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Abstract
Navigating the performance and efficiency trade-offs is criti-
cal for serverless platforms, where the providers ideally want
to give the illusion of warm function startups while main-
taining low resource costs. Limited controls, provided via
toggling sandboxes between warm and cold states and keep-
alives, force operators to sacrifice significant resources to
achieve good performance.

We present Medes, a serverless framework, that allows op-
erators to navigate the trade-off space smoothly. Our approach
takes advantage of the high duplication in warm sandboxes
on serverless platforms to develop a new sandbox state, called
a ‘dedup state’, that is more memory-efficient than the warm
state and faster to restore from than the cold state. We use
innovative techniques to identify redundancy with minimal
overhead, and provide a simple management policy to bal-
ance performance and memory. Our evaluation demonstrates
that Medes can provide up to 3.8× better end-to-end latencies
and reduce the number of cold starts by 10-50% against the
state-of-the-art baselines.

Keywords: Serverless, Memory Deduplication, Cloud Com-
puting, Virtualization

1 Introduction
In the serverless computing paradigm, developers submit a
piece of code (function) to the serverless platform. A function
instance is invoked based on a developer provided-trigger
(e.g., user interaction) and launched to execute in a sandbox
(e.g., a container) with the needed libraries and dependencies
loaded. The platform scales function instances based on invo-
cation rate. Serverless computing has become popular owing
to the reduced developer burden in resource management and
its pay-per-use model.

Serverless providers must balance performance require-
ments with resource efficiency as they handle demanding
workloads. Fast function instance start times are critical to
performance, and efficient resource usage requires matching
active sandboxes to demand.

Conventionally, serverless platforms manage performance
and efficiency by toggling sandboxes between two states: cold
and warm (or paused). Cold sandboxes induce long startup
delays (typically in order of seconds [5, 7, 8, 10, 14, 16,

18]), while warm sandboxes kept in memory enable faster
reuse but come with resource expense. This approach creates
challenging trade-offs between performance and efficiency,
making it difficult for operators to control and tune resource
use for optimal performance.

In our paper published at EuroSys’22 [15], we present a
new mechanism that improves the flexibility of the trade-off
space, allowing for better performance and efficiency than
the platforms today, while providing operators with a simple
way to navigate the trade-off space. Our work improves the
trade-off space by introducing a new sandbox state with a
memory footprint and startup performance in between those
of cold and warm states. The new sandbox state that we in-
troduce is called the deduplicated state (or dedup for short).
In this state, all the redundant memory chunks of the sand-
box are “removed” and only “unique” chunks are stored in
memory. The dedup state is built on extending the “reusable
sandbox” construct that underlies the warm state today to that
of a reusable sandbox chunk (RSC).
Reusable Sandbox Chunk: An RSC corresponds to any
memory chunk of warm sandboxes that can be “re-used” by
other sandboxes. Our empirical study [15] shows that signif-
icant duplication exists in the memory states of warm sand-
boxes: (1) sandboxes of the same function have upto 85%
duplication in their memory state; (2) even across sandboxes
of different functions, we observe upto 80-90% duplication.

Specifically: (1) we store only one copy of an RSC in a
“base” sandbox, and dedup-ed sandboxes’ memory contents
exist as a collection of local completely-unique chunks and re-
dundant RSCs in multiple (possibly remote) base sandboxes;
(2) prior to launching a function, we restore a dedup-ed sand-
box by putting together unique local chunks with redundant
RSCs read over the network from remote base sandboxes.

Our work presents Medes (Memory Deduplication for
Serverless), a novel serverless framework that incorporates
the dedup sandbox state. However, identifying chunk-level
duplication between the memory states of two sandboxes,
and exploiting said redundancy on a large serverless platform,
spanning across multiple nodes is a challenging task. Each
node can have a large number of sandboxes in memory at the
same time and each sandbox can have tens of thousands of
pages in its memory state. Medes designs an efficient mecha-
nism to perform this deduplication (details in Section 3).
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Figure 1. Memory redundancy in serverless workloads: (a) Between sandboxes of the
same function w.r.t. chunk size. (b) Cross function redundancy of functions on vertical
axis w.r.t. those on horizontal axis (64B chunks).
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Figure 2. Medes Architecture.

The deduplication mechanism in Medes ensures that the
dedup state has a significantly smaller memory footprint than
warm sandboxes and that dedup startups are significantly
faster than cold starts. Deduplication leads to smaller memory
usage and the resulting memory savings can be used to keep
more sandboxes, leading to improved performance. Thus,
the dedup state can improve the flexibility of the memory-
performance trade-off in serverless computing.

Medes exposes a simple interface to jointly control the num-
ber of warm and dedup sandboxes in memory through which
operators can: (a) reason about the performance achieved for
a given memory budget, (b) control performance (memory)
by directly adjusting memory footprint (performance goals),
and (c) customize the policy for different serverless functions.

Our evaluation of Medes against state-of-the-art keep-alive-
based baselines on real-world serverless workloads shows
that Medes can provide 1×-2.75× smaller tail latencies and
10-50% fewer cold starts compared to baselines. We achieve
this by heavily deduplicating warm containers, leading to
7.74-37.7% more sandboxes in memory compared to the alter-
natives. Crucially, these benefits are enhanced under memory
pressure, where Medes provides up to 3.8× improvement in
the end-to-end latencies.

2 Medes Overview
2.1 Duplication in Sandbox Memory States
We compare the memory state of sandboxes corresponding to
several real-world serverless functions. We use the Function-
Bench [13] suite which consists of python serverless functions
corresponding to various common use cases. The memory
state is obtained by checkpointing sandboxes using CRIU [1].
Same Function Sandboxes. Figure 1a demonstrates that
there is significant redundancy — as high as 90% — in
sandboxes belonging to the same function. An interesting
observation here is that the amount of redundancy reduces as
the chunk size increases. This is because with larger chunk
sizes, the probability of one of the bits differing, in the two
chunks, increases. In a nutshell, we see that with a sufficiently

fine-grained chunk size, serverless functions exhibit a high
degree of redundancy across its sandboxes.
Different Function Sandboxes. Next, we measure redun-
dancy across different function sandboxes. To do so, we mea-
sure the redundancy of each serverless function in Function-
Bench relative to the other serverless functions (using a chunk
size of 64B). We see in Figure 1b that there exists redundancy
across sandboxes corresponding to different functions and the
extent depends on the underlying runtime and libraries that
are common across the functions. For example, FeatureGen
and ModelTrain both use the common module of TfIdfVec-
torizer. This implies that the entire memory state that the
TfIdfVectorizer maintains will likely be largely present in
both functions.
2.2 Medes Architecture
We now desribe the system design for Medes that enables
it to exploit the heavy redundancy in memory states. Fig-
ure 2 shows the architecture of Medes. Medes consists of a
controller and several nodes where functions are executed,
interconnected by a cluster/datacenter network.
Medes Controller: The controller has four major compo-
nents: 1) the interface to clients; 2) the scheduler that keeps
track of the system-wide status (e.g., the resource usage and
the warm and dedup sandboxes on each node), and assigns
incoming request to an existing or new sandboxes; 3) the
fingerprint registry, which is a hash table that contains the
hash values of RSCs and their corresponding location in the
cluster for deduplication; and 4) the policy module that stores
policy parameters such as the latency and memory constraints.
Specifically, Medes adds the latter two components to support
deduplication, to the controller used by common serverless
platforms [2].
Medes Nodes: Each node consists of 1) the daemon that ma-
nipulates local sandboxes upon the controller’s directives; and
2) the dedup agent that performs the deduplication for local
sandboxes as indicated by the controller (via the daemon), and
restores local sandboxes from the dedup state when requests
are assigned to them.
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Figure 3. Lifecycle of a sandbox running on (a) Existing Platforms (b) Medes

2.3 Sandbox Lifecycle
To offer perspective into Medes’ operation, Figures 3a and 3b
contrast the sandbox lifecycle on existing platforms and Medes.

The client submits a function request to the controller’s
interface. The scheduler chooses an available sandbox that
can run the function, and hands over the request to the daemon
on the chosen sandbox’s node. If no sandbox is available, the
scheduler spawns a new sandbox. Upon completing execution,
the sandbox goes into a warm state, and is removed at the
expiry of a ‘keep-alive’ period or if it is evicted in the face of
memory pressure.

Instead of purging the sandbox after a single keep-alive
period, Medes allows running a custom policy to determine
whether the sandbox is to be transitioned into warm state
or dedup state in order to manage memory and performance.
This policy module is invoked periodically by the dedup agent.
Medes introduces two knobs for this purpose.

The first is called the ‘idle period’. Upon expiry of this
period, the Dedup daemon checks with the Medes controller
whether to dedup the sandbox or keep it warm. If the con-
troller decides to dedup, the dedup agent invokes the dedup
operation (Section 3.1). During the dedup operation, the agent
checks the chunks against the RSC hash values in the finger-
print registry to remove redundant parts of the state, and
records RSC locations (obtained from the registry) locally.
These ‘dedup’ sandboxes can later be invoked for incoming
requests by performing the restore operation (Section 3.2),
in which the memory pages are reconstructed by reading the
recorded RSC locations.

The second parameter is the ‘keep-dedup period’. When
this expires, the local node purges the dedup sandbox from
memory. This is similar to the ‘keep-alive’ period, but sepa-
rating the two enables Medes to keep dedup sandboxes for a
different duration of time, based on the memory-performance
trade-off imposed by dedup sandboxes.

3 Medes Dedup and Restore Operations
To extract the complete benefits offered via the dedup sandbox
state, the deduplication (dedup) and restoration operations
need to be scalable and fast as typically a serverless platform
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Figure 4. Medes Workflow of the Deduplication Mechanism: 1. Sandbox
checkpoint gives the dump of the memory state. 2. RSCs from the mem-
ory state are sent to the global hash table on the controller for lookup. 3.
The controller sends back the information about redundant RSCs. 4. The
Dedup Agent reads all the physical addresses sent by the controller and
computes patches of the pages with RSCs. 5. Finally, the memory checkpoint
is removed, and only the (smaller) patch is kept in memory.

handles execution multi-tenant requests, whose load can grow
arbitrarily.

We briefly explain how these operations are optimized for
large-scale systems here. More details can be found in the
full paper [15].

3.1 Dedup Op Deep-Dive
Conversion of a warm sandbox to a dedup sandbox, through
the deduplication operation consists of the two high-level
steps - redundancy identification and redundancy elimination
(see Figure 4). The local dedup agent on the machine initi-
ates a memory checkpoint of the warm sandbox and interacts
with the controller to identify duplicate memory chunks (re-
dundancy identification) by sending ‘page fingerprints’ for
each memory page to the controller. The controller uses these
fingerprints to find the best ‘base page’. The dedup agent
then deduplicates each page with its base page (redundancy
elimination). Thus, Medes reduces the memory footprint of
deduplicated sandboxes by only maintaining patches (includ-
ing unique leftover pages and memory chunks). We explain
‘page fingerprints’ and ‘base pages’ below.
3.1.1 Page Fingerprints.
For each page to be deduplicated, we use a small subset of
64B memory chunks, value sampled based on the last two
bytes of the chunk, to act as a fingerprint for that page. We
scan the page over a rolling 64B window and include a 64B
chunk in the fingerprint if its last two bytes match a specific
pattern. This approach has been used for VM page similarity
and redundancy elimination by prior works [4, 12]. Medes
renews it for large serverless clusters.

We use five such value-sampled chunks per page. This un-
ordered set then acts as a fingerprint of the page. The number
of overlapping fingerprints between two pages represents the
similarity between the two pages. Value sampling is computa-
tionally lightweight as it involves a single linear scan and an
equality check over two bytes. Thus, we eliminate the need
to check for each 64B chunk separately, thereby reducing the
communication and latency of the Dedup Op.



3.1.2 Base Pages.
For each sampled memory chunk, Medes looks it up in the
fingerprint registry to find corresponding RSCs. Each RSC
points to a page in memory, giving a set of candidate pages
for each memory page. From this set, Medes selects the best
candidate page as the "base page" for the respective dedup
page. The base page is chosen based on the maximum number
of duplicate chunks amongst the sampled chunks, and if there
are ties, the page available locally on the same machine is
selected.
3.1.3 Local Page Diff.
A diff or a patch is computed for the deduplicated page against
the base page. This patch consists of the unique bytes of
the deduplicated page and short metadata information about
which range of bytes from the base pages should be appended
at what offsets on the patch. Since the base page is likely to
be significantly similar to the dedup page, the computed patch
is smaller in size than the original page, resulting in a lower
memory footprint per page.
3.1.4 Low-footprint Fingerprint Registry.
We now discuss which sandboxes to use to populate the reg-
istry. Inserting memory chunks from all sandboxes would
cause a memory footprint explosion. Even with sampling,
nearly 100K chunks per sandbox remain and storing all of
them results in high memory usage as platforms can have
thousands of sandboxes at once.

Hence, we demarcate specific warm sandboxes on the plat-
form as ‘base sandboxes’ and only the unique memory chunks
from these are stored in the registry. This decision is made
because the percentage of memory duplication between any
two sandboxes of a given pair of functions remains constant.
3.2 Restore Op Deep-Dive
The restore operation involves reconstructing the sandbox
using the stored patches and the corresponding (possibly re-
mote) base pages. Figure 5 shows a pictorial representation
of the restoration procedure. The key challenge is to ensure
that the reconstruction and restoration process is fast.

Medes employs three techniques towards this goal. First,
Medes performs the time-consuming [14] steps of restoration
prior to deduplicating the sandbox, leaving only memory state
restoration during dedup starts. This approach of performing
offline restore has been explored by other works as well [8].
Second, Medes keeps all information required to complete
the restore operation (e.g., patches and the address of the base
page) locally with the Dedup Agent at the machine where the
deduped sandbox resides. Finally, we leverage the RDMA
read operation to directly fetch base pages from the remote
machine’s memory, which avoids the use of remote CPU for
communication and (also) yields low latency [19].

4 Sandbox Management Policy
With Medes, our objective is to expose an intuitive interface
for the providers to specify the performance expectations on
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Figure 5. Workflow of the Restoration Mechanism: 1. The scheduler decides
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a per-function basis and the efficiency expectations at the
cluster level. The platform can then leverage the ability to
deduplicate sandboxes to navigate the memory-performance
tradeoff.
4.1 Dedup and Restore Overhead Considerations
Compared to warm sandboxes, dedup sandboxes take addi-
tional time to reconstruct the sandbox checkpoint and restore
the sandbox memory state from the checkpoint. Furthermore,
the reconstruction of the sandbox checkpoing also entails ad-
ditional memory to read the base pages and compute patches.
Hence, frequent dedup starts can lead to memory overheads
outweighing the memory savings.
4.2 Optimization Problem
In Medes, we formulate an optimization problem to solve for
the number of warm and dedup containers (denoted by W
and D respectively). The incoming function load becomes
a constraint and Medes can optimize for either the memory
usage of the platform, or the function latency, while limiting
the other.
4.2.1 Platform Constraints
If the current number of sandboxes on the platform is denoted
by C and the desired request arrival rate is denote by λmax ,
then we have:

C1 : W + D = C (1)

IfC is insufficient to handle the load, the controller spins up
additional sandboxes. Similarly, the constraint for the function
demand can be given as:

C2 :
W

RW
+

D

RD
> λmax (2)

where RW is the warm sandbox reuse period, and RD is the
dedup sandbox reuse period. The sandbox reuse period is
the total time taken for a sandbox to start up and execute a
function.
4.2.2 Platform Efficiency and Latency Measures
Denoting the memory footprint of warm sandboxes as mW ,
the memory footprint of dedup sandboxes as mD and the



overhead of dedup starts as mR , we can express the total
memory usage of D dedup andW warm sandboxes as:

M =W ×mW + D × (mD +mR ) (3)

If all the dedup and warm sandboxes on the platform were
used to fulfill λmax requests in unit time, the average startup
latency can be given as:

S =
1

λmax

(
W ×

1
RW

× sw + D ×
1
RD

× sd

)
(4)

where sW and sD are the warm and dedup startup latencies
respectively.
4.2.3 Policy Interface
Using the aformentioned platform constraints, providers can
configure the policy in two ways (combinations of these can
also be configured trivially):
Meet an average startup latency target: Suppose the target
is α · sW , where α > 1. In this case, the policy optimally
keeps sandboxes so as to occupy least memory footprints
while meeting the latency targets:

Min
W ,D

M s .t . C1,C2,S < αsW (5)

Limit the cluster memory usage: Suppose the maximum
desired memory usage is M0. The policy optimally manages
sandboxes so as to get the best startup latency, using the
following optimization problem:

Min
W ,D

S s .t . C1,C2,M <M0 (6)

The solution to the above optimization problem acts as
a guidepost for the decisions of the sandbox management
policy. Note that the above policy applies for a single function.
Serverless providers can, therefore, regulate performance and
memory usage for each function independently, allowing
critical functions to be run on a tight latency constraint, while
best-effort functions can be run on a loose latency constraint.
Providers can also limit the overall memory usage for multi-
function workloads, and Medes can divide the total memory
budget proportional to their average request arrival rates.

5 Evaluation
The prototype for Medes is developed in C++ and open-
sourced at https://github.com/DivyanshuSaxena/Medes.
We highlight the performance benefits of Medes and its flexi-
bility in navigating the performance-resource trade-off.
5.1 Experiment Setup
We evaluate Medes on a 20 node cluster on CloudLab [9]. All
nodes are accessible via an RDMA network.
Baselines: We compare Medes against state-of-the-art server-
less platforms using two baselines. First is a fixed keep-alive
policy, commonly used by popular serverless platforms (e.g.,
AWS Lambda and OpenWhisk). For our experiments, we take
a fixed ten-minute duration as the keep-alive period. Second
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Figure 6. (a) Distribution of factor of improvement (ratio of per-request
end-to-end latencies) over Fixed keep-alive and Adaptive keep-alive policies.
(b) Function-wise improvements in the number of cold starts and 99.9th
percentile of end-to-end latencies.

is an adaptive keep-alive policy [16] (adopted by Azure Func-
tions), wherein the keep-alive period is chosen based on the
request inter-arrival times.
Workloads: For the request arrival patterns, we use multiple
one-hour traces from the Azure Function trace [16], scaled up
5×. For the function environments, we use all ten functions
from the FunctionBench [13] suite.
5.2 Function Startup Time
Methodology. We operate the platform policy with latency
as the objective function (Equation 5). We keep a fixed 2GB
software-defined per-node memory limit and provide this as
the parameter to the sandbox management policy.
Tail Latencies: We observe that Medes can provide up to
2.25× and 2.75× improvements in the end-to-end latencies
(Figure 6a). For a small number of requests (< 1%), Medes
leads to larger end-to-end latencies. This is because some
requests, which would otherwise have been served by warm
sandboxes, are served by dedup sandboxes in Medes. How-
ever, in the tail Medes provides better performance because
the tail performance is impacted by cold starts. Figure 6b
shows that Medes gives up to 2.24× and 2.3× improvement,
for the 99.9th percentile latencies, against fixed and adaptive
keep-alive policies, respectively.
Sources of Improvement. The primary source of improve-
ment is the reduction in the number of cold starts. Figure 6b
shows that Medes can provide up to 1.85× and 6.2× reduc-
tions in the number of cold starts across functions, compared
to the fixed and adaptive keep-alive policies, respectively.

https://github.com/DivyanshuSaxena/Medes
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Figure 8. Cold starts incurred by Medes versus the fixed and adaptive keep-alive
policies under various scenarios of memory pressure: (a) Different cluster pool sizes,
(b) Function-wise breakdown for 30G and 20G cases

5.3 Cluster Memory Usage
Methodology. We operate the policy with memory usage as
the objective function (Equation 6). We intentionally use a
tight latency bound for the workload (α in Policy P1 is set
to be 2.5). Note that the baselines policies do not have any
method to ensure that a latency bound is met.
Total cluster memory usage: Figure 7a shows that Medes
uses 11.4% less memory on average compared to the fixed
keep-alive policy, while meeting the same latency targets.
The adaptive keep-alive policy has a smaller memory usage,
but that comes at the cost of increased number of cold starts
- it incurs at least 50% more cold starts than Medes (see
Figure 7b). Medes’ flexible policy allows it to deduplicate
sandboxes of large functions, making more space to keep
warm sandboxes for other (smaller) functions - such that both
functions meet their respective latency targets. For example,
Medes aggressively deduplicates RNNModel sandboxes to
save memory, sometimes at the expense of cold starts, as long
as latency targets are met. These memory savings can then be
used to keep other function sandboxes warm.
Sources of Improvement. We attribute the smaller memory
footprint of Medes compared to the fixed keep-alive policy
to the memory savings due to deduplication. We find in our
experiments that for the smallest function (Vanilla), our dedu-
plication mechanism leads to a savings of 5MB (≈27.06%)
per sandbox, while for the largest function (RNN Model), we
can obtain 52MB (≈58.03%) of savings per sandbox.
Cross Function Duplication. We also observed that of all
deduplicated pages, only 32.86 % were deduplicated with a
page belonging to the same function, and roughly 67 % were
deduplicated with a page from a different function. This cross-
function duplication is critical to gain the aforementioned
memory savings (Section 2.1).
5.4 Medes under Memory Pressure
We study the impact of Medes under memory pressure. We
decrease the overall memory pool of the platform by decreas-
ing the software limit for the memory available per node.
Figure 8a shows that in comparison to the fixed keep-alive

policy, cold starts are improved by 22%, 37% and 40.67% in
the three memory pressure cases. Similarly, in comparison
to the adaptive policy, cold starts reduce by about 52% in all
three memory pressure situations.
Sources of Improvement. This is primarily due to the keep-
alive baselines incurring more cold starts relative to Medes as
they evict sandboxes under memory pressure whereas with
Medes, the memory footprint of sandboxes decreases due to
deduplication. This translates into 3.8× improvement in the
tail latencies over these baselines (see Figure 8b).
5.5 Medes Overheads
In our experiments running 5× magnified production traces,
we did not observe significant overhead due to Medes at the
Dedup Agent. At the controller, the memory usage at the
controller only increases by 11.8%, compared to baselines,
due to the addition of fingerprint registry.

6 Discussion
Prior works have explored using memory deduplication to
reduce memory footprints for VMs on the same node by
employing page-level [3, 17] and sub-page level deduplica-
tion [12]. These approaches either involve heavy CPU over-
heads, guest OS modifications or fall short in exploiting full
redundancy across nodes of a cluster. Medes presents a clever
system design that reboots this sub-page deduplication mech-
anism to deduplicate ‘warm’ sandboxes on a serverless plat-
form efficiently while dealing with the challenges of the plat-
form’s scale, restoring sandboxes on-demand, and performing
fast sandbox restores.

Medes combines page fingerprints with value-sampled re-
dundancy elimination [4] to design an efficient yet effec-
tive deduplication method. The hierarchical design of Dedup
Agent and Medes controller, and the notion of base sandboxes,
alleviate the scalability challenges of exploiting memory re-
dundancy across nodes on a serverless platform.
Can this deduplication approach be applied to other do-
mains? Medes shows that using sufficiently fine-grained
chunks (Section 2.1) can lead to heavy duplication [12]. Medes
uses this insight to develop a scalable system design that can



efficiently utilize this duplication to give memory savings.
The resulting memory savings can be used in similar ways
to navigate the performance-resource trade-offs, prevalent in
other systems as well:
Machine Learning Pre-processing: Cachew [11] shows that
storing input data features can be a bottleneck in training
pipelines. This is anticipated to become the case for inference
in large models as well, for example, language models and
GNNs. Along with caching, deduplication can also prove to
be a useful tool to optimize systems.
Microservices: Microservice application typically rely on
containers to run the application logic. Several service prox-
ies [6] are also deployed along with microservice containers
to deal with communication. These proxies are akin to ‘warm’
sandboxes for Medes, and a similar deduplication approach
can reduce overheads there.

A key insight in Medes is that deduplicating warm sand-
boxes is useful because warm sandboxes are not being used
actively. We expect similar characteristics can be identified in
ML and Microservice workloads as well - e.g., idle models,
less frequently accessed features in ML workloads and idle
microservices, can be deduplicated in a similar fashion.
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