
Univ-Out-long Outbound traffic 10:00 AM to 7:00 PM, ≈600s worth of traffic 27 550

at university access link between 01/23/07 and 01/25/07

Table 1: Characteristics of the data traces gathered from 12sites

Code Server, etc.). These file transfer traffic were directedto other
branch offices around the globe. This is likely due to a significant
shift in enterprise management approach in the last few years where
increasingly servers are centralized in a few locations/data centers
in order to save administrative expenses. Finally, Figure 2shows
protocol composition at a university outgoing link, and thetraffic
characteristics here are quite different from the enterprise - HTTP is
significant at 36% and a large portion of traffic, likely peer-to-peer,
is classified as others (note that the edonkey control trafficitself is
significant and identified separately).

4. ALGORITHMS FOR REDUNDANCY
ELIMINATION

Broadly speaking, redundancy in network packets can be elimi-
nated in two ways: 1) detection and removal of redundant strings
across different packets, also calledredundancy suppressionand
2) redundancy elimination within a packet usingdata compression.
We first discuss algorithms for performing redundancy suppression,
and then briefly discuss compression.

4.1 Redundancy Suppression
To date, middlebox-based techniques for redundancy suppres-

sion [12, 26] rely on the approach proposed by Manber [20], in
the context of identifying similar files in a file system. We first
describe this approach, referred to as MODP, and then describe an
alternative approach called MAXP. We then describe a technique
for estimating the performance of an optimal redundancy suppres-
sion algorithm and present performance comparisons of MODP
and MAXP with respect to the optimal.

Before we describe the MODP and MAXP algorithms, we first
describe the overall approach behind redundancy suppression for
network traffic, first proposed in [26]. Given a cache/dictionary
of past packets, redundancy suppression techniques need toiden-
tify contiguous strings of bytes in the current packet that are also
present in the cache. This is accomplished by identifying a set of
representative “fingerprints” for each packet and then comparing
these fingerprints with a “fingerprints store” that holds thefinger-
prints of all the past packets in the cache. The fingerprints serve as
“random hooks” into portions of the packet payload and are used
to find redundant content. For each fingerprint of the packet that
is matched against the store, the matching packet is retrieved and
the matching region is expanded byte-by-byte in both directions to
obtain the maximal region of redundant bytes. Once all matches
are identified, the matched segments are replaced with fixed-size

pointers into the cache, thereby suppressing redundancy. Finally,
the cache and fingerprint store are updated with the new packet. If
the packet cache is full, the earliest packet in the store is evicted
and all its fingerprints are freed. The key difference between the
MODP and MAXP algorithms is simply in how the representative
fingerprints are computed, which we describe next.

4.1.1 MODP

In this algorithm, Rabin fingerprints [23] of sliding windows of
w contiguous bytes of each packet payload are computed. Param-
eterw represents the minimum match size of interest. Smallerw
would help identify more matches at a potential cost of missing
larger matches. Typical values forw range from12 − 64 bytes.

For a packet with S bytes of payload,S ≥ w, a total ofS − w
fingerprints are generated. SinceS >> w, the number of such
fingerprints is approximately the same as the number of bytesin
the packet.

Since it is impractical to store all these fingerprints, a fraction
1/p of fingerprints are chosen whose value is0 mod p (p can be
chosen as a power of two for ease of computation). In this way,fin-
gerprints are chosen independent of their position and is thus robust
to reordering and insertions/deletions. In cases where theMODP
selection criteria does not choose even a single fingerprintfrom a
given packet, we explicitly enforce that at least one fingerprint is
chosen per packet.

Parameterp controls the memory overhead of the fingerprint
store with typical values ofp ranging from 32 to 128. For exam-
ple, in [12], using 16 fingerprints per 1500 byte packet (orp ≈ 90)
results in indexing memory overhead of 50% the cache size.

4.1.2 MAXP

One shortcoming with the MODP approach is that the finger-
prints are chosen based on aglobal property, i.e., fingerprints have
to take certain pre-determined values to be chosen. While this
would result in the desired fraction of fingerprints being chosen
across a large packet store, on a per-packet basis, the number of
fingerprints chosen can be significantly different and not enough
sometimes.

In order to guarantee that adequate number of fingerprints are
chosen uniformly from each packet, alocal technique such as win-
nowing [25] is essential. Winnowing, similar to the work by Man-
ber [20], was also introduced in the context of identifying similar
documents and can be easily adapted to identifying redundancy in
network traffic. The key idea behind winnowing is to choose those
fingerprints that arelocal-maxima (or minima) over each region



of p bytes, thus ensuring that one fingerprint is selected over every
segment of a packet.

Our MAXP fingerprint selection algorithm is based on the local-
maxima based chunking algorithm designed for remote differential
compression of files [13]. This algorithm is similar to winnowing
but has the advantages of imposing a lower bound on chunk length
and lower computational overhead since the local-maxima iscom-
puted using the bytes directly as digits (rather than computing a
hash first before the minima computation in winnowing). The de-
tails of the algorithm can be found in [13].

While the authors of winnowing show that, in the case of web
files, the MODP approach can result in no hashes being picked for
approximately30K of non-whitespace characters, it is not immedi-
ately clear whether similar deficiencies of MODP will be visible in
our setting, where the network traffic comprises a mix of protocols.

4.1.3 Optimal

For a given minimum match sizew, the optimal algorithm for re-
dundancy elimination would require that every fingerprint be stored
for potential future matches. Since the number of fingerprints is of
the order of number of bytes in the packet store, the memory over-
head of indexing every fingerprint is simply impractical.

We devise an alternate approach based on bloom filters in order
to estimate the upper bound of the optimal algorithm. Instead of
indexing every fingerprint, we store the fingerprints in an appropri-
ately sized bloom filter. We then identify fingerprint matches when
the bloom filter contains the fingerprint. Given all the matched re-
gions in the packet, we can identify the optimal set of matches that
maximizes redundancy elimination.

While bloom filters are susceptible to false positives, we choose
8 hash functions and a bloom filter size (in bits) that is16 times the
number of bytes in the packet store so that the false positiverate
is under0.1% [17]. One drawback of using a bloom filter is that
even though we know a match exists with high probability, we do
not know the location of the match. This is problematic in thecase
of overlapping matches of two or morew byte strings, since we are
unsure whether the overlapping matches correspond to the same lo-
cation in the packet store (resulting in maximum redundancyelim-
ination) or not. We optimistically assume that overlappingmatches
in the bloom filter would also overlap in the packet store and thus
the resultant computation provides an upper bound in the redun-
dancy suppression performance of the optimal algorithm.

Finally, if we need to model packet eviction from a full cache, a
counting bloom filter can be used instead of a simple bloom filter.

4.1.4 Comparison

In this section, we present a comparison of the bandwidth sav-
ings of the MODP and the MAXP algorithms with respect to the
upper bound of the Optimal algorithm. Given the high computa-
tional requirements for obtaining the results presented inthis sec-
tion, we use only small representative subsets (averaged over sev-
eral GBs/hours worth of traffic) of the overall traces. Whilewe
present extensive trace evaluations of MODP and MAXP in the
next section, here our goal is to evaluate their performancecharac-
teristics relative to the optimal.

We define bandwidth savings as the ratio of number of bytes
saved due to redundancy elimination as compared to the original
network traffic. While computing savings, we take into account all
overheads including packet header overheads and the shim head-
ers [12] necessary to encode the pointers in the MODP/MAXP al-
gorithms.

We use a minimum match window size,w, of 32 bytes (the im-
pact ofw is discussed in §6) and vary the sampling periodp from
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Figure 3: Comparison of MODP, MAXP, and Optimal

128 to 4. Results from two enterprise traffic traces are shownin
Figure 3(a) and (b), respectively.

First, notice that the performance of MODP and MAXP im-
proves as we decrease the sampling period, because we are index-
ing more and more fingerprints. We see that their performanceap-
proaches the upper bound of the optimal atp = 4. Second, we
see that MAXP outperforms MODP by up to 10% (2% absolute)
in Figure 3(a) while we see a much wider performance gap of up
to 20% (10% absolute) between MAXP and MODP in Figure 3(b).
In both traces, the selection of fingerprints by MODP is more clus-
tered while that of MAXP is much more uniform; in the case of
MODP, the next fingerprint is selected within 10 bytes of the last
selected fingerprint’s location in more than 30% of the casesfor
p = 32. In contrast, MAXP gives much more uniform selection;
the gap is less than 10 bytes in less than 2% of the cases. The
clustering impacts MODP more in the second trace than in the first
trace; that is, the number of redundant string matches and average
match size is similar in trace 1 between MAXP and MODP but
quite different in trace 2. This highlights the trace drivennature
of MODP’s performance and the advantage of uniform fingerprint
sampling approach of MAXP. As we shall see in the next section,
there are traces where MAXP outperforms MODP by up to 35%.

Finally, we choosep = 32 as the default sampling period in
the rest of the paper. Whilep = 4 delivers the best performance,
the indexing memory overhead atp = 4 is approximately 10X the
cache size and is not a desirable operating point. A choice ofp =

32 delivers performance within 10% ofp = 4 (10-20% of optimal
upper bound) and has a memory overhead roughly comparable to
the cache size.

4.2 Compression
Clearly, irrespective of whether redundancy suppression is be-

ing implemented or not, each packet can be compressed by a com-
pression algorithm such as the deflate algorithm used in gzip. The
deflate algorithm replaces repeated strings with pointers and fur-
ther uses huffman coding to efficiently encode commonly occurring
symbols. While the authors in [26] compared redundancy suppres-
sion with deflate, they did not consider a) the benefits of aggregat-
ing packets within a small time window, say 10ms, before applying
compression1 and b) the benefits of applying compression after re-
dundancy suppression and whether there are any complementary
gains. We evaluate these aspects in the next section.

1It is well-known that deflate does not compress very small packets
well as it needs to build a dictionary before the benefits of compres-
sion kick in. However, note that neither MODP nor MAXP bene-
fits from aggregation since the minimum match sizew << S, the
packet size.



Site #IP Trace size(GB) GZIP GZIP+10ms MODP MAXP MAXP@4xCACHE MAXP+GZIP+10ms MAXP-outgoing
Small Enterprise

1 44 5.8 19 25 35 37 39 41 61
2 31 21.7 7 10 40 54 59 61 54
3 18 0.2 15 21 37 38 38 41 41

Medium Enterprise
1 54 7.7 6 8 15 16 17 19 51
2 72 7.1 13 18 33 35 39 41 43
3 79 10.6 12 16 25 27 30 34 44
4 79 14.3 9 12 18 19 21 24 25
5 61 4.4 9 13 27 28 31 32 44

Large Enterprise
1 122 17.5 6 8 15 16 20 19 54
2 142 3 8 12 23 24 26 27 44
3 160 31 10 13 22 23 31 27 34

Table 2: Bandwidth savings across different enterprise sites in percentage

Traffic Type #IP Trace size(GB) GZIP GZIP+10ms MODP MAXP MAXP@4xCACHE MAXP+GZIP+10ms
Incoming 9360 22 4 5 9 9 12 10
Outgoing - 22 3 4 11 12 15 14
Outgoing /24 29 2.3 2 3 33 41 48 43

Table 3: Bandwidth savings across University traffic in percentage

5. MACROSCOPIC VIEW: CORE BENEFITS
In this section, we explore the core benefits of deploying redun-

dancy elimination on either end of the WAN access link to the
enterprise/university. Our analysis across diverse settings gives a
comprehensive view of when (and to what extent) redundancy elim-
ination techniques help.

We first evaluate the average bandwidth savings due to redun-
dancy elimination using the various algorithms described in §4,
individually, and in combination. We then examine the temporal
variability of the savings. Finally, we examine redundancychar-
acteristics for different protocols and then focus on HTTP in order
to answer the following question: how does protocol-independent
redundancy elimination compare with protocol-specific techniques
such as compression of HTTP objects and the use of web caches?

5.1 Bandwidth Savings
Tables 2 and 3 present the average bandwidth savings using the

different redundancy elimination algorithms described in§4 for the
enterprise and university traces, respectively.

Let us first focus on the enterprise results in Table 2. We classify
enterprise sites as small, medium, and large based on the number of
host IP addresses seen within the enterprise. While the total trace
size is mostly proportional to the number of IP addresses, wecan
see several outliers such as small enterprise site 2 with over 20GB
of traffic while large enterprise site 2 with only 3GB of traffic. Ex-
cept for the last column which presents savings on outgoing traffic,
the rest of the results are for traffic incoming to the enterprise, since
this is the dominant portion of traffic (≈ 80-90% of trace size). We
usew = 32, p = 32 and a default cache size of250MB (plus ap-
proximately250MB for indexing overhead), which corresponds to
roughly 2 to 10 minutes of traffic at peak utilization for the different
sites. We later show that even such a small cache size is sufficient
to achieve reasonable benefits.

We make several observations from the table. First, while per-
forming GZIP compression per packet provides some gains, the
gains are only half or less of the gains from the MODP or MAXP al-
gorithms. Second, while aggregating packets helps improveGZIP
gains, an aggregation latency of10ms still does not provide sub-
stantial gains. Third, MAXP outperforms MODP by 5-10% on

most of the traces (1-2% absolute bandwidth gains) and, in some
traces such as small enterprise 2, performs as much as 35% bet-
ter than MODP (14% absolute). This highlights the importance
of the uniform sampling approach of MAXP since one could very
well hit a large stream of bytes where the MODP algorithm misses
out on significant redundancy elimination opportunities. Fourth,
increasing the cache size by 4X provides incremental gains of 0-
35% (0-8% absolute), with large enterprises benefiting the most.
Fifth, applying GZIP with 10ms aggregation after MAXP provides
gains of 8-26% (3-7% absolute) over MAXP alone, delivering,in
most cases, comparable savings as using MAXP alone at 4X the
cache size. Thus, compression can be effective in complementing
the gains obtained via redundancy suppression. Sixth, the aver-
age savings are generally higher for the small/medium enterprises
as compared to large enterprises. Finally, the savings on outgoing
links (last column) are generally higher than the savings onincom-
ing links.

Examining the results for the university traces in Table 3, the
broad observations made earlier for the enterprise traces hold good.
Here, we only highlight a few salient points. Note that the incoming
and outgoing traffic are roughly similar, in size, unlike theskewed
incoming dominant case for the enterprise. Thus, we presentre-
sults for incoming and outgoing separately. Overall, the savings
are in the 10-15% range, continuing the trend seen earlier oflarger
sites resulting in lower average savings. Focusing specifically on
the outgoing traffic from high volume /24 prefix that hosts popular
web servers, we see that the trace demonstrates significant savings
of over 40%. Finally, note that MAXP significantly outperforms
MODP by 22% in this trace, again illustrating the advantage of
uniform sampling of the MAXP algorithm.

In summary, results from this section demonstrate that redun-
dancy elimination can bring down the average utilization ofaccess
links substantially.The benefits range from 10% to 60% in average
bandwidth savings, with smaller sites generally achievinghigher
savings. The MAXP algorithm outperforms the MODP algorithm,
sometimes substantially by up to 35%, and applying packet level
gzip compression with 10ms aggregation after MAXP providesfur-
ther gains of up to 26%.
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Figure 4: Volume, in Mbps, of original and compressed data

5.2 Temporal variations
While average savings provide a good measure of the overall ef-

fectiveness of redundancy elimination, it can hide significant tem-
poral effects. In this section, we study the temporal variability of
savings due to redundancy elimination.

In Figure 4(a) and 4(b), we plot the volume in Mbps of all bytes
for the Univ-In-60s and Univ-Out-60s traces (y1-axis). We overlay
the fraction of redundancy in the same figure as well (y2-axis). We
see a slight negative correlation between the fraction of redundancy
and the volume of traffic for inbound traffic (Figure 4(a)). Incon-
trast, there is a slight positive correlation for the outbound traffic
(Figure 4(b)). We also observed a slight positive correlation be-
tween link utilization and redundancy fraction in the outgoing /24
trace (not shown). The correlation between traffic load and redun-
dancy can play a vital role in terms of bandwidth savings at peak
traffic periods. In order to quantitatively study the impactof tem-
poral variability with respect to bandwidth savings, we define two
metrics:

• Peak and 95th-percentile savings: Since links are sometimes
charged and/or provisioned based on peak or 95th-percentile traf-
fic load [18, 24], we compare the peak and 95th percentile sav-
ings with the average savings available in the trace. We compute
these measures over a range of time buckets starting from 1 sec-
ond to 5 hours, and study how they vary both with respect to
these time buckets as well as compared to the average savings.

• Burstiness: We use the burstiness metric as computed using wavelet
based multiresolution analysis (MRA) [11] to study how redun-
dancy elimination impacts traffic burstiness at various timescales.
MRA-based energy plots depict the variance or burstiness of
traffic at different timescales and, in general, one would expect
compression to help reduce burstiness in traffic.

In Figure 5(a) and (b), we plot the mean, median, 95th percentile
and peak savings over buckets of different timescales (in log scale)
from a 24 hour trace for a large-sized and medium-sized enterprise,
respectively. Examining the figure for the large enterprise, the re-
sults are not very encouraging — the median savings is signifi-
cantly higher than the mean savings while the peak savings isgen-
erally lower than the mean savings, for almost the entire range. This
implies that redundancy elimination is negatively correlated with
load, i.e., at peak hours there is less redundancy than in lean hours.
The 95th-percentile savings measure is somewhat better than the
peak measure and approaches the mean savings for time units of
100-600 seconds. The results for the medium-sized enterprise,
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Figure 5: Savings in median, 95-percentile and peak usage

while also broadly similar to the large enterprise case, is better with
95th-percentile savings outperforming mean savings over alarge
range of time values. In case of University, we used Univ-In/Out-
60s traces for this evaluation as indicative of few 60 secondsam-
ples. We observed that peak savings and 95th-percentile savings
were better than mean savings for 60 second samples. For Univ-
outbound trace, peak savings and 95th percentile savings were 16%
and 14.5% as compared to mean of 12%, supporting earlier obser-
vation of slight positive correlation of redundancy savings with uti-
lization. For incoming trace, the differences were not significant
from mean savings of 10%. In conclusion, examining the average
savings over an interval does not depict a true measure of thetem-
poral variations in savings and we find that redundancy elimination
may be negatively correlated with load, resulting in lower peak sav-
ings as compared to average savings.
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We now examine the burstiness metric derived from wavelet-
based multiresolution analysis using an energy plot, whichdepicts
base-2 log of the energy (variance) against the base-2 log ofthe
time scale. Figures 6(a) and (b) depict the energy plot for the orig-
inal traffic, the compressed traffic and a hypothetical tracewhere
the original traffic is compresseduniformlyusing the average com-
pression savings value for a large enterprise and the university out-
going /24 traces, respectively. Note that the time scale ranges from
10 milliseconds to 1 hour (1 minute) for the enterprise (university)
traces. The differences between the two curves are quite obvious
— we notice that the compressed traffic does not reduce the bursti-
ness of original traffic significantly for most of the range ofthe
time scales depicted in enterprise case (the two curves practically
overlap compared to the uniform compression curve) while bursti-
ness is reduced significantly in the university trace, especially in
the 1 minute timescale. This lack of reduction in burstinessin the
enterprise trace is not surprising, given our observation that the me-
dian (peak) savings are generally higher (lower) than the mean sav-
ings across different timescales in the traces. On the otherhand, as
mentioned earlier, the positive correlation between link utilization
and redundancy in the outgoing /24 trace, helps reduce its overall
burstiness.

One caveat with this analysis is that we simply compute bursti-
ness of the original and compressed traces, assuming that the arrival
process does not change. However, redundancy elimination may
impact TCP’s congestion control behavior which can change the
arrival process and result in different burstiness values,especially
at the smaller timescales. We plan to study this issue in moredetail
by replaying the traces using TCP over a testbed and re-evaluating
the burstiness metric.

In conclusion, our temporal variability analysis presentsa mixed
picture of the benefits of redundancy suppression.While the av-
erage savings of up to 60% are significant, peak savings can be
significantly lower than the average savings. We do find that the
95th-percentile savings is closer to mean savings, at least over cer-
tain time scales, which may be helpful in curtailing usage costs in
certain situations. Finally,the overall traffic burstiness is not sig-
nificantly reduced in the enterprise case, implying that redundancy
elimination is not too helpful in making traffic more predictable
or enabling more effective traffic engineering on enterprise access
links.

5.3 Redundancy in protocols

Port # Protocol Univ-In-60s Univ-Out-60s
% of % redundancy % of % redundancy
bytes bytes

20 ftp-data 0.04 16.93 1.1 7.5
25 smtp 0.02 22.69 0.08 70.63
53 dns 0.22 21.39 0.14 47.99
80 possibly http 58.10 12.49 31.69 20.37
443 https 0.60 2.00 3.59 2.08
554 rtsp 3.38 1.99 1.34 24.40

Large Enterprise-In Large Enterprise-Out
445 SMB 45.46 21.40 45.44 17.18
80 HTTP 16.8 29.45 14.41 76.31
139 NetBios 2.88 7.98 0.8 36.52
389 LDAP 4.85 44.33 12.5 71.68
- Src Code Crtl 17.96 50.32 0.1 72.31

Table 4: Redundancy in key protocols

In Table 4, we show the redundancy that we observe in popular
network protocols that traverse the WAN access link in the univer-
sity and a large enterprise trace. For each protocol, we showthe
fraction of total bytes that belong to the protocol, and the fraction
of redundancy in the protocol’s payload. Our observations here are

Trace Object-GZIP MAXP MAXP+GZIP+10ms
Univ-In-long 7.69 10.94 14.93
Univ-Out-long 10.1 20.52 23.75
Univ-Out/24 6.25 53.49 54.69
Large Enterprise 24.45 29.45 34.1

Table 5: Redundancy in HTTP traffic

different from Spring et al. [26] in a few key ways. For example,
Spring et al. found HTTP traffic to be highly redundant (∼ 30%

after excluding web caching,∼ 54% overall) and SMTP traffic to
be modestly redundant (∼ 20%). In contrast, we see that the redun-
dancy in SMTP traffic is much higher (70% in the outgoing trace),
while the redundancy in HTTP traffic is lower (16% and 32% in
university and enterprise traces, respectively, using weighted in-
coming+outgoing bytes). The reduction in HTTP redundancy,as
compared to the results reported in [26], is likely due to theincreas-
ing usage of port 80 for all types of traffic such as media streaming,
games, etc. We also note that 5% of all bytes belong to HTTPS
and since the HTTPS payload is encrypted, it shows minimal re-
dundancy. Also, note the mix of protocols in the enterprise trace is
quite different from what was observed in the enterprise traces in
[26], where the top three protocols were HTTP (64%), RTSP (7%)
and Napster (3%).

The changing composition of protocols and also the evolution of
what comprises traffic over a well-known port such as port 80,ar-
gues for a protocol-independent redundancy elimination solution,
assuming it performs as well or better than alternative protocol-
specific solutions. We next focus on redundancy in HTTP and com-
pare protocol-independent redundancy elimination with object-level
compression and caching.

5.3.1 Redundancy in HTTP

In order to estimate the performance of HTTP with object-level
compression, we reverse-engineer HTTP object-level compression
from the network-level traces. We first parse each network trace
to extract different flows, and then use simple pattern matching to
identify the start of HTTP objects within each flow. We are able to
extract most of the HTTP objects into separate files in this manner.
We then apply gzip compression on each of the objects and com-
pare the compression savings against the savings from redundancy
elimination using the MAXP algorithm. The results are shownin
Table 5.

Note that the compression savings for GZIP represents an op-
timistic scenario since many objects may be dynamically gener-
ated or composed of latency sensitive parts and thus may not be
amenable to GZIP compression over the entire object. Even with
this optimistic assumption, we find that redundancy elimination de-
livers at-least 5-10% additional savings in all the traces and results
in significant out-performance (almost 50% additional savings) in
the case of university outgoing/24 trace (a popular web site), be-
cause of its ability to exploit redundancy across traffic from differ-
ent users.

Finally, we examined if HTTP object-level caching could help
in bandwidth savings. We analyzed cache control headers, pragma
responses and other metadata as in [26] to identify the cacheabil-
ity of HTTP objects. We found that many of the HTTP objects
were deemed non-cacheable and only about 5% bandwidth savings
would be accrued due to the deployment of a web proxy in the en-
terprise trace.

Note that, the authors in [26] did not compare their approach
against HTTP object-level compression and while they compared



against web caching, the cacheable percentage in our case islower.
This is likely due to a combination of higher percentage of dynam-
ically generated web pages and the advertising-related incentives
for web sites to serve pages directly to clients.

In conclusion, protocol-independent redundancy elimination is
an effective technique for suppressing redundancy and is not im-
pacted by the changing composition of the protocols that traverse
the access links of universities and enterprises. Furthermore, in
the case of HTTP, we found thatredundancy elimination performs
better than both object-level compression and caching, thus dimin-
ishing the need for deploying protocol-specific solutions.

6. MICROSCOPIC VIEW: UNDERSTAND-
ING REDUNDANCY

In this section, we perform in-depth empirical analyses to un-
derstand various redundancy characteristics. Our goal is to lever-
age these empirically observed properties to design effective redun-
dancy elimination techniques.

We first focus on the origins of redundancy: is the observed re-
dundancy mostly due to content common to different users or is
it mostly content from within each user’s protocol/traffic?If it is
mostly content from within each user’s protocol/traffic, wecould
simply employ redundancy elimination at each client-server end-
points, and argue for an end-to-end solution instead of deploying
expensive middleboxes. We then examine spatial characteristics
of redundant chunks in order to answer the following question:
is most of the savings from full packet matches or partial packet
matches? More generally, what is the distribution of sizes of the
identified redundant chunks? Next, we evaluate the temporalchar-
acteristics of matches: are matches mostly from recent packets in
the cache, or, more generally, what is the temporal distribution of
matches? Finally, we study the hit characteristics of redundant
chunks: is redundancy suppression due to a few popular chunks?
Does chunk hits have zipf-like characteristics that are seen in web
page requests?

One important caveat to note with respect to redundancy charac-
teristics studied in this section: these characteristics are identified
in the context of packet-level redundancy elimination approaches,
that use caches limited by DRAM sizes (GBs) and history in the
order of minutes/hours; these results may not be applicableto file-
level redundancy elimination approaches such as [21, 22] that typ-
ically store and index terabytes (days/months) of data (history).

6.1 Redundancy: Origins
Given that one of the major claims/advantages of middlebox-

based redundancy elimination devices is the ability to leverage re-
dundancy across traffic from different users and flows, it is impor-
tant to understand the composition of redundancy due to matches
between traffic from different users. In general, given a four-tuple
of source/destination IP addresses and ports, it would be interest-
ing to know, for each match, how many of these four-tuples were
common between the current packet and the matched packet. For
example, if most of the savings are due to matches between packets
with the same source and destination IP addresses, a purely end-to-
end solution would suffice, diminishing the need for middleboxes
that are being deployed today.

In this section, we quantify the contribution of matches to band-
width savings by dividing up the matches into the following five
classifications: a) intraflow (match was from a packet with the same
four-tuple), b) interflow (match from same source-dest IP but dif-
ferent ports), c) interdst (match from same source IP but different
destination IPs), d) intersrc (match from same destinationIP but
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Figure 7: Composition of redundancy (intra/inter-flow/user)

different source IPs), and e) internode (match from different four-
tuples). In [26], since the clients in the traces were anonymized,
they were unable to correlate redundancy by four-tuples. They
found that redundant traffic is mostly (78%) from the same server
(interdst) and hypothesized that a server to proxy redundancy elim-
ination would be advantageous as compared to a pure end-to-end
solution.

Figure 7 presents the match origin classification for various en-
terprise (incoming-only) and university traces. Based on the figure,
we make the following observations. First, in the case of small
and medium enterprises, approximately 90% of savings are due
to intraflow and interflow matches (same source-dest IP), imply-
ing that a pure end-to-end solution would capture the vast major-
ity of the middle-box savings. In fact over 90% of the interflow
matches (not shown) also had the same source port number, in-
dicating that the flows are likely part of the same protocol. Sec-
ond, while the large enterprise does leverage traffic acrossdiffer-
ent users, it still has about 75% of savings due to matches from
flows with the same source-dest IP addresses. Third, in the case
of university traces, we see only 10-40% contribution to duein-
traflow/interflow with a large contribution due to interdst,espe-
cially in the case of the outgoing/24 trace, representativeof a busy
web server. While we do see variations of these contributions in dif-
ferent traces (the enterprise results are averages over several days),
these results were generally not sensitive either to cache size used
for the redundancy elimination or to time of day, i.e., peak/lean
hour (results not shown).

In summary, the key takeaways are:1) An end-to-end redun-
dancy elimination solution could provide significant portion of the
middlebox savings in small/medium enterprises, and to an extent,
large enterprises too, diminishing the need for deploying an expen-
sive middlebox-based solution. 2) A middlebox-based solution is
more compelling at access links to busy web servers.

6.2 Redundancy: Spatial view
In this section, we seek to understand if the contribution tothe

observed redundancy comes mainly from full packet matches,or
partial packet matches. If the former is true, one can designsim-
pler techniques to index a packet than Spring et al.’s proposal. For
instance, rather than store multiple fingerprints per packet, we can
store a single hash for the entire packet’s content. If the matches
are due to partial packet matches, understanding the match length
will help advise on the appropriate minimum match size parameter,
w, used by the redundancy elimination algorithms.
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Figure 8: Match length distribution and contribution to tot al
savings. (a) and (b) are for large enterprise. (c) and (d) arefor
University inbound traces

In Figure 8(a), we show the percent of matches for chunks of var-
ious sizes for a large enterprise. We see that over 70% of matches
are for chunks of size less than 150 bytes and less than 10% of
matches are from full 1500 byte packet matches. On the other hand,
Figure 8(b) shows the savings contribution of chunks by their sizes
and we see that nearly half of the savings are due to large, full
packet matches and with approximately 20% due to matches of
size less than 150 bytes. Examining at an even finer granularity,
we found that approximately 4% of savings was due to 50 bytes or
smaller matches (not shown).

Similar results are seen in the University trace as well. In Fig-
ure 8(c) for Univ-Incoming trace, we see that around 70% of the
matches are for chunks of size less than 150 bytes and full 1500
byte packet matches are less than 5% of the matches. Figure 8(d)
shows that less than quarter of the savings are due to large full
packet matches, while 20 % of the savings are due to matches of
size less than 150 bytes.

Thus,while full packet matches provide 20-50% in overall sav-
ings, in order to get the maximum benefit of redundancy elimina-
tion, we need to index the vast majority of small packet matches of
size less than 150 bytes.

6.3 Redundancy: Temporal view
In this section, we would like to understand the temporal locality

of matches, i.e., when a redundant chunk is matched between the
current packet and a packet in the cache, how far in the past isthe
matched packet? We consider two temporal metrics: 1) time be-
tween current packet and matched packet and 2) time between the
final most recent match and the first match for a given chunk. Lets
consider the first metric now. In order to have a normalized met-
ric that works both during peak and lean traffic periods, we use the
percent of cache size between the current packet and the matched
packet as the normalized temporal metric.
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Figure 9: Redundancy: Temporal Characteristics

In Figure 9(a), we plot the redundancy match contribution to
overall savings as a percentage vs the recency of match (computed
as a percentage of cache size). We use a default cache size of
250MB. The curves rise steeply for all the traces with 60-80%of
the savings due to matches with packets in the most recent 10%of
the cache. This characteristic implies that a) adding packets to the
cache in a FIFO manner and evicting the oldest packet is a good
strategy and b) small cache sizes can provide bulk of the savings of
a large cache.

Let us now consider the time difference between the final timea
specific chunk was matched and the first time the same chunk was
matched. This metric captures the duration for which a chunkis
useful. Note that the time difference can be much larger thanthe
holding time of the cache since popular chunks can recur through-
out the trace and the time difference can be as large as the trace
length (24 hours). In Figure 9(b), we plot the CDF of the time
difference in log scale between the final and first matches of each
unique chunk. Note that for 60% of the chunks, the time difference
is less than 100 seconds and for approximately 80% of the chunks,
the time difference is less than 1000 seconds. This again highlights
thehigh degree of temporal locality of matches that a small cache
would be able to accommodate.
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Figure 10: Redundancy vs Cache size

Figure 10 plots the savings versus cache size for the enterprise
and university traces, respectively. We can see that small cache
sizes do indeed provide significant percentage of the savings, with
the “knee” of the savings curve between 100-250MB.

6.4 Redundancy: Hit Distribution
We now examine if the redundancy in network traffic is primar-

ily due to a few pieces of content repeated multiple times or mul-
tiple pieces of content repeated a few times each. If the former is



Counts Length Protocol description
268K 128 various string of zeros
30K 42 SMB content fragment
28K 68 HTTP content fragment
24K 50 SMB content fragment
21K 8 Kerberos full packet

Table 6: Characteristics of popular chunks

true, then a small packet store would suffice to identify a significant
fraction of the redundancy. If the latter is true we may have to store
many more chunks of data in a much larger packet store.

More generally, we would like to understand the distribution of
frequency of unique chunk matches. Given that researchers have
shown that web page access frequency exhibits a zipf-like distribu-
tion [14], it would be interesting to see if the same phenomena also
holds for chunk matches. Zipf-like distributions will haverelative
probability of a hit for theith most popular chunk proportional to
iα for someα close to−1.
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Figure 11: Chunk match distribution and their contribution to
total savings

In order to answer this question, we keep track of each matched
chunk and count how many times the identical chunk is matched
in the entire trace. In Figure 11(a), we plot the frequency ofchunk
hits versus the chunk rank, sorted by the number of hits, in a log-
log scale for a large enterprise trace. The linear distribution in the
log-log plot confirms the zipf-like nature of the chunk hits.We also
fit a zipf-distribution for the bulk of the data points, ignoring the
top 100 chunks and chunks with exactly 1 hit, and find that the best
fit results inα = −0.97 (a fit over all the data points results in
α = −0.9). Similar zipf-like characteristics are also seen in other
traces (not shown).

Figure 11(b) shows the contribution of the chunk hits to the band-
width savings versus the percentage of chunks sorted by their con-
tribution. It is clear from the figure that about 80% of savings come
from 20% of the chunks. On the other hand, in order to obtain the
remainder 20% of savings, we need to retain 80% of the chunks.
This implies that a small cache should be able to capture bulkof the
savings but capturing the full savings would require a largeamount
of cache. Thezipf-like chunk hit distribution thus explains the di-
minishing returns of the large cachesize seen in Figure 10.

Table 6 lists some of the characteristics of popular chunks in
the enterprise trace. Most of these chunks are less than 150 bytes
long and are content fragments of a packet except for one chunk
of 8 bytes that represents a full packet. The small chunk sizes seen
motivate the need for using a small minimum match size parameter,
w.

7. FINDINGS AND IMPLICATIONS
Protocol-independent redundancy elimination techniqueshave

become increasingly popular in recent years and are poised to play
an important role in the current and future Internet architecture.
Our goal in this paper was to conduct an in-depth measurement-
based study of the fundamental issues pertaining to the benefits,
trade-offs and design issues underlying these techniques.

In this section, we summarize our empirical findings and iden-
tify important implications on the design and usage of redundancy
elimination and the role it can play in network infrastructure and
protocols.

• Protocol composition: Protocol composition over the access
link has changed significantly since the work by [26]. Specif-
ically, enterprise traffic (25-70%) has significant amount of file
access traffic (SMB, NetBios, etc.) due to the likely shift inen-
terprise management approach towards use of centralized servers
in data centers. The changing composition of protocols over
time makes a strong argument for the sustained relevance of
protocol-independent redundancy elimination techniques.

• Algorithm: While network traffic redundancy suppression pro-
posals [12, 26] rely on a fingerprint selection algorithm, termed
MODP in this paper, we find that an algorithm that ensures more
uniform selection of fingerprints using a local property such as
local-maxima, termed MAXP, outperforms MODP by 5-10% on
most traces and as much as 35% in some traces.

• Packet-level compression:We find that packet-level compres-
sion can be effectively applied after redundancy suppression, de-
livering incremental gains of up to 26%.

• Object-level compression: Protocol-independent redundancy
elimination outperformed both HTTP object-level compression
as well as caching, with significant out-performance in the case
of the University /24 trace.

• Temporal variability: We find that redundancy elimination does
not reduce traffic variability commensurately. While 95th-percentile
savings deliver close to average savings over some time inter-
vals, peak savings are generally lower than average savingsin
many of the traces. The burstiness of traffic, as measured by the
energy metric derived using wavelet-based multiresolution anal-
ysis, is typically not commensurately lower due to redundancy
elimination.

• Origins: In the enterprise traces, we found that 75-90% of sav-
ings were due to intra-user matches between packets that had
the same source and destination IP addresses. This argues for
a pure end-to-end redundancy elimination solution, diminishing
the need for the deployment of middleboxes in most enterprises.
On the other hand, based on our university traces, we found that
a middlebox solution is beneficial in busy web server settings
where significant portion of redundancy is due to inter-usertraf-
fic matches.

• Spatial view: We find that most matches (70%) are small in size
(less than 150 bytes) while only about 10% of matches are full-
packet matches. In terms of contribution to savings, full packet
matches contribute to (25-50%) of total savings while packets of
size less than 150 (50) bytes contribute to about 20% (4%) of the
savings. Thus, simple techniques like indexing only full packets
can provide up to half of the total savings, while capturing the
full savings involves a significant amount of indexing of small
packet fragments.

• Temporal view: We find that most matches are from recent
packets in the cache. Thus, a FIFO-based approach for storing
packets in the cache would work well.



• Match Distribution: We find that the chunk match hit follows
a zipf-like distribution, with a few chunks that extract a large
number of hits and vast majority of chunks with one or two hits.
This implies that smaller caches can provide bulk of the gains of
redundancy elimination and increasing cache size would provide
diminishing returns in terms of bandwidth savings.

8. CONCLUSION
Following the work of Spring et al. in 2000, a slew of commer-

cial WAN optimization middleboxes have emerged which attempt
to improve network link performance by suppressing repeated strings
of bytes in network packets. Today, there are many deployments of
these protocol-independent redundancy elimination techniques at
enterprise and data center access links and across congested ISP
links. Based on the perceived benefits of these techniques, recent
efforts have argued for integrating redundancy elimination into net-
work infrastructure and protocols [12, 19, 16].

Despite the increasingly important role of redundancy elimina-
tion in the network infrastructure, very little is known about the
range of benefits and trade-offs these approaches offer today, and
the fundamental issues underlying their design. Using packet traces
collected at twelve distinct network vantage points, we showed that
packet-level redundancy elimination techniques can deliver average
bandwidth savings of 15-60% for enterprise and university access
links as well as the links connecting busy web servers. However,
in the case of enterprise traffic, we found that the overall burstiness
of traffic was not significantly reduced and the savings during peak
traffic periods was variable.

We found several interesting characteristics of redundancy in
network traffic, summarized in the previous section. One surpris-
ing implication of our findings was that a client-server redundancy
elimination solution could provide approximately similarsavings
as a middlebox in small/medium, and to an extent, large enterprises,
obviating the need for deploying an expensive middlebox-based re-
dundancy elimination solution. Designing such an end-to-end re-
dundancy elimination system that is scalable and efficient is a topic
for future work.
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