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Abstract

Building a formally-verified software middlebox is attractive
for network reliability. In this paper, we explore the feasibil-
ity of verifying “almost unmodified” software middleboxes.
Our key observation is that software middleboxes are already
designed and implemented in a modular way (e.g., Click). Fur-
ther, to achieve high performance, the number of operations
each element or module performs is finite and small. These
two characteristics place them within reach of automated
verification through symbolic execution.

We perform a systematic study to test how many existing
Click elements can be automatically verified using symbolic
execution. We show that 45% of the elements can be auto-
matically verified and an additional 33% of Click elements
can be automatically verified with slight code modifications.
To allow automated verification, we build Gravel, a software
middlebox verification framework. Gravel allows develop-
ers to specify high-level middlebox properties and checks
correctness in the implementation without requiring manual
proofs. We then use Gravel to specify and verify middlebox-
specific properties for several Click-based middleboxes. Our
evaluation shows that Gravel avoids bugs that are found in
today’s middleboxes with minimal code changes and that the
code modifications needed for proof automation do not affect
middlebox performance.

1 Introduction
Middleboxes (e.g., NATs, firewalls, and load balancers) play
a critical role in modern networks. Yet, building functionally
correct middleboxes remains challenging. Critical bugs have
routinely been found in middlebox implementations. Many of
these bugs [8–12] directly lead to system failure or informa-
tion leaks. Worse still, malformed packets can trigger some
of these bugs and expose severe security vulnerabilities.

Given the importance of building functionally correct
middleboxes, researchers have turned to formal verification
and have made significant progress [14, 40]. Crucially, these
efforts tackle real middlebox implementations rather than
abstract middlebox models and verify non-trivial program
properties. However, just as with using software verification
in other areas of computer systems, this can incur a non-trivial
amount of proof effort (e.g., 10:1 proof to code ratio in Vi-
gNAT [40]). At the same time, the excessive proof effort
prevents researchers from exploring verification of high-level
middlebox-specific properties (e.g., a middlebox rejects unso-
licited external connection). As a consequence, recent verifica-
tion efforts focus either entirely on low-level code properties

(e.g., free of crashes, memory safety) [14] or on proving equiv-
alence to pseudocode-like low-level specifications [39, 40].

In this paper, we ask whether it is possible to make soft-
ware middlebox verification completely automated with mini-
mal proof effort. In particular, our goal is two-fold. First, we
want verification to work on real-world “almost unmodified”
middlebox implementations without requiring manual proofs.
Second, we want developers to be able to express and ver-
ify high-level properties directly translated from RFCs (e.g.,
RFC5382 [29] for NAT) without writing manual proofs to-
wards each of these properties. To deliver on these goals, we
seek to replicate the automated reasoning approach used in
some recent verification projects that focus on file systems
and OS system calls [30, 34]. Specifically, we would like to
use symbolic execution to automatically encode a middlebox
implementation and its high-level specification using satisfia-
bility modulo theories (SMT) and then use solvers to verify
that the implementation is consistent with the specification.

Our key observation regarding the suitability of this ap-
proach is that many existing middleboxes are already de-
signed and implemented in a modular way (e.g., Click [23])
for reusability. As they aim for high performance, the number
of operations they perform on each packet is finite and small.
Both characteristics place these middleboxes within reach of
automated verification through symbolic execution. Thus, one
goal of this paper is to identify domain-specific analyses that
enable symbolic execution to exploit these characteristics and
distill SMT encodings for middlebox implementations.

We begin by studying whether we can use automated ver-
ification on existing software middleboxes. We perform a
systematic study on all 290 Click elements and 56 Click con-
figurations (≈60K lines of code) in Click’s official repository
to test whether they are suitable for automated verification.
We find that a baseline symbolic executor can derive sym-
bolic expressions for 45% of the elements and 16% of the
configurations. We then introduce a set of domain-specific
static analyses and code modifications (such as replacing el-
ement state by SMT-encoded abstract data types) to enable
the symbolic execution of a more substantial fraction of Click
elements. These techniques allow us to symbolically execute
an additional 33% and 50% of elements and configurations,
respectively.

Encouraged by the results of the empirical study, we de-
signed and implemented Gravel, a framework for automated
software verification of middleboxes written using Click [23].
Gravel provides developers with programming interfaces to
specify high-level trace-based properties in Python. Gravel
symbolically executes the LLVM intermediate representation



compiled from an element’s C++ implementation. Gravel
then uses Z3 [38] to verify the correctness of the middlebox
without the burden of manual proofs.

We then evaluate Gravel by porting five Click middleboxes:
MazuNAT, a load balancer, a stateful firewall, a web proxy,
and a learning switch. We verify their correctness against
high-level specifications derived from RFCs and other sources.
Only 133 out of 1687, 63 out of 1151, 63 out of 1447, 50 out
of 953, and 0 out of 594 lines of code need to be modified to
make them automatically verifiable. The high-level specifi-
cation of the middlebox-specific properties can be expressed
concisely in Gravel, using only 177, 70, 68, 39, and 91 lines
of code. Our evaluation shows that Gravel can avoid bugs
similar to those found in existing unverified middleboxes. Fi-
nally, we show that the code modifications do not degrade the
performance of the ported middleboxes.

2 Encoding Existing Software Middleboxes
To understand the feasibility of applying automated verifica-
tion to existing software middleboxes, we perform an empiri-
cal study of all the 290 Click elements and 56 Click configu-
rations1 in Click’s official repository [23]. In this section, we
first explain what is automated verification and then describe
ways to enhance the effectiveness of automated verification
for middleboxes. Finally, we show that 78% of Click elements
and 66% of Click configurations are amenable to automated
verification after some limited modifications to the code.

2.1 Automating verification using symbolic execution

A well-established approach to software verification is de-
ductive verification. In this style, a developer generates a
collection of proof obligations from the software and its spec-
ifications. Proof assistants, such as Coq [7], Isabelle [32],
and Dafny [24], are highly expressive, allowing mathematical
reasoning in high-order logic. However, the verification pro-
cess is mostly manual, requiring significant effort from the
developer to convey his/her knowledge of why the software is
correct to the verification system. For example, when applied
to a NAT, VigNAT [40] shows a 10:1 proof-to-code ratio.

Recently, researchers have started exploring the feasibil-
ity of automating the verification process through exhaustive
symbolic execution, which encodes the middlebox implemen-
tation into a symbolic expression that can be checked against
a high-level specification. This style of software verification
reduces the developers’ manual proof effort and has already
been used successfully to verify file systems [34] and oper-
ating systems [30]. However, this style is more limited than
deductive verification, putting restrictions on the program-
ming model. For example, Hyperkernel requires loops in its
system call handlers to have compile-time bounds on their
iteration counts.

1Our empirical study focuses on the Click elements and configurations
that process packets in a run-to-completion model.

class CntSrc : public Element {
// omitting constructor and destructor
Packet *process_packet(Packet *pkt) {

if (pkt->ip_header->saddr == target_src_)
cnt_++;

return pkt;
}
IPAddress target_src_;
uint64_t cnt_;

}

Figure 1: A C++ implementation of a simple packet
counter.

To see an example of symbolic execution based verifica-
tion, Figure 1 shows a simple packet counter. This code in-
crements a counter when the source IP address of a packet
matches a signature (i.e., target_src_). Here we model this
process_packet function as f : S×P 7→ S×P, where S is the
set of all possible internal states (target_src_ and cnt_) and
P denotes the set of all possible packets. For simplicity, this
formulation assumes that at most one outgoing packet is gen-
erated for each incoming packet. Symbolically executing this
code snippet generates the following symbolic expression:

∀s, s′ ∈ S, ∀p, p′ ∈ P, f (s, p) = (s′, p′)⇒
(p′ = p)∧ (s′.target_src = s.target_src)

∧(p.saddr = s.target_src⇒ s′.cnt = s.cnt +1)
∧(p.saddr 6= s.target_src⇒ s′.cnt = s.cnt))

This symbolic expression says that for all possible inputs,
outputs and state transitions: (1) the input packet should be
the same as the output packet; (2) the target_src_ should
not change; (3) if the packet’s source IP address matches
target_src_, the cnt_ in the new state should be the cnt_ in
the old state plus 1; (4) if the packet’s source IP address does
not match target_src_, the cnt_ should not change.

Symbolic execution alone is not enough for automated ver-
ification; it only ensures that we can automatically generate
the above expression. To ensure automated verification, when
the developer verifies the above expression against a specifi-
cation using an off-the-shelf theorem solver (such as Z3 [38]),
the solver needs to be able to solve it efficiently.

A program is suitable for automated verification if:

1. Symbolic execution of the program halts and yields a
symbolic expression.

2. The resulting symbolic expression is restricted to an ef-
fectively decidable fragment of first-order logic.

Condition 1 means the program has to halt on every pos-
sible input. Condition 2 depends on which fragment of first-
order logic a solver can solve efficiently. This fragment
changes as solver technologies improve over time. Empir-
ically, we know that if we can restrict the symbolic expression
to only bit vectors and equality with uninterpreted functions,



a solver can tackle the expression efficiently [30].

2.2 Baseline effectiveness of symbolic execution

We now study the feasibility of automating verification by
examining middleboxes written using Click. We perform an
empirical study on both Click elements and Click configu-
rations, which are datagraphs formed by composing Click
elements. This study allows us to measure both the fraction of
Click code and the fraction of automatically verifiable Click
programs. To perform this empirical analysis, we implement
a baseline symbolic executor to analyze whether an element
or a configuration satisfies the conditions mentioned above.
Since elements are C++ classes, the symbolic executor first
analyzes all the member fields to determine whether the state
could be encoded with SMT (Condition 2). It then performs
symbolic execution over the compiled LLVM byte code2 of
the element to check if Condition 1 is met. However, since
both conditions are undecidable, we choose to use the fol-
lowing two conservative criteria. (In fact, we describe in the
subsequent section how we augment our baseline symbolic
executor with domain-specific extensions.)

Absence of pointers in element state. When the symbolic
executor analyzes each of an element’s members, it checks
whether the element state can be expressed solely by bit vec-
tors and uninterpreted functions. Though one could use bit
vectors to encode the entire memory into a symbolic state, it
would be difficult to efficiently solve expressions containing
such a symbolic state due to the sheer size of the search space.
Therefore, we choose a conservative criterion, the absence of
pointers in element states, as it is easy to see that elements
without pointers always have bounded state. Each element in
Click can only have a finite number of member variables, and
each non-pointer variable can only consume a finite amount
of memory. Thus, the state space of a Click element without
pointers can always be expressed by constant size bit vectors.
Of course, such criteria introduce false negatives, for exam-
ple, using pointers to access a bounded data structure (e.g.,
fixed-size array).

Absence of loops and recursions. To determine whether
Click elements’ execution is bounded (Condition 1), the sym-
bolic executor invokes the packet processing code using a
symbolic element state and a symbolic packet content. The
symbolic executor detects potential unbounded execution by
searching for loops and recursive function calls and only per-
forms execution on those elements that do not contain them.
The symbolic executor performs the check by comparing each
jump/call target with the history of executed instructions.

Table 1 shows the results of running this baseline symbolic
executor. We found that 130 of the existing Click elements
(45%) are suitable for automated verification. Among the ones
that failed our test, 143 elements failed because of pointers,

2We chose to use LLVM byte code rather than C++ abstract syntax tree as
the former makes it easier to reason about the control flow by eliminating C++
related complexities (e.g., function overloading and interface dispatching).

and 78 elements failed because of unbounded execution. 61
of the elements have both pointers and unbounded execution.
A Click configuration is amenable to automated verification
if and only if all the Click elements in the configuration can
be automatically verified. Among the 56 configurations in the
official Click repository, only 9 out of the 56 Click configura-
tions (16%) are suitable for automated verification.

2.3 Enhancing symbolic execution

We now augment our baseline executor with additional tech-
niques that aid symbolic execution. We also examine the
impact of performing a small number of code modifications
to make the middleboxes amenable to automated verification.
Some of the techniques described below are broadly applica-
ble but are likely more effective for middlebox programs that
operate on packet data with well-defined protocol specifica-
tions. The remaining techniques are domain-specific analyses
that are suitable only for packet processing code.

Code unrolling. When detecting a backward jump, the sym-
bolic executor unrolls the loop and executes its loop body.
The executor keeps count of how many times it executes the
backward jump instruction and raises an error if the number
goes beyond a pre-defined threshold. This technique is use-
ful when the source code has loops with a static number of
iterations or loops whose iteration count is a small symbolic
value, as would be the case for code that processes protocol
fields of known size.

Pointer analysis to detect immutable pointers and static
arrays. In general, we can classify the use of pointers into
three categories: pointers to singleton objects, pointers cor-
responding to arrays, and pointers used to build recursive
data structures. These use cases introduce two distinct chal-
lenges in the symbolic execution of Click code with pointers.
First, the symbolic executor needs to determine whether two
pointers point to overlapping memory regions and update the
symbolic state of elements correctly irrespective of which
pointer is used for the update. Second, when pointers are used
to implement recursive data structures, such as linked list or
tree, the data structure access often involves loops whose itera-
tion counts depend on the symbolic state of the elements. Our
symbolic executor first identifies how pointers are used and
then uses the appropriate technique for symbolic execution.

We first use an analysis pass to identify immutable pointers
by checking which of the pointer fields in a Click element
remain unmodified after allocation. At the same time, we
determine which of the other program variables serve as pos-
sible aliases for a given pointer field. Further, for pointers
pointing to an array of data items, the symbolic executor also
performs a static bounds check on accesses performed using
the pointers to ensure that all accesses are within allocated
regions. By doing so, the symbolic executor can prove an
invariant that accesses performed using the array pointer do
not touch other memory regions.

After performing these analyses, the symbolic executor



limits itself to handling accesses through immutable and una-
liased pointers that refer to either singleton objects or arrays.
For each pointer referring to a singleton object, the executor
associates a corresponding symbolic value. For each pointer
referring to an array of data, the symbolic executor uses an
uninterpreted function in SMT to represent the contents of
the array. The symbolic executor uses uninterpreted functions
that map array index (64-bit integer) to bytes (8-bit integer)
to model the content of the array. We choose to use this
offset-to-bytes mapping as the unified representation for both
array and packet content since reinterpreting a sequence of
bytes in memory as a different type is a common practice
in packet processing (e.g., parsing packet header, endianness
conversion). We record updates to the array as a sequence
of (possibly symbolic) index/value pairs. Since the functions
are “uninterpreted”, they model all possible values of the ar-
ray data. Compared with bit vectors, representing states with
uninterpreted functions makes symbolic execution scale to
larger state size [6, 34].

Our symbolic executor does not handle pointers that are
used to build a recursive data structure, such as a linked list,
except in the case of certain abstract data types for which we
are able to provide SMT encodings (as discussed next).

SMT encodings of commonly used abstract data types.
Our next technique avoids the symbolic execution of the data
structure implementation by hiding the implementation un-
der a well-defined data structure interface. This technique
allows us to integrate implementations that may contain un-
bounded loops or recursive data structures into our analysis.
When performing the symbolic execution, we can simply
provide an encoding in SMT for common data structures,
such as HashSet. Note that not all data structures can have
their interfaces encoded in SMT. The key challenge here is
to prevent the explosion of the state space; the size of the
encoding should not depend on the actual size of the data
structure. We managed to encode three commonly used data
structures in Click, Vector, HashSet, HashMap, into SMT. (See
Appendix A.)

Replace element state with abstract data types. With the
SMT encoding of common data types, another technique we
could apply is to modify the element implementation by re-
placing its states with the data types mentioned above. This
process requires the developer to inspect how the packet pro-
cessing code uses a specific element state. If all the accesses
performed on the state can be modeled using the interface of a
data type with SMT encoding, we could replace the state with
the SMT-encoded counterpart and run the symbolic execution
on the modified implementation instead.

Consider the CheckIPAddress element (Figure 2). This el-
ement serves as a source IP packet filter. Before our pro-
posed modifications, CheckIPAddress stores a list of bad IP
addresses (bad_src_). A packet is dropped if the source IP
address of the packet is listed in the bad IP address list. In

class CheckIPAddress : public Element {
// omitting constructor and destructor
Packet *process_packet(Packet *pkt) {

auto saddr = pkt->ip_header->saddr;
- for (size_t i = 0; i < num_bad_src_; i++)
- if (bad_src_[i] == saddr)
+ if (bad_src_.find(saddr) != bad_src_.end())

return NULL;
return pkt;

}
- IPAddress *bad_src_;
- size_t num_bad_src_;
+ HashSet<IPAddress> bad_src_;
}

Figure 2: Modification of CheckIPAddress’s implementa-
tion to remove the usage of pointers and loops.

this element, bad_src_ and num_bad_src_ together represents
a fixed size array containing the bad IP addresses. To check
whether the source IP address of a received packet matches
any address in the array, CheckIPAddress uses a “for” loop
to go through this array. CheckIPAddress is not suitable for
automated verification: (1) The size of the array that bad_src_
is pointing to is not known by the symbolic executor; thus,
it may flag out-of-bound memory access. (2) If the executor
tries to unroll the loop, it faces a path explosion problem as
the number of iterations in the loop can be large.

To make this element meet the conditions for automated
verification, we can modify its implementation, as shown in
Figure 2. This change is based on the observation that the
way bad_src_ and num_bad_src_ are used complies with the
HashSet interface. The change replaces the pointer-size pair
bad_src_ and num_bad_src_ with a HashSet. Besides that, the
“for” loop to check whether the source IP is in the bad IP
address list is also replaced with a find method call. The
code changes remove both the use of pointers and unbounded
loops. Since the semantics of HashSet and its find interface is
modeled with SMT, we can symbolically execute the element.

Concretization of control flow structures. Middleboxes
perform packet classification based on the value of specific
fields in the packet header. Packet classification is imple-
mented using finite-state machines, and it is often optimized
by statically compiling the classification rules into a state
machine model that is stored in memory. When processing
an incoming packet, the classifier performs state transitions
using the rules until the state machine reaches one of the end
states. If the values of the state transition table are abstract,
then the classification process would appear to be unbounded.

We address this issue and enable the symbolic execution of
the classification tasks. We load the Click configuration con-
taining concrete classification rules and run the state machine
creation code of the classification element. We then ingest the
raw bytes representing the transition rules into symbols with
concrete values. We use symbolic execution to verify that the



Technique # Elements # Conf.
Unmodified 130 (45 %) 9 (16 %)
Code unrolling 138 (48 %) 9 (16 %)
Fix-sized array detection 185 (63 %) 9 (16 %)
SMT-encoded abstract datatype 218 (75 %) 13 (23 %)
Replacing with abstract datatype 222 (77 %) 15 (27 %)
Concretization 226 (78 %) 37 (66 %)

Table 1: Number of Click elements and configuration
that can be symbolically executed.

contents of the memory region representing the state transi-
tion table remain unchanged during program execution. We
then symbolically execute the packet classification code but
replace the symbolic transition rules with the concrete values
identified in the first step. The executor can thus process the
packet classification code within a statically bounded number
of steps.

2.4 Overall effectiveness of symbolic execution

We now repeat our analysis of Click elements and configura-
tions after enhancing our symbolic executor with these addi-
tional techniques. Table 1 shows the result. Our techniques
improve the fraction of elements that can be symbolically
executed from 45% to 78%. The fraction of Click configu-
rations that are suitable for automated verification improves
from 16% to 66%.

Our symbolic executor cannot handle 22% of the Click ele-
ments. Among the 64 unsupported elements, 19 of them could
not be symbolically executed because there are loops that tra-
verse the payload of the packets (e.g., AES element for encryp-
tion). Another 26 elements use customized data structures that
contain pointers that can not be modeled with SMT. One such
example is LookupIP6Route element that uses a match table
with longest prefix matching as opposed to a traditional exact
match hash table. 11 elements contain loops whose number
of iterations is based on the current (symbolic) element state.
For example, the AggregateFilter element, which aggregates
incoming packets according to their header values, has to loop
over a queue to determine which aggregation group a packet
should belong to. 8 elements have pointer accesses that are
deeply coupled with the rest of the code that replacing with ab-
stract data types is not feasible. For example, IP6NDSolicitor
uses a set of linked lists to handle the response messages of
the neighbor discovery protocol.

Three approaches can potentially improve Gravel’s ability
to verify more Click elements automatically. The first ap-
proach is to model more data structures using SMT. Currently,
Gravel only supports HashMap, HashSet, and Vector. The sec-
ond approach is to allow developers to write annotations to
rule out part of the implementation that is not relevant to the
specification. For example, if the developers only want to
prove that the AES element does not change the TCP header of
the packet, the symbolic executor can skip over the loop that

... ... void Element::handler(...) {
...
}
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Figure 3: Development Flow of Gravel. Top three boxes
denote inputs from middlebox developers; rounded boxes
denote compilers and verifiers of Gravel; rectangular
boxes denote intermediate and final outputs.

traverses the packet payload. The third approach is to use an
interactive theorem prover (e.g., Coq [7], Dafny [24]) to ver-
ify the correctness of element-level implementations. These
interactive theorem provers can verify higher-order logic than
what SMT can verify. For example, more sophisticated data
structures such as priority queues or an LRU cache could be
more easily verified with the help of an interactive prover.

3 The Gravel Framework
Gravel is a framework for specifying and verifying Click [23]-
based software middleboxes. It aims to verify high-level
properties, such as a load balancer’s connection persistency,
against a low-level C++ implementation. Gravel uses sym-
bolic execution to translate the C++ implementation into a
symbolic expression automatically, and it uses the techniques
described in the previous section to enhance the effective-
ness of symbolic execution. In this section, we describe how
Gravel allows developers to specify the desired high-level
properties using Python code and a domain-specific library
containing verification primitives. In Section 4, we describe
how we check whether the symbolic expression derived from
the implementation provides the desired properties.

3.1 Overview

Figure 3 shows the workflow of Gravel. Gravel expects three
inputs from middlebox developers:

1. Click configuration, which is a directed graph of elements.
2. A set of high-level middlebox specifications.
3. Element-level specifications for all Click elements used

in the configuration.3

3Gravel provides specifications for commonly used elements.



Like building a normal Click middlebox, Gravel first takes
as input a directed graph of Click elements. In Click, a middle-
box is decomposed into smaller packet processing “elements”.
Each element keeps private state that is accessible only to it-
self and has a set of handlers for events such as incoming
packet or timer events. Elements can also have many input
and output ports through which elements can be connected
with others and transfer packets. The directed graph from a
Click configuration connects Click elements together to form
the dataplane for packet processing. The topology of the di-
rected graph remains unchanged during the execution of the
middlebox.

Gravel then requires a formalization of the high-level
middlebox properties. To check properties automatically with
an SMT solver, they need to be expressed using first-order
logic. In Gravel, properties are formalized as predicates over
a trace of events. Gravel includes a Python library for devel-
opers to specify middlebox-specific properties.

Gravel also requires a specification for each Click element.
The element-level specification describes each element’s pri-
vate state and packet processing behavior. The element-level
specification provides a simplified description of an element’s
behavior and omits low-level details such as performance
optimizations. Gravel again provides a Python library for
developers to write element-level specifications.

With these three inputs, Gravel verifies the correctness of
the middlebox in two steps. First, Gravel checks whether
a Click configuration composed using Click elements sat-
isfies the desired high-level properties of the middlebox. A
high-level property is expressed as a symbolic trace of the
middlebox’s behavior (in Python). Gravel verifies the high-
level property by symbolically executing the datagraph of
elements using element-level specifications (in Python). Then,
Gravel verifies that the low-level C++ implementation of each
element has equivalent behavior as the element-level speci-
fication. Gravel compiles the low-level C++ implementation
into LLVM intermediate representation (LLVM IR) and then
symbolically executes the LLVM IR to obtain a symbolic
expression of the element. Gravel then checks whether the
element-level specification holds in the element’s symbolic
expression. If there is any bug in the Click configuration or the
implementation of the elements, Gravel outputs a counterex-
ample that contains element states and an incoming packet
that makes the middlebox violate its specification.

3.2 A Sample Application: ToyLB

The rest of this section describes the Gravel framework in
the context of a simple running example corresponding to a
Layer-3 load balancer, ToyLB. ToyLB receives packets on
its incoming interface and forwards them to a pool of servers
in a round-robin fashion. It steers traffic by rewriting the
destination IP on the packet. ToyLB resembles popular Layer-
3 load balancer designs used by large cloud providers [16,19].

The ToyLB middlebox is decomposed into five elements, as

Input

CheckIPHeader

CheckTCPHeader FlowTable

RoundRobinSwitch

TCP
Checksum

Output

Figure 4: Breakdown of ToyLB’s functionalities into
packet-processing elements.

shown in Figure 4. When there is an incoming packet, it first
goes through two header-checking elements, CheckIPHeader
and CheckTCPHeader. These two elements act like filters and
discard any packet that is not a TCP packet. Then, the
FlowTable element checks whether the packet belongs to
a TCP flow that has been seen by ToyLB earlier. If so,
FlowTable rewrites the packet with the corresponding back-
end server’s IP address stored in the FlowTable and sends the
packet to the destination server. Otherwise, the FlowTable con-
sults a RoundRobinSwitch scheduler element to decide which
backend server should the new connection bind to. After the
RoundRobinSwitch decides which backend server to forward
the packet to, RoundRobinSwitch notifies the FlowTable of the
decision. The FlowTable stores the decision into its internal
state and also rewrites the destination address of the packet
into the destination server. For further simplicity, low-level
functionalities such as ARP lookup are omitted in ToyLB.

We next describe how Gravel can be used to model high-
level specifications of middleboxes such as ToyLB and then
outline how the element-level properties are specified. Later,
in §4, we show how Gravel performs verification.

3.3 High-level Specifications

Gravel models the execution of a middlebox as a state ma-
chine. State transitions can occur in response to external
events such as incoming packets or passage of time. The
time event can be used to implement garbage collection for
middlebox states. For each state transition, the middlebox
may also send packets out.

Gravel provides a specification programming interface, em-
bedded in Python, for developers to specify high-level proper-
ties. Developers can use the interface to describe middlebox
behavior over a symbolic event sequence. (See Appendix A.)

Packets in Gravel’s high-level specification are expressed
using key-value map abstraction, where the keys are the name
of header fields and values are the content of the fields. This
abstraction makes the specification concise and hides the
implementation details that are less related to high-level prop-
erties (e.g., the position of IP addresses in the packet header).

Gravel provides three kinds of core interfaces (see Ap-
pendix A) in its high-level specification: (1) a set of sym_*

functions that allow developers to create symbolic representa-
tions of different types of states such as IP address, packet, or
middlebox state; (2) middlebox’s event-handling functions,



like handle_packet(state, pkt), handle_time(state, timestamp),
that takes as input the current state of the middlebox and
the incoming packet/time event, and returns an (optional)
output packet and the resulting middlebox state after a state
transition; and (3) the verify(formula) function call that first
encodes the given logical formula in SMT and invokes the
SMT solver to check if formula is always true. Besides that,
Gravel also provides some helper functions for developers to
encode high-level middlebox properties.

To make this concrete, we next describe how to encode
two high-level properties of ToyLB using this specification
programming interface. We describe how to encode two load
balancer properties: (1) liveness and (2) connection persis-
tence. We first consider the liveness guarantee.

PROPERTY 1 (ToyLB liveness). For every TCP packet re-
ceived, ToyLB always produces an encapsulated packet.

In Gravel, this can be specified as:

def toylb_liveness():
# create symbolic packet and symbolic ToyLB state
p, s0 = sym_pkt(), sym_state()
# get the output packet after processing packet p
o, s1 = handle_packet(s0, p)
verify(Implies(is_tcp(p), Not(is_none(o))))

In this liveness formulation, we first construct a symbolic
packet p and the symbolic state of the middlebox s0. Then,
we let the middlebox with state s0 process the packet p by
invoking the handle_packet function. After that, the state of the
middlebox changes to s1, and the output from the middlebox
is o. If o is None, the middlebox has not generated an outgoing
packet. This high-level specification says that, if the incoming
packet is a TCP packet, the middlebox has an outgoing packet.

Note that the formulation of liveness property is abstract,
given that it does not say anything about the states of the
middlebox. We don’t even formulate the set of data structures
used by ToyLB. This brevity is indeed the benefit of using
high-level specifications. These formulations are concise and
are directly related to the desired middlebox properties.

Now, we move to a more complex load balancer property—
connection persistency. This property is crucial to a load bal-
ancer as it ensures that packets from the same TCP connection
are always forwarded to the same backend server.

PROPERTY 2 (ToyLB persistency). If ToyLB forwards a
TCP packet to a backend b at time t, subsequent packets of
the same TCP connection received by ToyLB before time
t + WINDOW, where WINDOW is a pre-defined constant,
will also be forwarded to b.

Formulation of Property 2 is more complex than the live-
ness property because it requires a forwarding requirement
(i.e., the forwarding of packets of a certain TCP connection
to b) to hold over all possible event sequences between time t
and time t +WINDOW. This complexity means that we can-
not formulate connection persistency with traces containing
only a single event, but rather, we need to use induction to

verify that the property holds on event traces of unbounded
length.

Gravel allows us to specify Property 2 as an inductive in-
variant. First, we formulate the forwarding condition that
should be held during the time window. The steer_to function
defined below determines whether a packet received at time t

will be forwarded to the backend server with address dst_ip.
The code snippet first lets the middlebox handle a time event
with timestamp t, followed by the handling of pkt. We ascer-
tain whether the packet is forwarded to dst_ip by checking
that the output from the packet processing is not None and that
the resulting packet’s destination address is dst_ip.

def steer_to(state, pkt, dst_ip, t):
o0, s_n = handle_time(state, t)
o1, s_n2 = handle_packet(s_n, pkt)
return And(Not(is_none(o1)),

o1.ip4.dst == dst_ip,
payload_eq(o1, pkt))

Then, for the base case of induction, we specify that once
ToyLB forwards a packet of a particular TCP connection to
a backend, subsequent packets from the same connection re-
ceived within a period WINDOW will be forwarded to the
same backend. Similar to the formulation of the liveness
property, the following code snippet first creates two sym-
bolic packets and a symbolic middlebox state, then invokes
handle_packet to obtain the output packet as well as the new
state after packet processing. After that, the code requires
the verifier to prove that if p0 is forwarded to dst_ip, then a
packet, p1, in the same connection received any time before
the expiration time ddl is also forwarded to dst_ip, assuming
that the middlebox state hasn’t changed from state s1.

def base_case():
p0, p1, s0 = sym_pkt(), sym_pkt(), sym_state()
o, s1 = handle_packet(s0, p0)
dst_ip, t0 = sym_ip(), s0.curr_time()
t = sym_time()
ddl = t0 + WINDOW
verify(Implies(And(Not(is_none(o)),

o.ip4.dst == dst_ip,
from_same_flow(p0, p1)),

ForAll([t], Implies(t <= ddl,
steer_to(s1, p1, dst_ip, t)))))

In addition to the base case invariant, the specification
includes two inductive cases showing that processing an ad-
ditional event (e.g., a packet from a different connection or
time event) does not change the forwarding behavior. The
two inductive cases specify that the invariant steer_to(...)

holds on the middlebox states when processing packets or
time events if the timestamp is before the expiration time.

def step_packet():
dst_ip, p0, p1 = sym_ip(), sym_pkt(), sym_pkt()
s0, t0, p_other = sym_state(), sym_time(), sym_pkt()
o, s1 = handle_packet(s0, p_other)
verify(Implies(And(steer_to(s0, p0, dst_ip, t0),

from_same_flow(p0, p1)),
steer_to(s1, p1, dst_ip, t0)))



def step_time():
dst_ip, p0, p1 = sym_ip(), sym_pkt(), sym_pkt()
s0, t0, t1 = sym_state(), sym_time(), sym_time()
_, s1 = handle_time(s0, t1)
verify(Implies(And(steer_to(s0, p0, dst_ip, t0),

t1 < t0, from_same_flow(p0, p1)),
steer_to(s1, p1, dst_ip, t0)))

3.4 Element-level Specifications

Verifying high-level specifications directly from low-level
C++ implementations is hard because of the gap in their
semantics. Similar to all the seminal work [20, 30, 34] in
software verification, we break down the verification pro-
cess using refinement. Gravel requires the developer to give
specifications of each element. As long as the element-level
specifications capture the behavior of their corresponding ele-
ments’ implementation, we can simply use the element-level
specifications to prove the high-level specifications. Com-
pared to deductive verification, this incurs a lower verifica-
tion effort because element-level specifications are short (§5).
Element-level specifications can be reused across different
middleboxes. The element-level specification in Gravel con-
sists of two parts: the definition of abstract states that will
be used by the element during execution, and a set of event
handling behaviors in response to incoming packets and time
events.

Element states. Specification of a Gravel element starts
with a declaration of the state associated with the element. To
ensure efficient encoding with SMT, Gravel requires the state
to be bounded. More specifically, elements’ state in Gravel
may contain: (1) fixed-size variables including bit vectors;
(2) maps from one finite set to another (e.g., a map from IP
address space to 64-bit integer). For example, in ToyLB, the
state of FlowTable is defined as:

class FlowTable(Element):
num_in_ports = 2
num_out_ports = 2

decisions = Map([AddrT, PortT, AddrT, PortT], AddrT)
timestamps = Map([AddrT, PortT, AddrT, PortT], TimeT)
curr_time = TimeT
...

This part of element-level specifications defines three compo-
nents of FlowTable’s state:
• decisions maps from a TCP connection to a backend server

address. FlowTable identifies a TCP connection by the tuple
of source and destination addresses and port numbers. This
map is used to store the results from the Selector element.

• timestamps stores the latest times at which packets were
received for each TCP flow stored in decision.

• curr_time stores the current time.
Here the types such as AddrT and TimeT are pre-defined inte-
gers of different bit widths. Besides the state, the code also in-
forms Gravel as to how many input/output ports the FlowTable

element has through num_in_ports/num_out_ports.

def flowtable_process_packet(s, p, in_port):
flow = p.ip4.saddr, p.tcp.sport, \

p.ip4.daddr, p.tcp.dport
# the case when flowtable has record of the flow
known_flow = And(

# packet is received from the network
in_port == IN_TCP_FILTER,
# flowtable has record of the flow
flow in s.decisions)

# construct the encapsulated packet
fwd_pkt = p.copy()
fwd_pkt.ip4.dst = s.decisions[flow]
# update the timestamp of the flow with current time
after_fwd = s.copy()
after_fwd.timestamps[flow] = s.curr_time
known_flow_action =

Action(known_flow,
{PORT_TO_EXT: fwd_pkt}, after_fwd)

Figure 5: Example of an element-level action.

Event handlers. Gravel requires each element to have a
handler function for packets received from its input ports.
This packet handler needs to be specified in the element-
level specification. The specification of the packet handler
describes the operations the element performs when handling
packets. Besides that, an optional time event handler can also
be specified. In Gravel, the two event handlers are defined as
functions with the following signatures:

flowtable_process_packet(state, pkt, in_port) → actions
flowtable_process_time(state, timestamp) → actions

The return value of each event handler (actions) is a list of
condition-action pairs. Each entry in the list describes the
action an element should take under certain conditions. In the
python code, developers can write:

Action(cond, { port_i : pkt_i }, new_state)

to denote an action that sends pkt_i to output port port_i
while also updating the element state to new_state. This ac-
tion will be taken when condition cond holds. To make it con-
crete, let us consider the packet handler of FlowTable. Upon
receiving a packet, FlowTable does one of the followings:

• If the packet is from the CheckTCPHeader element, and
the decisions map contains a record for the connection,
FlowTable rewrites the destination address and sends the
packet to TCP Checksum element, as shown in Figure 5.

• If the FlowTable does not have a record for a packet, the
packet is sent to RoundRobinSwitch element.

• If the packet is sent from RoundRobinSwitch, FlowTable
records the destination decided by RoundRobinSwitch and
forwards the packet to TCP Checksum.

Similarly, FlowTable’s behavior in response to time changes
is also specified as condition-actions:

def flowtable_process_time(self, s, time):
new = s.copy()



# update the "curr_time" state
new.curr_time = time
# records with older timestamps should expire
def should_expire(k, v):

return And(s.timestamps.has_key(k),
time >= WINDOW + s.timestamps[k])

new.decisions = new.decisions.filter(should_expire)
new.timestamps = new.timestamps.filter(should_expire)
return Action(True, {}, new)

When FlowTable is notified of a time change, it updates its
curr_time to the given time value. Gravel offers a filter inter-
face for its map object, which takes a predicate, should_expire,
and deletes all the entries that satisfy the predicate. FlowTable
uses this to remove all the records that were inactive for a
period longer than a constant WINDOW value. ToyLB’s complete
element-level specifications are in Appendix B.

Summary: Overall, we presented an example of (1) how to
specify high-level trace-based middlebox properties, and (2)
how to write element-level specifications to make verification
modular. We provide a framework for developers to articulate
complex trace-based properties. These high-level properties
are implementation-independent. Element-level specifications
decouple verification problem into two orthogonal problems:
that element-level specifications conform to the high-level
properties and that elements’ implementations comply with
their element-level specifications.

4 Verifier Implementation
Gravel proves the middlebox properties with two theorems:

THEOREM 1 (Graph Composition). The element-level speci-
fications, when composed using the given Click configuration,
complies with the high-level specification of the middlebox.

THEOREM 2 (Element Refinement). The C++ implementa-
tion of Click is a refinement of that element’s specification.
That is, every possible state transition and packet processing
action of the C++ implementation must have an equivalent
counterpart in the element-level specification.

Theorem 1 verifies that the composition of element-level
specifications meets the requirement in the high-level specifi-
cations. Theorem 2 verifies that Click’s C++ implementation
of each element meets its element-level specification.

4.1 Graph Composition

Gravel verifies the Graph Composition theorem (Theorem 1)
in two steps. First, Gravel symbolically executes the event se-
quence specified in high-level specifications. Second, Gravel
checks whether the high-level specifications hold on the re-
sulting state and outgoing packets from symbolic execution.

Gravel performs symbolic execution on the directed graph.
Before the symbolic execution, Gravel creates a symbolic
state of the entire middlebox, which is a composition of the
symbolic states of all elements in the middlebox. Remember
that the high-level specification describes required middle-
box behavior on an event sequence. The goal of the symbolic

execution is to reproduce the sequence symbolically. For
example, if the high-level specification contains an incom-
ing packet, Gravel generates a symbolic packet at the source
element of the directed graph. This symbolic packet, when
processed by the first element of the graph, can trigger han-
dlers of other downstream elements, which are symbolically
executed as well. If the element-level specification contains
a branch (e.g., depending on the packet header, a packet can
be forward to one of the two downstream elements), Gravel
performs symbolic execution in a breadth-first search manner.

After performing symbolic execution for each event type,
Gravel records the updated state of each element as well as the
packet produced by each output element. Gravel provides this
information as the return value of the handle_* functions in
the high-level specification. Gravel then invokes the functions
defined in the high-level specification. Once the verify func-
tion is invoked, Gravel encodes the high-level specifications
into SMT form and uses a solver to see if they always hold.

Loops in the graph. Gravel allows the directed graph of
elements to contain loops in order to support bi-directional
communications between elements, such as FlowTable and
RoundRobinSwitch in ToyLB (§3). However, loops may in-
troduce non-halting execution when we symbolically exe-
cute the datagraph. Gravel addresses this issue by setting
a limit on the number of elements traversed by the sym-
bolic executor. When the symbolic execution hits this limit,
Gravel raises an alert and fails the verification. For exam-
ple, in ToyLB, the FlowTable is hit at most twice: when
FlowTable cannot find a record for a certain packet, the
packet is sent to RoundRobinSwitch, which will later send
the packet back to FlowTable; upon receiving packets from
RoundRobinSwitch, FlowTable records the selected backend
server into its own records and does not send the packet
back to RoundRobinSwitch. Thus, the maximum number of
elements traversed during the symbolic execution is 6, and
developers can safely set 6 as the limit for ToyLB.

The graph composition verifier is implemented with 1981
lines of Python. It exposes a similar set of interfaces as Click
configuration language so that developers could port existing
code into the verifier. The verifier uses the Python binding of
Z3 to generate symbolic packets and element states.

4.2 Element Refinement

Gravel verifies the Element Refinement theorem (Theorem 2)
in two steps. First, a symbolic expression of the element is
generated for each event handler’s compiled LLVM interme-
diate representation. Second, Gravel checks if the element’s
specification holds on the symbolic expression.

Before performing the symbolic execution, Gravel first uses
the LLVM library to extract the memory layout of the C++
class of the element, along with the types of each of its mem-
ber variables. The verifier can later use this information to
determine which field is accessed when it encounters memory
access in LLVM bytecode. As mentioned in §2.3, to bound the



symbolic execution step and state size, abstract data structures
are executed by using their abstract SMT model instead of ac-
tual code. A complete list of the data structures and interfaces
replaced is given in Appendix A.

For packet content access and modification, Gravel’s sym-
bolic executor is compatible with Click’s Packet interface. In
the LLVM bytecode, packet content accesses are compiled
into memory operations over a memory buffer. To establish
the relation between packet header fields and memory offsets,
Gravel needs to extract the symbolic header field value for
each output packet after the symbolic execution. Gravel first
computes offsets for each header field. Note that these off-
sets are also symbolic values as they depend on the content
of other packet fields. After that, Gravel extracts the value
of each header field from the memory buffer of the packet.
Each extracted value is then encoded into an SMT formula
and compared against fields from the abstract packet using an
SMT solver. Gravel concludes that the packet and the memory
buffer are equivalent when values of all fields are equivalent.

At the end of symbolic execution, the verifier gets a list of
ending states, along with the packets sent out at each output
port and the path conditions under which it can be reached.
For each entry in the list, Gravel uses Z3 to find an equivalent
counterpart in the element specification. If such a counterpart
exists for all entries, the refinement of the element is proved.

Gravel’s element refinement verifier is implemented in C++
using the LLVM library. The verifier invokes LLVM library’s
IR parser and reader to load and symbolically execute the
compiled LLVM bytecode of each Click element. Besides the
SMT encoding of all LLVM instructions used in the compiled
Click elements, the verifier also has the SMT encoding of the
abstract data types as described in §2. The refinement verifier
and the symbolic executor consists of 10396 lines of C++.

4.3 Trusted Computing Base

The trusted computing base (TCB) of Gravel includes the
verifier (used for proving Theorem 1 and Theorem 2), the
high-level specifications, the tools it depends on (i.e., the
Python interpreter, the LLVM compiler framework, and the
Z3 solver), and Click runtime. Note that the specification of
each element is not trusted.

5 Evaluation
This section aims to answer the following questions:

• How much effort is needed to port existing Click applica-
tions? Can Gravel scale to verify the Click applications?

• Can Gravel’s verification framework prevent bugs?
• How much run-time overhead does the code modification

introduce to middleboxes in order for them to be automati-
cally verifiable by Gravel?

5.1 Case Studies

To evaluate whether Gravel can work for existing Click appli-
cations, we port five Click applications to Gravel. For each

LOC Verif. LOC
Time (s) changed

MazuNAT Impl 1687 – 133
Spec (element) 443 64.60 –
Spec (high-level) 177 3.78 –

Firewall Impl 1151 – 63
Spec (element) 73 32.30 –
Spec (high-level) 70 0.67 –

Load
Balancer

Impl 1447 – 63
Spec (element) 101 10.87 –
Spec (high-level) 68 1.48 –

Proxy Impl 953 – 50
Spec (element) 92 30.63 –
Spec (high-level) 39 0.72 –

Switch Impl 594 – 0
Spec (element) 131 27.73 –
Spec (high-level) 91 1.61 –

Table 2: Development effort and verification time of using
Gravel on five Click-based middleboxes.

application, we choose a set of high-level middlebox-specific
properties either by formalizing them directly or extracting
them from existing RFCs. We use Gravel to verify that these
properties hold. Gravel also verifies the low-level properties,
such as memory safety and bounded execution.

MazuNAT: MazuNAT is a NAT that has been used by Mazu
Networks. MazuNAT consists of 33 Click elements. (See Ap-
pendix C.) MazuNAT forwards traffic between two network
address spaces, the internal network, and the external network.
It mainly performs two types of packet rewriting:

1. For a packet whose destination address is the NAT, the
NAT rewrites its destination IP address and port with the
corresponding endpoint in the internal network.

2. For a packet going from the internal to the external net-
work, NAT assigns an externally visible source IP address
and port to the connection. The NAT also needs to keep
track of assigned addresses and ports to guarantee persis-
tent address rewriting for packets in the same connection.

One common property we verified for all five middleboxes
is that the middlebox does not change the packets’ payload:

PROPERTY 3 (Payload Preservation). For any packet that is
processed by the middlebox, the middlebox never modifies
the payload of the packet.

For NAT-specific properties, we verified that MazuNAT
meets the requirements proposed in RFC5382 [29].4 These
requirements are proposed to make NATs transparent to ap-
plications running behind them [17].

PROPERTY 4 (Endpoint-Independent Mapping). For packets
p1 and p2 from the same internal IP, port (X : x), where

4We omit the set of requirements related to ICMP becuase MazuNAT
does not support ICMP.



• p1 targets external endpoint (Y1 : y1) and gets its source
address and port translated to (X ′1 : x′1)

• p2 targets external endpoint (Y2 : y2) and gets its source
address and port translated to (X ′2 : x′2)

the NAT should guarantee that (X ′1 : x′1) = (X ′2 : x′2).

PROPERTY 5 (Endpoint-Independent Filtering). Consider
external endpoints (Y1 : y1) and (Y2 : y2). If the NAT allows
connections from (Y1 : y1), then it should also allow connec-
tions from (Y2 : y2) to pass through.

PROPERTY 6 (Hairpinning). If the NAT currently maps in-
ternal address and port (X1 : x1) to (X ′1 : x′1), a packet p origi-
nated from the internal network whose destination is (X ′1 : x′1)
should be forwarded to the internal endpoint (X1 : x1). Further-
more, the NAT also needs to create an address mapping for
p’s source address and rewrite its source address accordingly.

These properties are essential to ensure the transparency of
the NAT and are required for TCP hole punching in peer-to-
peer communications.

We also prove that the MazuNAT preserves the address
mapping for a constant amount of time:

PROPERTY 7 (Connection Memorization). If at time t, the
NAT forwards a packet from a certain connection c, then for
all states s′ reachable before time t +THRESHOLD, where
THRESHOLD is a predefined constant value, packets in c are
still forwarded to the same destination.

Property 7 guarantees that the NAT can translate the ad-
dress of all packets from a TCP connection consistently. The
constant THRESHOLD defines a time window where the TCP
connection should be memorized by the NAT. The NAT has
the freedom to recycle the resources used for storing connec-
tion information after the time window expires.

Load Balancer: Besides the round-robin load balancer men-
tioned in §3, we also verified a load balancer using Ma-
glev’s hashing algorithm [16]. Its element graph looks ex-
actly the same as in Figure 4. The only difference is that the
RoundRobinSwitch element is replaced by a hashing element
that uses consistent hashing. The load balancer steers packets
by rewriting the destination IP address.

We verified connection persistency for both of the load
balancers. The goal of connection persistency is to make load-
balancing transparent to the clients.

PROPERTY 8 (Load Balance Persistence). For all packets
p1 and p2 from connection c, if the load balancer steers p1 to
a backend server, then the load balancer steers p2 to the same
backend server before c is closed.

Stateful Firewall: The stateful firewall is adapted from the
firewall example in the Click paper [23]. Besides performing
static traffic filtering, it also keeps track of connection states
between the internal network and the external network. The

firewall updates connection states when processing TCP con-
trol packets (e.g., SYN, RST, and FIN packets), and removes
records for connections that are finished or disconnected.

We prove that the stateful firewall can prevent packets
from unsolicited connections [28]. Also, the firewall should
garbage collect finished connections.

PROPERTY 9 (Firewall Blocks Unsolicited Connection). For
any connection c, no packet in c from the external network is
allowed until a SYN packet has been sent out for c.

PROPERTY 10 (Firewall Garbage-collects Records). For any
connection c, no packet in c from the external network is
allowed after the firewall sees a FIN or RST packet for c.

Web Proxy: The Web proxy transparently forwards all web
requests to a dedicated proxy server. When the middlebox
receives a packet, it first identifies if it is a web request by
checking the TCP destination port. For web request packets,
the proxy rewrites the packet header to redirect them to the
proxy server. The proxy also memorizes the sender of the web
request to forward the reply messages back to the sender.

We prove that the web proxy middlebox forwards packets
in both directions.

PROPERTY 11 (Web Proxy Bi-directional). For a web re-
quest packet p with 5-tuple (SA,SP,DA,DP,PROTO), if the
middlebox forwards p to the proxy server and rewrites the
5-tuple to (SA’,SP’,DA’,DP’,PROTO), then a packet from the
reply flow with 5-tuple (DA’,DP’,SA’,SP’,PROTO) should be
forwarded back to the sender.

Learning Switch: The Learning switch implements the basic
functionality of forwarding Ethernet frames and MAC learn-
ing. The switch learns how to send to an Ethernet address A
by watching which interface packets with source Ethernet ad-
dress A arrives. If the switch has not learned how to send to an
Ethernet address, it broadcasts the packet to all its interfaces.

We prove the following properties about the switch.

PROPERTY 12 (Forwarding Non-interference). For any Eth-
ernet address A, the behavior of how the switch forwards pack-
ets targeting A is not be affected by packets whose source
Ethernet address is not A.

PROPERTY 13 (Broadcasting until Learnt). For any address
A, if the switch broadcasts packets targeting A, it keeps broad-
casting until a packet from A is received by the switch.

5.2 Verification Cost

To understand the cost of middlebox verification on Gravel,
we evaluate the amount of development effort and the verifi-
cation time. Table 2 shows the result.

Development effort. We find that porting existing Click
applications to Gravel requires little effort and that writing
specifications with Gravel are also easy. We only modified
133 lines of code in MazuNAT to make it compatible with
Gravel. The firewall and load balancer required only 63 lines



Middlebox Bug ID Description Can be prevented? Why/Why not?
Load
Balancer

bug #12 Packet corruption 3 high-level specification
bug #11 Counter value underflow 3 element refinement
bug #10 Hash function not balanced 7 not formalized in specification
bug #6 throughput not balanced 7 not formalized in specification

Firewall bug #822 Counter value underflow 3 element refinement
bug #691 segfault by uninitialized pointer 3 element refinement
bug #1085 Malformed configuration leading crash 7 Gravel assumes correct init

NAT bug #658 Invalid packet can bypass NAT 3 element refinement
bug #227 Stale entries may not expire 3 high-level specification
bug #148 Infinite loop 3 element refinement

Table 3: Bugs from real-world software middleboxes.

of code modifications. Our proxy required 50 lines of code
to be changed, and the switch requires no modification. Most
of the required code changes come from the IPRewriter el-
ement. We had to remove the priority queue that is used for
flow expiration and instead use a linear scan to expire old
mappings. Other code changes include removing pointers
to other elements in FTPPortMapper, replacing ARPTable in
ARPQuerier with hashmaps, and the change of CheckIPHeader
mentioned in §2. The specifications are concise. The high-
level specification is below 200 lines of code and the element-
level specifications are less than 450 lines of code for all
five middleboxes. The associated developer effort is also
small. For the web proxy and learning switch, it took less
than one person-day for both the high-level properties and
the element specifications. The load balancer and the state-
ful firewall each required a full day’s effort in order to port
them to Gravel and verify their correctness. The most compli-
cated middlebox in our case study, MazuNAT, took about 5
person-days to port and specify. Five elements (Classifier,
IPClassifier, IPRewriter, CheckIPHeader, and EtherEncap)
are reused across these middleboxes, and thus we reuse their
element-level specifications.

Verification time. With Gravel’s two-step verification pro-
cess, Gravel’s verifier can efficiently prove that the middlebox
applications provide the desired properties. Most of the veri-
fication time is spent on proving the equivalence of the C++
implementation of each element and its element-level specifi-
cation. Verification of the high-level specifications from the
element-level specifications took less than 4 seconds for the
different applications. Overall, even for MazuNAT, the overall
verification time is just over a minute.

5.3 Bug prevention

When verifying MazuNAT with Gravel, we found that the orig-
inal MazuNAT implementation did not possess the endpoint
independent mapping property (Property 4). MazuNAT uses
a 5-tuple as the key to memorize rewritten flows. This means
that when MazuNAT forwards a packet coming from the ex-
ternal network, the packet’s source IP address and source port
affects the forwarding behavior, violating Property 4. To fix

this, we changed the IPRewriter element to use only a part of
the 5-tuple when memorizing flows.

To evaluate the effectiveness of Gravel at a broader scope,
we manually analyze bugs from several open-source middle-
box implementations. We wanted to understand whether these
bugs can happen if the middlebox is built using Gravel. We
examine bug trackers of software middleboxes with similar
functionalities as those in our case studies (i.e., NAT, load
balancer, firewall) and search the CVE list for related vulner-
abilities. We inspect bug reports from the NAT and firewall
of the netfilter project [31], and the Balance load balancer [3].
Since the netfilter project contains components other than the
NAT and the firewall, we use the bug tracker’s search func-
tionality to find bugs relevant only to its NAT and firewall
components. We inspect the most recent 10 bugs for all three
kinds of middleboxes and list the result in Table 3.

Of the 30 bugs we inspected, we exclude 10 bugs for fea-
tures that are not supported in our middlebox implementations,
3 bugs related to documentation issues, 5 bugs on command-
line interface, and 2 bugs on performance.

From the remaining 10 bugs, Gravel’s verifier is able to
catch 7 of them. Among these bugs, Bug #12 in the load
balancer and bug #227 in the NAT can be captured by the
verification of the high-level specification as they lead to the
violation of Property 3 and Property 7 respectively. Other
bugs involving integer underflow or invalid memory access
can be captured by the C verifier. Note that there are still three
bugs Gravel cannot capture, such as incorrect initialization
of the system and properties that are not in our high-level
specifications (e.g., unbalanced hashing).

5.4 Run-time Performance

To examine the run-time overhead introduced by the code
modifications we made, we compare the performance of the
middleboxes before and after the code modifications. We run
these Click middleboxes on DPDK [13].

Our testbed consists of two machines each with Intel Xeon
E5-2680 (12 physical cores, 2.5 GHz), running Linux (v4.4)
and has a 40 Gbps Mellanox ConnectX-3 NIC. The two ma-
chines are directly connected via a 40 Gbps link. We run the



Throughput (Gbps) Latency (µs)

NAT Unverified 37.39 (± 0.03) 14.43 (± 0.19)
Gravel 37.41 (± 0.04) 15.14 (± 0.22)

LB Unverified 37.38 (± 0.04) 14.82 (± 0.23)
Gravel 37.37 (± 0.04) 14.86 (± 0.20)

Firewall Unverified 37.37 (± 0.05) 15.21 (± 0.20)
Gravel 37.38 (± 0.04) 15.11 (± 0.24)

Proxy Unverified 37.36 (± 0.05) 14.54 (± 0.19)
Gravel 37.35 (± 0.06) 14.35 (± 0.18)

Switch Unverified 37.36 (± 0.05) 15.02 (± 0.19)
Gravel 37.39 (± 0.07) 14.96 (± 0.29)

Table 4: Performance of verified middleboxes, compared
to their unmodified counterparts.

middlebox application with DPDK on one machine and use
the other machine as both the client and the server.

The code modification to make these Click applications
compatible with Gravel has minimal run-time overhead. We
measure the throughput of 5 concurrent TCP connections
using iperf, and use NPtcp for measuring latency (round trip
time of a 200-byte TCP message). Table 4 shows the results.
The code modifications introduce negligible overheads in
terms of throughput and latency.

6 Related Work
Middlebox verification. Verifying the correctness of middle-
boxes is not a new idea. Software dataplane verification [14]
uses symbolic execution to catch low-level programming er-
rors in existing Click elements [23]. Our work is also based on
Click, but we target high-level middlebox-specific properties,
such as load balancer’s connection persistency. In addition,
we show that 78% of existing Click elements are amenable
for automated verification with slight code modifications. Vi-
gNAT [40] proves a NAT with a low-level pseudocode spec-
ification. Vigor [39] generalizes VigNAT to a broader class
of middleboxes and verifies the underlying OS network stack
and the packet-processing framework. We believe it is non-
trivial to extend VigNAT and Vigor to specify and verify the
set of high-level trace-based NAT properties (e.g., hairpinning,
endpoint-independence) Gravel can verify.

We note though that specifying the correctness of programs
is a fundamentally hard problem. Gravel chooses to let devel-
opers specify high-level specifications on a symbolic trace of
packets. We find specifications using Gravel’s specification
interface to be more abstract than psuedo-code like NAT spec-
ification in VigNAT [40]. However, even with Gravel, writing
specifications is still hard. For example, specifying the con-
nection persistency property for ToyLB requires the usage
of induction (§3.3). Empirically, we find that a trace-based
specification is flexible enough to express the correctness of
middleboxes in the RFCs we examined.

Network verification. In the broader scope of network
verification, most existing work [1, 2, 4, 15, 21, 22, 26, 27,

33, 37] targets verifying network-wide objectives (e.g., no
routing loop) assuming an abstract network operation model.
Gravel, along with other middlebox verification work [14,
39, 40], aims to verify the low-level C++ implementation of
a single middlebox’s implementation. As switches become
programmable [5], researchers have built tools to debug [36],
verify [18, 25] P4 programs. Similar to Gravel, this line of
work relies heavily on symbolic execution. Our work targets
“almost unmodified” middleboxes written in C++.

Currently, Gravel only supports verification of middleboxes
implemented with Click. However, since our key observation
on Click middleboxes, that the number of operations per-
formed processing each packet is finite and small, may also
hold on non-Click middleboxes, we believe that Gravel’s ver-
ification techniques can also be applied on other middleboxes.
For example, the eXpress Data Path (XDP) in the Linux ker-
nel also constrains the packet processing code to be loop-free.
It also only allows a limited set of data structures for main-
taining global states. These properties make it seem plausible
that one could apply Gravel’s verification techniques to it.

SMT-based automated verification. Automated software
verification using symbolic execution has recently become
popular. This technique has been used to successfully verify
file systems [34], operating systems [30], and information
flow control systems [35]. However, this technique usually re-
quires a complete re-implementation of the target application
because of the restricted programming model. We conduct
a systematic study on (§2) whether unmodified Click-based
software middleboxes can be automatically verified.

7 Conclusion

Verifying middlebox implementations has long been an at-
tractive approach to obtain network reliability. We explore the
feasibility of verifying “almost unmodified” software middle-
boxes. Our empirical study on existing Click-based middle-
boxes shows that existing Click-based middleboxes, with
small modifications, are suitable for automated verification us-
ing symbolic execution. Based on this, we have designed and
implemented a software middlebox verification framework,
Gravel. Gravel allows verifying high-level trace-based middle-
box properties of “almost unmodified” Click applications. We
ported five Click applications to Gravel. Our evaluation shows
that Gravel can avoid bugs found in existing middleboxes with
small proof effort. Our evaluation also shows that the modifi-
cations required for automated verification incur negligible
performance overheads. Gravel’s source code is available at
https://github.com/Kaiyuan-Zhang/Gravel-public.
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A Gravel Programming Interface
A.1 High-level Specification Interface

Table 5 gives a list of the interfaces Gravel offers to the devel-
opers. The core interfaces of Gravel includes:

• Functions that generates symbolic value (bitvectors) of
different sizes (the sym_* API).

• Functions that performs graph composition and returns
the result of packet or event processing (handle_*)

• The verify function which informs Gravel’s verifier the
verification task to perform.

Besides the core interfaces, Gravel also provides a set of
helper functions to ease the formalization effort. These func-
tions include functions that access header fields and functions
that checks whether two packets are from the same TCP flow.
Table 5 also lists some examples of helper functions.

A.2 Modeling Abstract Data Structure

As discussed in §4, Gravel masks the actual C++ implementa-
tion of several data structures and replace them with an SMT
encoding during the symbolic execution in order to gener-
ate SMT expressions that could be efficiently reasoned about
by SMT solvers. Table 6 lists all the interfaces that Gravel’s
symbolic executor masks during the verification process. This
section gives more details on how Gravel generates SMT en-
coding for these data structure interfaces in a way that the
resulting formular can be effciently solved.

Unlike bounded data such as the content of a network
packet or an integer field in element state, which can be en-
coded as a symbolic byte sequence using the bitvector theory
of SMT, these data structures have a large state space. This
means that encoding them with bitvectors does not results
in practically solvable expression. For example, the state of
a HashMap<IPAddress, IPAddress> could grow up to 264−1
bytes. This sheer size makes it infeasible to be encoded using
bitvectors.

Gravel’s symbolic executor choose to use a different ap-
proach and represents data structures as a set of uninterpreted
functions. In the aforementioned HashMap example, Gravel
represents the map as two functions:

fcontain : {0,1}32 7→ {⊥,>}
fvalue : {0,1}32 7→ {0,1}32

fcontain maps from the key space {0,1}32 to boolean space
and represents whether certain key is present in the HashMap.
Similarly, fvalue represents the mapping between hashmap
keys and the corresponding values.

Each of the data structure interfaces is also modeled by
Gravel as operations performed on uninterpreted functions.
For the find(K k) interface of HashMap, Gravel first gets the
symbolic value representing whether the key is in the map

https://tools.ietf.org/html/rfc5382
https://www.netfilter.org
https://www.netfilter.org
https://github.com/Z3Prover/z3
https://github.com/Z3Prover/z3


Function name Description
Core Interfaces:

sym_*() → SymValT Create a symbolic value of corresponding type
handle_packet(s, pkt, in_port) → o1, · · ·, on, ns Handle the packet and returns the outputs and new state
handle_time(s, timestamp) → o1, · · ·, on, ns Handle time event, return value is same as handle_packet

verify(formula) Encode given formula and verify that a formula always holds
Helper Functions:

is_none(output) → Bool Check if an output is None

payload_eq(p1, p2) → Bool Determine if two packets have the same payload
from_same_flow(p1, p2) → Bool Determine if two packets are from the same TCP connection
is_tcp(pkt) → Bool Check if a packet is TCP packet

Table 5: Gravel’s specification programming interface.

by computing fcontain(k). Based on the result, Gravel takes
different actions:

If fcontain(k) =>, find(k)= fvalue(k)

If fcontain(k) =⊥, find(k)=⊥

In the actual implementation, ⊥ is represented as
HashMap::end().

The intert(K k, V v) interface performs update on the
content of the HashMap. In Gravel, this is modeled as creating
a new set of uninterpreted functions, f ′contain and f ′value such
that:

∀k′ ∈ {0,1}32·
f ′contain(k

′) = ( fcontain(k′)∨ (k = k′))

∧(k 6= k′)⇒ f ′value(k
′) = fvalue(k′)

∧ f ′value(k) = v

Similarly, erase(K k) replaces fcontain with a new function
f ′contain such that:

∀k′ ∈ {0,1}32 · f ′contain(k
′) = fcontain(k′)∧ (k 6= k′)

Besides modeling interfaces from existing Click code base,
Gravel also adds a set of iteration interfaces that corresponds
to commonly used data structure traverse paradigms. These
interfaces could be used to abstract away loops in the Click
implementation and making more elements feasible for auto-
mated verification.

Gravel currently provides two interfaces for HashMap, map
and filter. for map interface, Gravel takes as parameter a
function g and replace fvalue with a function f ′value where:

∀k ∈ {0,1}32 · f ′value(k) = g(k, fvalue)

Similarly, filter takes a predicate p and create a function
f ′contain such that:

∀k ∈ {0,1}32 · f ′contain(k) = p(k, fvalue)

The modeling of interfaces of Vector and HashSet are sim-
ilar to the modeling of HashMap mentioned above. The main
difference are that HashSet only uses fcontain function, where
as Vector uses a symbolic integer to denote the size of the
vector and does not have a fcontain function.

B ToyLB’s Element-level Specification
This section gives a detailed description of the element-level
specification of ToyLB. As mentioned in §3, element-level
specification in Gravel is given as a list of “condition-action”
pairs. In Gravel, developers write python functions that gen-
erates the list of possible actions for an element. For example,
The CheckIPHeader element only forwards packets that are
both IP packets and are not from a known “bad” address:

def checkipheader_process_packet(s, p, in_port):
is_bad_src = p.ip.src in s.bad_src
return [Action(And(p.ether.ether_type == 0x0800,

Not(is_bad_src)),
{0: p},
s)]

Remember that the Action is used to create a condition-action
entry, which denotes an action that the element takes under
certain condition (§3).

Similarly, CheckTCPHeader filters all packets that are not
TCP packets.

def checktcpheader_process_packet(s, p, in_port):
return [Action(p.ip.proto == 6,

{0: p},
s)]

RoundRobinSwitch not only performs address rewriting for
incoming packets, it also updates packet header fields and its
own state:

def roundrobinswitch_process_packet(s, p, in_port):
ns, np = s.copy(), p.copy()
dst_ip = s.addr_map[s.cnt]
ns.cnt = (s.cnt + 1) % s.num_backend
np.ip4.dst = dst_ip
return [Action(True, {0: np}, ns)]



The FlowTable element have a more complex specification
as it takes one of three actions based on both the content of
the incoming packet and its own state:

def flowtable_process_packet(s, p, in_port):
flow = p.ip4.saddr, p.tcp.sport, \

p.ip4.daddr, p.tcp.dport
# the case when flowtable has record of the flow
known_flow = And(

# packet is received from the network
in_port == IN_TCP_FILTER,
# flowtable has record of the flow
flow in s.decisions)

# construct the encapsulated packet
fwd_pkt = p.copy()
fwd_pkt.ip4.dst = s.decisions[flow]
# update the timestamp of the flow with current time
after_fwd = s.copy()
after_fwd.timestamps[flow] = s.curr_time

known_flow_action =
Action(known_flow,

{PORT_TO_EXT: fwd_pkt}, after_fwd)

# the case when flowtable does not know the flow
consult_sched = And(

in_port == INPORT_NET,
Not(flow in s.decisions))

unknown_flow_action =
Action(consult_sched, {PORT_TO_SCHED: p}, s)

# packet from the Scheduler
register_new_flow = in_port == IN_SCHED
# extract the new_flow
new_flow = p.inner_ip.saddr, p.tcp.sport, \

p.inner_ip.daddr, p.tcp.dport
# add the record of the new_flow to FlowTable
after_register = s.copy()
after_register.decisions[new_flow] = p.ip4.daddr
after_register.timestamps[new_flow] = s.curr_time
register_action =

Action(register_new_flow, {PORT_TO_EXT: p},
after_register)

return [known_flow_action,
unknown_flow_action,
register_action]

C Verifying Properties of MazuNAT
The MazuNAT middlebox is the most complicated applica-
tion Gravel verifies in the case study (§5.1). Figure 6 shows
the directed graph of Click elements extracted from its con-
figuration file.

The three properties of MazuNAT proved by Gravel are
extracted from RFC [29]. They are important to provide trans-
parency guarantees for application running inside the net-
work. Here we give the formalization of them in Gravel using
Gravel’s Python interface.

Payload Preservation (Property 3). The specification of
Property 3 simply says that the payload of any packet for-
warded by the middlebox remains the same. Note that this is a
general property that can be verified on multiple middleboxes.

def test_payload_unchanged(self):

p, s = sym_pkt(), sym_state()
for source in sources:

ps, _ = handle_packet(s, source, p)
for sink in sinks:

verify(Implies(Not(ps[sink].is_empty()),
ps[sink].payload == p.payload))

Endpointer Independent Mapping (Property 4. For
Property 4, the specification starts by creating two symbolic
packets, p1 and p2. It then invoke the process_packet on both
packets (using the same symbolic state s). After that, it asks
the verifier to check if the rewritten packets sending to the
external network have the same source address.

def to_external(p, s):
return p.ip.dst != s.public_ip

def same_src(p1, p2):
return And(is_tcp_or_udp(p1), is_tcp_or_udp(p2),

p1.ip.src == p2.ip.src,
src_port(p1) == src_port(p2))

def test_ep_independent_map(self):
p1, p2, s = sym_pkt(), sym_pkt(), sym_state()

out1, _ = handle_packet(s, 'from_intern', p1)
out2, _ = handle_packet(s, 'from_intern', p2)
o1 = out1['to_extern']
o2 = out2['to_extern']
verify(Implies(And(to_external(p1, s),

to_external(p2, s),
same_src(p1, p2)),

same_src(o1, o2)))

Endpoint Independent Filtering (Property 5). The high-
level specification of Property 5 starts with creating symbolic
packet p1 and symbolic state s. Then it creates a new packet
p2 by replace only the source address and port with fresh sym-
bolic values. After that the specification uses process_packet

to get the resulting packets from processing p1 and p2. Finally,
we ask the verifier to check whether the resulting packets (o1
and o2 in the code snippet below) are sent to the same desti-
nation.

def test_ep_independent_filter(self):
p1, s = sym_pkt(), sym_state()
ps1, _ = handle_packet(s, 'from_extern', p1)
p2 = p1.copy()
p2.ip.src = sym_ip()
p2.tcp.src = sym_port()
p2.udp.src = sym_port()
ps2, _ = handle_packet(s, 'from_extern', p2)
for sink in sinks:

o1 = ps1[sink]
o2 = ps2[sink]
verify(Implies(Not(o1.is_empty()),

And(Not(o2.is_empty()),
o1.ip.dst == o2.ip.dst,
dst_port(o1) == dst_port(o2))))

Hairpinning (Property 6). As shown below, rather than in-
specting the state of elements in MazuNAT to determine
whether a address mapping is established. Gravel uses the
packet forwarding behavior as the indicator. The specification
says that if a packet p1 from external network is forwarded



Function name Description
Vector<T>:

const T& get(unsigned int) Get value by index
void set(unsigned int i, T v) Set i-th value of vector to v

void map(void(*)(T) f) Apply function f for all value in vector
HashMap<K, V>:

V &find(K k) Lookup by key k

void insert(K k, V v) Insert key-value pair k, v into the hashmap
void erase(K k) Delete key k from the hashmap
void map(void(*)(K k, V v) f Apply function f to all key-value pair in hashmap
void filter(bool(*)(K k, V v) p) Filter key-value pairs in the hashmap with predicate p

HashSet<T>:

T &find(T v) Check if v is present in hashset
void insert(T v) Insert v into the hashset
void erase(T v) Delete v from the hashset
void filter(bool(*)(T v) p) Filter with predicate p

Table 6: Data structure interfaces supported by Gravel.

to internal network. any packet p2 with the same destination
address and port received from internal network is also for-
warded to the same destination in the internal network.

def test_hairpinning(self):
p1, p2, s = sym_pkt(), sym_pkt(), sym_state()
out1, _ = handle_packet(s, 'from_extern', p1)
out2, _ = handle_packet(s, 'from_intern', p2)
o1 = out1['to_intern']
o2 = out2['to_intern']
verify(Implies(And(p1.ip.dst == p2.ip.dst,

p1.ip.proto == p2.ip.proto,
dst_port(p1) == dst_port(p2),
o1.not_empty()),

And(o2.not_empty(),
o1.ip.dst == o2.ip.dst,
o1.tcp.dst == o2.tcp.dst)))

Connection memorization (Property 7). The formalization
of Property 7 uses the same inductive approach as in the
ToyLB example. As shown below, the specification is decom-
posed into a base case and two inductive cases. The base case
states that when a packet from internal network is forwarded
to external world by MazuNAT, the translation will be still
effective within the time window THRESHOLD.

def test_memorize_init(self):
p0, p1, s0 = sym_pkt(), sym_pkt(), sym_state()
o, s1 = handle_packet(s0, 'from_intern', p0)
ext_port = o['to_extern'].tcp.src

t = s0['rw'].curr_time
ddl = t + THRESHOLD
verify(Implies(is_tcp(p0),

steer_to(c, s1, p0, ext_port, ddl)))

Then, the two inductive cases show that processing a packet
from other flows or any time event before the end of the time
window do not effect existing translation mappings.

def test_memorize_step_pkt(self):
p0, p1, s0 = sym_pkt(), sym_pkt(), sym_state()
t = sym_time()

p_diff = sym_pkt()
ext_port = sym_port()
_, s1 = handle_packet(s0, 'from_intern', p_diff)
verify(Implies(And(steer_to(c, s0, p0, ext_port, t),

from_same_flow(p0, p1)),
steer_to(c, s1, p0, ext_port, t)))

def test_memorize_step_time(self):
ext_port = fresh_bv('port', 16)
p0, p1, s0 = sym_pkt(), sym_pkt(), sym_state()
t0, t1 = sym_time(), sym_time()
_, s1 = handle_time(s0, 'rw', t1)
verify(Implies(And(steer_to(c, s0, p0, ext_port, t0),

z3.ULT(t1, t0),
from_same_flow(p0, p1)),

steer_to(c, s1, p1, ext_port, t0)))
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Figure 6: The directed graph of elements in MazuNAT.
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