
This paper is included in the Proceedings of the
15th USENIX Symposium on Networked

Systems Design and Implementation (NSDI ’18).
April 9–11, 2018 • Renton, WA, USA

ISBN 978-1-931971-43-0

Open access to the Proceedings of
the 15th USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by USENIX.

Iron: Isolating Network-based CPU
in Container Environments

Junaid Khalid, UW-Madison; Eric Rozner, Wesley Felter, Cong Xu, and Karthick Rajamani,
IBM Research; Alexandre Ferreira, Arm Research; Aditya Akella, UW-Madison

https://www.usenix.org/conference/nsdi18/presentation/khalid

Iron: Isolating Network-based CPU in Container Environments

Junaid Khalid† Eric Rozner∗ Wesley Felter∗ Cong Xu∗

Karthick Rajamani∗ Alexandre Ferreira‡ Aditya Akella†

†UW-Madison ∗IBM Research ‡Arm Research

Abstract
Containers are quickly increasing in popularity as the

mechanism to deploy computation in the cloud. In or-
der to provide consistent and reliable performance, cloud
providers must ensure containers cannot adversely inter-
fere with one another. Because containers share the same
underlying OS, it is more challenging to provide isolation
in a container-based framework than a traditional VM-
based framework. And while many schemes can isolate
CPU, memory, disk, or network bandwidth in multi-tenant
environments, less attention has been paid to how the time
spent processing network traffic affects isolation on the
host server. This paper shows computational overhead
associated with the network stack can break isolation in
container-based environments. Specifically, a container
with heavy network traffic can decrease the computation
available to other containers sharing the same server. We
propose a scheme, called Iron, that accounts for the time
spent in the networking stack on behalf of a container
and ensures this processing cannot adversely impact colo-
cated containers through novel enforcement mechanisms.
Our results show Iron effectively provides isolation under
realistic and adversarial conditions, limiting interference-
based slowdowns as high as 6× to less than 5%.

1 Introduction

Today, containers are widely deployed in virtualized envi-
ronments. Companies such as IBM, Google, Microsoft,
and Amazon allow customers to deploy applications and
services in containers via public clouds. In addition,
serverless computing platforms [8,31,55] rely on contain-
ers to deploy user code [38]. Because containers share
components of the underlying operating system (OS), it
is critical the OS provides resource isolation to the con-
tainer’s assigned resources, such as CPU, disk, network
bandwidth, and memory. Currently, control groups (or
cgroups) in Linux [3] enable resource isolation by allocat-
ing, metering, and enforcing resource usage in the kernel.

Resource isolation is an important construct for both ap-
plication developers and cloud providers. Recent studies
indicate today’s workloads are heterogeneous and do not
easily fit into predetermined bucket allocations [62, 69].
Therefore, developers should be able to allocate container
resources in a fine-grained manner. For this to be effec-
tive, however, a container’s provisioned resources must
be readily available. When resource availability is com-
promised due to overprovisioning or ineffective resource
isolation, latency-sensitive applications can suffer from
performance degradation, which can ultimately impact
revenue [7, 14, 20, 49]. In serverless computing, billing
is time-based [38] and insufficient resource isolation can
cause users to be needlessly overcharged. Cloud providers
also rely on resource isolation to employ efficient con-
tainer orchestration schemes [1, 13, 69] that enable hyper-
dense container deployments per server. However, with-
out hardened bounds on container resource consumption,
providers are faced with a trade-off: either underprovi-
sion dedicated container resources on each server (and
thus waste potential revenue by selling spare compute to
lower priority jobs) or allow loose isolation that may hurt
customer performance on their cloud.

In this paper, we show containers can utilize more CPU
than allocated by their respective cgroup when sending
or receiving network traffic, effectively breaking isola-
tion. Modern kernels process traffic via interrupts, and
the time spent handling interrupts is often not charged
to the container sending or receiving traffic. Without ac-
curately charging containers for network processing, the
kernel cannot provide hardened resource isolation. In
fact, our measurements indicate the problem can be se-
vere: containers with high traffic rates can cause colocated
compute-driven containers to suffer an almost 6× slow-
down. The overhead is high because kernels perform a
significant amount of network processing: from servicing
interrupts, to protocol handling, to implementing network
function virtualizations (e.g., switches, firewalls, rate lim-
iters, etc). Modern datacenter line rates are fast (10-100

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 313

Gbps), and studies have shown network processing can
incur significant computational overhead [35, 36, 41, 61].

Interference in datacenters is a known problem [49, 53,
64], and researchers have developed schemes to isolate
CPU [11, 15, 67] and network bandwidth [42, 56, 58, 65].
In contrast, the recent study of isolating network-based
processing has been limited. Prior schemes cannot be
applied to modern containerized ecosystems [34] or al-
ter the network subsystem in such a way that interrupt
processing becomes less efficient [10, 25].

This paper presents Iron (Isolating Resource Overhead
from Networking), a system that monitors, charges, and
enforces CPU usage for processing network traffic. Iron
implements a careful set of kernel instrumentations to
obtain the cost of processing packets at a fine-grained
level, while maintaining the efficiency and responsiveness
of interrupt handling in the kernel. Iron integrates with
the Linux scheduler to charge a container for its traffic.
Charging alone cannot provide hardened isolation because
processing traffic received by a container after it consumes
its CPU allocation can break isolation. As a result, Iron
implements a hardware-based scheme to drop packets
destined to a container that has exhausted its allocation.

Providing isolation in containerized systems is chal-
lenging for many reasons. A container’s traffic traverses
the entire network stack on the server OS and thus accu-
rate charging requires capturing variations in processing
different packet types. A given solution must be compu-
tationally light-weight because line rate per-packet op-
erations are prone to high overhead and keeping state
across cores can lead to inefficient locking. Finally, lim-
iting interference due to packet receptions is difficult be-
cause administrators may not have control over traffic
sources. Iron addresses these challenges to effectively
enforce isolation for network-based processing. In short,
our contributions are as follows:

• A case study showing the computational burden of pro-
cessing network traffic can be significant. Current cgroup
mechanisms do not account for this burden, which can
cause an 6× slowdown for some workloads.

• A system called Iron to provide hardened isola-
tion. Iron’s charging mechanism integrates with the
Linux cgroup scheduler in order to ensure containers are
properly charged or credited for network-based process-
ing. Iron also provides a novel packet dropping mecha-
nism to limit the effect, with minimal overhead, of a noisy
neighbor that has exhausted its resource allocation.

• An evaluation showing MapReduce jobs can experi-
ence over 50% slowdown competing with trace-driven
network loads and compute-driven jobs can experience
a 6× slowdown in controlled settings. Iron effectively
isolates and enforces network-based processing to reduce
these slowdowns to less than 5%.

2 Background and Motivation

This section first describes the interference problem: that
is, how the network traffic of one container can interfere
with CPU allocated to another container. Afterwards,
we place Iron in the context of past solutions and then
empirically examine the impact of interference.

2.1 Network traffic breaks isolation

The interference problem occurs because the Linux sched-
uler does not properly account for time spent servicing
interrupts for network traffic. A brief background on
Linux container scheduling, Linux interrupt handling, and
kernel packet processing follows.

Linux container scheduling Cgroups limit the CPU al-
located to a container by defining how long a container
can run (quota) over a time period. At a high-level,
the scheduler keeps a runtime variable that accrues
how long the container has run within the current period.
When the total runtime of a container reaches its quota,
the container is throttled. At the end of a period, the con-
tainer’s runtime is recharged to its quota. The scheduler
is discussed in [67].

Linux interrupt handling Linux limits interrupt over-
head by servicing interrupts in two parts: a top half (i.e.,
hardware interrupts) and bottom half (i.e., software in-
terrupts). A hardware interrupt can occur at any time,
regardless of which container or process is running. The
top half is designed to be light-weight so it only performs
the critical actions necessary to service an interrupt. For
example, the top half will acknowledge the hardware’s in-
terrupt and may directly interface with the device. The top
half then schedules the bottom half to execute (i.e., raises
a software interrupt). The bottom half is responsible for
actions that can be delayed without affecting the perfor-
mance of the kernel or I/O device. Networking in Linux
typically employs softirqs (a type of software interrupt) to
implement the bottom half. Softirqs are used to transmit
deferred transmissions, manage packet data structures,
and navigate received packets through the network stack.

Linux’s softirq handling directly leads to the interfer-
ence problem. Software interrupts are checked at the end
of hardware interrupt processing or whenever the kernel
re-enables softirq processing. Software interrupts run in
process context. That is, whichever unlucky process is
running will have to use its scheduled time to service the
softirq. Here, isolation breaks when a container has to use
its own CPU time to process another container’s traffic.

The kernel tries to minimize softirq handling in pro-
cess context by limiting the softirq handler to run for a
fixed time or budgeted amount of packets. When the
budget is exceeded, softirq stops executing and sched-

314 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

ules ksoftirqd to run. Ksoftirqd is a kernel thread
(it does not run in process context) that services remain-
ing softirqs. There is one ksoftirqd thread per processor.
Because ksoftirqd is a kernel thread, the time it spends
processing packets is not charged to any container. This
breaks isolation by limiting available time to schedule
other containers or allowing a container that exhausted its
cgroup quota to obtain more processing resources.

Kernel packet processing Consider a “normal” packet
transmission in Linux: a packet traverses the kernel from
its socket to the NIC. Although this traversal is done in
the kernel, it is performed in process context, and hence
the time spent sending a packet is charged to the correct
container. There are, however, two cases in which isola-
tion can break on the sender. First, when the NIC finishes
a packet transmission, it schedules an interrupt to free
packet resources. This work is done in softirq context,
and hence may be charged to a container that did not send
the traffic. The second case arises when there is buffering
along the stack, which can commonly occur with TCP
(for congestion control and reliability) or with traffic shap-
ing (in qdisc [2]). The packet is taken from the socket to
the buffer in process context. Upon buffering the packet,
however, the kernel system call exits. Software interrupts
are then responsible for dequeuing the packet from its
buffer and moving it down the network stack. As before,
isolation breaks when softirqs are handled by ksoftirqd or
charged to a container that didn’t send the traffic.

Receiving packets incurs higher softirq overhead than
sending packets. Under reception, packets are moved
from the driver’s ring buffer all the way to the application
socket in softirq context. This traversal may require in-
terfacing with multiple protocol handlers (e.g., IP, TCP),
NFVs, NIC offloads (e.g., GRO [16]), or even sending
new packets (e.g., TCP ACKs or ICMP messages). In
summary, the whole receive chain is performed in softirq
context and therefore a substantial amount of time may
not be charged to the correct container.

2.2 Putting Iron in context

Previous works can mitigate the interference problem by
designing new abstractions to account for container re-
source consumption or redesigning the OS. Below, Iron’s
contributions are put in context.

System container abstraction In a seminal paper Banga
proposed resource containers [10], an abstraction to cap-
ture and charge system resources in use by a particular
activity. The work extends Lazy Receiver Processing
(LRP) [25]. When a process is scheduled, a receive sys-
tem call lazily invokes protocol processing in the ker-
nel, and thus time spent processing packets is correctly
charged to a process. This approach is inefficient for TCP

because at most one window can be consumed between
successive system calls [25], and therefore LRP employs
a per-socket thread associated with each receiving pro-
cess to perform asynchronous protocol processing so CPU
consumption is charged appropriately.

Although LRP solves the accounting problem, the fol-
lowing issues must be considered. First, as the name im-
plies, LRP only handles receiving traffic and cannot fully
capture the overheads of sending traffic. Second, LRP re-
quires a per-socket thread to perform asynchronous TCP
processing1. Maintaining extra threads leads to additional
context switching, which can incur significant overhead
for processing large amounts of flows [41]. Third, the
scheduler must be made aware of, and potentially priori-
tize, threads with outstanding protocol processing other-
wise TCP can suffer from increased latencies and even
drops while it waits for its socket’s thread to be sched-
uled. A similar notion of per-thread softirq processing was
proposed in the Linux Real-Time kernel, but ultimately
dropped because it increases configuration complexity
and reduces performance [30].

Iron explicitly addresses the above concerns. First, Iron
correctly accounts for transmissions. Second, Iron seam-
lessly integrates with Linux’s interrupt processing to main-
tain efficiency and responsiveness. In Linux, all of a
core’s traffic is processed by that core’s softirq handler.
Processing interrupts in a shared manner, rather than in
a per-thread manner, maintains efficiency by minimizing
context switching. Additionally, by servicing hardware
interrupts in process context, protocol processing is per-
formed responsively. Linux’s design, however, directly
leads to the interference problem. Therefore, one contri-
bution of our work is showing accurate accounting for
network processing is possible even when interrupt han-
dling is performed in a shared manner.

Redesigning the OS Library OSes [28, 48, 57, 60] re-
design the OS by moving network protocol processing
from the kernel to application libraries. In these schemes,
packet demultiplexing is performed at the lowest level of
the network stack: typically the NIC directly copies pack-
ets to buffers shared with applications. Since applications
process packets from their buffers directly, network-based
processing is correctly charged.

Library OSes have numerous practical concerns, how-
ever. First, these works face similar challenges as LRP
with threaded protocol processing. Second, explicitly re-
moving network processing from the kernel can make
management difficult. In multi-tenant datacenters, servers
host services such as rate limiting, virtual networking,
billing, traffic engineering, health monitoring, and secu-
rity. With a library OS, admin-defined network processing
must be performed in the NIC or in user-level software.

1Banga’s design uses a per-process asynchronous thread

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 315

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

 1.18

 1.2

0 1 2 3 4 5 6 inf

Pe
n
a
lt

y
Fa

ct
o
r

TC queue limit (Gbps)

2 per core
3 per core
6 per core

10 per core

Figure 1: Penalty factor of UDP senders.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 0 1 2 3 4 5 6 7

C
P
U

 U
sa

g
e
 (

%
)

TC queue limit (Gbps)

2 per core
3 per core
6 per core

10 per core

Figure 2: ksoftirqd overhead with UDP senders.

Neither approach is ideal. Application libraries linked by
developers make it difficult for admins to insert policies
and functionalities at the host. For example, an admin’s
ability to perform traffic shaping or simply configure a
TCP stack may be limited. Furthermore, porting network
services to user-level requires every NFV application to
track, charge, and enforce network processing to mitigate
interference. NIC-based techniques can cost more (to
upgrade hosts), scale more poorly in the number of flows
and services, and be less flexible and harder to config-
ure than software. And while NICs are becoming more
flexible [76], it is likely network management will be
dictated by a combination of admin-controlled software
and hardware in the future. As such, Iron can help track
and enforce software-based network processing. Finally,
adapting Library OSes to support multi-tenancy and re-
placing currently deployed ecosystems can have a high
barrier to entry for providers and customers.

2.3 Impact of network traffic

In this section, a set of controlled experiments quantifies
the impact of both UDP and TCP network processing on
isolation in containerized environments.

Methodology In each experiment, n containers are allo-
cated per core, where n varies from 2, 3, 6, or 10. Each

container is configured to obtain an equal share of the
core (i.e., quota = period/n). This allocation is repli-
cated over all cores. NICs are 25 Gbps, and Section 4
further details methodology. One container per core, de-
noted the victim, runs a CPU-intensive sysbench work-
load [46]. The time to complete each victim’s workload is
measured under two scenarios. In the first scenario all non-
victim containers, henceforth denoted interferers, also run
sysbench. This serves as a baseline case. In the second
scenario, the interferers run a simple network flooding
application that sends as many back-to-back packets as
possible. The victim’s completion time is measured under
both scenarios, and a penalty factor indicates the fraction
of time the victim’s workload takes when competing with
traffic versus competing with sysbench. Penalty fac-
tors greater than one indicate isolation is broken because
traffic is impacting the victim in an adverse way.

For the reception tests, containers are allocated on a
single core and all NIC interrupts are serviced on the same
core to ensure cores without containers do not process
traffic. As before, the victim container runs sysbench,
but the interferers now run a simple receiver. A multi-
threaded sender varies its rate to the core, using 1400 byte
packets and dividing flows evenly amongst the receivers.
All results are averaged over 10 runs.

UDP senders These results show the impact when the
interfering containers flood 1400 byte UDP traffic. Stud-
ies have shown rate limiters can increase computational
overhead [61], so the penalty factor is measured when no
rate limiters are configured and also when hierarchical
token bucket (HTB) [2] is deployed for traffic shaping.

Figure 1 presents the results. Lines denote how many
containers are allocated on a core, the x-axis denotes the
rate limit imposed on a core, and the y-axis indicates the
penalty factor. With n containers per core, each container
receives 1

n

th
of the bandwidth allocated to the core. The

right-most point labeled “inf” is when no rate limiter is
configured. We note the following trends. First, there is
no penalty factor with no rate limiting because the applica-
tion demands are lower than the link bandwidth, so there
is no queuing at the NIC. Second, rate limiting causes
penalty factors as high as 1.18. The summed application
demands can be higher than the imposed rate limit on
each core, which means packets are queued in the rate
limiter. Softirq handling interferes with the processing
time of the victims, leading to high penalty factors. Third,
HTB experiences a relatively higher penalty for 1-3 Gbps.
When rate limits are 4 Gbps and above, the rate limiter
does not shape traffic because senders are CPU-bound
and cannot generate more than 4 Gbps of traffic demand.
Isolation still breaks because rate limiters maintain state
and perform locking (this overhead was also witnessed

316 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

0 1 2 3 4 5 6 inf

P
e
n
a
lt

y
 F

a
ct

o
r

TC queue limit (Gbps)

1 flow
10 flows
25 flows
50 flows
75 flows

100 flows

(a) 2 containers per core

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

0 1 2 3 4 5 6 inf

P
e
n
a
lt

y
 F

a
ct

o
r

TC queue limit (Gbps)

10 flows
25 flows
50 flows
75 flows

100 flows

(b) 10 containers per core

Figure 3: Penalty factor of victims with TCP senders.

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 0 1 2 3 4 5 6

Pe
n
a
lt

y
Fa

ct
o
r

Input rate (Gbps)

(a) 1 receiver

 1

 1.5

 2

 2.5

 3

 3.5

 0 1 2 3 4 5 6 7 8 9 10

Pe
n
a
lt

y
Fa

ct
o
r

Input rate (Gbps)

(b) 5 receivers

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 2 4 6 8 10 12

Pe
n
a
lt

y
Fa

ct
o
r

Input rate (Gbps)

(c) 9 receivers

Figure 4: Penalty factor when there are 10 containers on 1 core. i= 1,5,9 of the containers are UDP receivers.

in [43]). For rates below 4 Gbps, senders generate more
traffic than the enforced rate and higher overheads occur.

Figure 2 shows the CPU usage of ksoftirqd (on core
0) for the experiment in Figure 1. The trends roughly
correspond to the penalty factor overhead. Time spent in
ksoftirqd is not attributed to any process, which means
that time cannot be issued to other containers. This in-
creases the time it takes for the victim workload to com-
plete. To understand the remaining penalty, we instru-
mented a run with perf [5]. With 10 containers per
core and 2 Gbps rate limit, the victim spent 6.99% of its
scheduled time servicing softirqs even though it sent no
traffic.

TCP senders Figure 3 shows TCP sender performance
for 2 and 10 containers per core. Different from the UDP
results, the number of flows per core is varied, and flows
are divided equally amongst all sending containers on a
core. We note the following trends. First, TCP overheads
are higher than UDP overheads– in the worst case, the
overhead can be as high as 1.95×. TCP overheads are
higher because TCP senders receive packets, i.e., ACKs,
and also buffer packets at the TCP layer. Both ACK
processing and pushing buffered packets to the NIC are
completed via softirqs. Therefore, no rate limiting has
higher overhead in TCP than UDP. The second interest-
ing trend is overheads increase as the number of flows

increase. This occurs for two reasons. First, the number
of TCP ACKs increase with flows, and in general, there
exists more protocol processing with more flows. Sec-
ond, a single TCP flow can adapt to the rate limiter, but
multiple flows create burstier traffic patterns that increase
queuing at the rate limiter.

UDP receivers Figure 4 shows the UDP receiver results.
Ten containers are allocated on the core, and if i con-
tainers receive UDP traffic, then 10− i containers run
sysbench. The sender increases its sending rate from
1 Gbps to 12 Gbps at 1 Gbps increments. For each send-
ing rate, 10 trials are run. Each green dot represents the
result of a trial. The x-axis indicates the input rate to
the core, which can differ from the sending rate due to
drops. The red line, provided for reference, averages the
penalty factor in 500 Mbps buckets. We varied the num-
ber of receivers from 1 to 9, but only show 1, 5, and 9
receivers in the interest of space. We note the follow-
ing trends. First, the penalty factor for receiving UDP
is higher than sending UDP. Packets traverse the whole
network stack in softirq context and therefore overheads
are larger. Next, as more of the core is allocated to receive
(as i increases), the rate at which the server can process
traffic increases. As the rate of incoming traffic increases,
so does the penalty factor. Under high levels of traffic, the

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 317

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0 500 1000 1500 2000 2500 3000 3500

P
e
n
a
lt

y
 F

a
ct

o
r

Input rate (Mbps)

1 flow
10 flows
25 flows
50 flows
75 flows

100 flows

(a) 1 receiver

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 1000 2000 3000 4000 5000 6000 7000

P
e
n
a
lt

y
 F

a
ct

o
r

Input rate (Mbps)

10 flows
25 flows
50 flows
75 flows

100 flows

(b) 5 receivers

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 0 1000 2000 3000 4000 5000 6000 7000 8000

P
e
n
a
lt

y
 F

a
ct

o
r

Input rate (Mbps)

10 flows
25 flows
50 flows
75 flows

100 flows

(c) 9 receivers

Figure 5: Penalty factor when there are 10 containers on a 1 core. i= 1,5,9 of the containers are TCP receivers.

overheads from softirqs cause the victim to take almost
4.5× longer.

TCP receivers Figure 5 shows the results when interfer-
ing containers receive TCP traffic. Different from UDP
experiments, TCP senders are configured to send as much
as they can. TCP will naturally adapt its rate when drops
occur (from congestion control) or when receive buffers
fill (from flow control). As before, the penalty factor
increases as the input rate increases and also when the
number of flows increase. In the worst case, interference
from TCP traffic causes the victim to take almost six
times longer. To further understand this overhead, we in-
strument sysbench with perf for nine TCP receivers
and 100 flows. Here, ksoftirqd used 54% of the core and
sysbench spent 60% of its time servicing softirqs. This
indicates that isolation techniques must capture softirq
overhead in both ksoftirqd and process context.

3 Design

This section details Iron’s design. Iron first accounts for
time spent processing packets in softirq context. After
obtaining packet costs, Iron integrates with the Linux
scheduler to charge or credit containers for softirq pro-
cessing. When a container’s runtime is exhausted, Iron
enforces hardened isolation by throttling containers and
dropping incoming packets via a hardware-based method.

3.1 Accounting

This section outlines how to obtain per-packet costs in or-
der to ensure accounting is accurate. First, receiver-based
accounting is detailed, followed by sender-based account-
ing. Afterwards, we describe how to assign packets to
containers and the state used for accounting.

Receiver-based accounting In Linux, packets traverse
the network stack through a series of nested function calls.
For example, the IP handler of a packet will directly call
the transport handler. Therefore, a function low in the
call stack can obtain the time spent processing a packet

do_softirq

net_tx_action

qdisc_run

dequeue_skb

ndo_start_xmit

…

NET_TX_SOFTIRQ

NIC

Queueing
Discipline  

 
 

IP

TCP/UDP

Driver 
Queue

do_softirq

net_rx_action

napi_gro_receive

netif_receive_skb

do_irq

ip_rcv

NET_RX_SOFTIRQ

(a) (b) (c)

Figure 6: Networking in Linux: (a) subset of receive call
stack, (b) send architecture, (c) subset of send call stack.

by subtracting the function start time from the function
end time. Figure 6a shows a subset of Linux’s receive
call stack. Iron instruments netif receive skb to
obtain per-packet costs because it is the first function that
handles individual packets outside the driver, regardless
of transport protocol2.

Obtaining the time difference is nontrivial because the
kernel is preemptable and functions in the call tree can
be interrupted at any time. To ensure only the time spent
processing packets is captured, Iron relies on scheduler
data. The scheduler keeps the cumulative execution time
a thread has been running (cumtime), as well as the time
a thread was last swapped in (swaptime). Coupled with
the local clock (now), the start and end times can be
calculated as: time= cumtime+(now−swaptime).

Besides per-packet costs, there is also a fixed cost asso-
ciated with processing traffic. That is, there are overheads
for entering the function that processes hardware inter-
rupts (do IRQ), processing softirqs, and performing skb
garbage collection. In Iron, these overheads are lumped
together and assigned to packet costs in a weighted fash-
ion. In Linux, six types of softirqs are processed by the

2TCP first traverses GRO, but we instrument here for uniformity

318 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

softirq handler (do softirq): HI, TX, RX, TIMER,
SCSI, and TASKLET. For each interrupt, we obtain the
total do IRQ cost, denoted H , and the cost for process-
ing each specific softirq (denoted SHI , STX , etc). Note
software interrupts are processed at the end of a hardware
interrupt, so H > ∑iSi. The overhead associated with
processing an interrupt is defined as: O =H−∑iSi and
the fair share of the receive overhead within that interrupt
is: ORX = O SRX

∑iSi
. Last, ORX is evenly split amongst

packets processed in a given do softirq call to obtain
a fixed charge added to each packet.

Finally, we note this scheme is effective in capturing
TCP overhead. That is, Iron gracefully handles TCP
ACKs and TCP buffering. A TCP flow is handled within a
single thread, so when data is received, the thread directly
calls a function to send an ACK. When the ACK function
returns, the received data continues to be processed as
normal. Therefore, ACK overhead is captured by our start
and end timestamps. Buffering is also handled correctly.
Say packet i− 1 is lost and thus received packet i is
buffered. When retransmitted i− 1 is received the gap
in sequence numbers is filled and TCP will push up the
packets to the socket. Correct charging occurs because
the cost of moving packet i from the buffer to the socket
is captured in the cost of retransmitted packet i−1.

Sender-based accounting When sending packets, the
kernel has to obtain a lock on a NIC queue. Obtain-
ing a lock on a per-packet basis has high overhead, so
packets are often batched for transmission in Linux [18].
Therefore, Iron measures the cost of sending a batch and
then charges each packet within the batch for an equal
share of the batch cost. The do softirq function calls
net tx action to process transmit softirqs (refer to
Figure 6b,c). Then net tx action calls into the qdisc
layer to retrieve packets. Multiple qdisc queues can be de-
queued and each queue may return multiple packets. As a
result, a linked list of skbs is created and sent to the NIC.
Similar to the receiver, net tx action obtains a start
and end time for sending the batch, and OTX is obtained
to split the transmission’s fixed overheads. Overheads
are calculated per core because HTB is work conserving
and may dequeue a packet on a different core than it was
enqueued.

Container mapping and accounting data structures
Iron must identify the container a packet belongs to. On
the sender, an skb is associated with its cgroup when en-
queued in the qdisc layer. On the receiver, Iron maintains
a hash table on IP addresses that is filled when copying
packets to a socket.

In Iron, each process maintains a local (per-core) list of
packets it processed in softirq context and their individual
costs. The per-process structures are eventually merged
into a global per-cgroup structure. Iron does this in a way

Algorithm 1 Global runtime refill at period’s end

1: if gained > 0 then
2: runtime← runtime + gained
3: gained← 0
4: end if
5: if cgroup idled() and runtime > 0 then
6: runtime← 0
7: end if
8: runtime← quota + runtime
9: set timer(now + period)

that does not increase locking by merging state when the
scheduler obtains a global lock. The per-cgroup structure
maintains a variable (gained) that indicates if a cgroup
should be credited for network processing. Section 3.2
details data structure use.

3.2 Enforcement

This subsection shows how isolation is enforced. Isola-
tion is achieved by integrating accounting data with CPU
allocation in Linux’s CFS scheduler [67] and dropping
packets when a container becomes throttled.

Scheduler integration The CFS scheduler implements
CPU allocation for cgroups via a hybrid scheme that keeps
both local (i.e., per core) and global state. Containers are
allowed to run for a given quota within a period. The
scheduler minimizes locking overhead by updating local
state on a fine-grained level and global state on a coarse-
grained level. At the global level a runtime variable is
set to quota at the beginning of a period. The scheduler
subtracts a slice from runtime and allocates it to a
local core. The runtime continues to be decremented
until either it reaches zero or the period ends. Regardless,
at the end of a period runtime is refilled to the quota.

On the local level, a rt remain variable is assigned
the slice intervals pulled from the global runtime.
The scheduler decrements rt remain as a task within
the cgroup consumes CPU. When rt remain hits zero,
the scheduler tries to obtain a slice from the global pool. If
successful, rt remain is recharged with a slice and the
task can continue to run. If the global pool is exhausted,
the local cgroup gets throttled and its tasks are no longer
scheduled until the period ends.

Iron’s global scheduler is presented in Algorithm 1.
A global variable gained tracks the time a container
should get back because it processed another container’s
softirqs. Line 2 adds gained to runtime. Next,
runtime is reset to 0 if the container didn’t use its pre-
vious allocation because it was limited by its demand
(lines 5-7), preserving a CFS policy that disallows unused
cycles to be accumulated for use in subsequent periods.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 319

Algorithm 2 Local runtime refill

1: amount← 0
2: min amount← slice - rt remain
3: if cpuusage > 0 then
4: if cpuusage > gained then
5: runtime← runtime - (cpuusage - gained)
6: gained← 0
7: else
8: gained← gained - cpuusage
9: end if

10: else
11: gained← gained + abs(cpuusage)
12: end if
13: cpuusage← 0
14: if runtime = 0 and gained > 0 then
15: refill← min(min amount, gained)
16: runtime← refill
17: gained← gained - refill
18: end if
19: if runtime > 0 then
20: amount← min(runtime, min amount)
21: runtime← runtime - amount
22: end if
23: rt remain← rt remain + amount

Last, line 8 refills runtime. Note, the runtime input can
be negative when a container exceeds its allocated time
by sending or receiving too much traffic.

Iron’s local algorithm is listed in Algorithm 2. The
scheduler invokes this function when rt remain ≤ 0
and after obtaining appropriate locks. The cpuusage
variable is added to maintain local accounting: positive
values indicate the container needs to be charged for un-
accounted networking cycles and negative values indicate
the container needs a credit for work it did on another
container’s behalf. Lines 3-9 cover when a container is
to be charged, trying to take from gained if possible.
Lines 10-12 cover the case when a container is to be cred-
ited, so gained is increased. Lines 14-18 cover a corner
case where the runtime may be exhausted, but some credit
was accrued and can be used. Lines 19-22 are unchanged:
they ensure the container has global runtime left to use.
If not, then amount remains 0. Line 23 updates the new
rt remain by amount.

Dropping excess packets While scheduler-based en-
forcement improves isolation, packets still need to be
dropped so a throttled container cannot accrue more
network-based processing. Iron does not explicitly drop
packets at the sender because throttled containers already
cannot generate more outgoing traffic. There exists a cor-
ner case when a container has some runtime left and sends
a large burst of packets. Currently, the scheduler charges

this overage on the next quota refill. We did implement
a proactive charging scheme that estimates the cost of
packet transmission, charges it up-front, and drops pack-
ets if necessary. This scheme didn’t substantially affect
performance, however.

Dropping the receiver’s excess packets is more im-
portant because a throttled receiver may continue to re-
ceive traffic, hence breaking isolation. Iron implements
a hardware-based dropping mechanism that integrates
with current architectures. Today, NICs insert incoming
packets into multiple queues. Each queue has its own in-
terrupt that can be assigned to specified cores. To improve
isolation, packets are steered to the core in which their
container runs via advanced receive flow steering [39]
(FlexNIC [45] also works). Upon reception, the NIC
DMAs a packet to a ring buffer in shared memory. Then,
the NIC generates an IRQ for the queue, which triggers
the interrupt handler in the driver. Modern systems man-
age network interrupts with NAPI [4]. Upon receiving
a new packet, NAPI disables hardware interrupts and
notifies the OS to schedule a polling method to retrieve
packets. Meanwhile, additionally received packets are
simply put in the ring buffer by the NIC. When the kernel
polls the NIC, it removes as many packets from the ring
buffer as possible, bounded by a budget. NAPI polling
exits and interrupt-driven reception is resumed when the
number of packets removed is less than the budget.

Our hardware-based dropping mechanism works as
follows. First, assume the NIC has one queue per con-
tainer. Iron augments the NAPI queue structure with a
map from a queue to its container (i.e., task group). When
the scheduler throttles a container, it modifies a boolean
in task group. Different from default NAPI, Iron does not
poll packets from queues whose containers are throttled.
From the kernel’s point of view, the queue is stripped
from the polling list so that it isn’t constantly repolled.
From the NIC’s point of view, the kernel is not polling
packets from the queue, so it stays in polling mode and
keeps hardware interrupts disabled. If new packets are
received, they are simply inserted into the ring buffer.
This technique effectively mitigates receiving overhead
because the kernel is not being interrupted or required to
do any work on behalf of the throttled container. When
the scheduler unthrottles a container, it resets its boolean
and schedules a softirq to process packets that may be
enqueued.

As a slight optimization, Iron can also drop packets
before a container is throttled. That is, if a container
is receiving high amounts of traffic and the container is
within T% of its quota, packets can be dropped. This
allows the container to use some of its remaining runtime
to stop a flood of incoming packets.

Hardware-based dropping is effective when there are a
large number of queues per NIC. Even though NICs are

320 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0.9
 0.92
 0.94
 0.96
 0.98

 1
 1.02
 1.04
 1.06

 0 1 2 3 4 5 6 7

P
e
n
a
lt

y
 F

a
ct

o
r

TC queue limit (Gbps)

2 per core
3 per core

6 per core
10 per core

Figure 7: Performance penalty of victim with UDP
senders. Compare to Figure 1.

 0.7
 0.75

 0.8
 0.85

 0.9
 0.95

 1
 1.05

 0 1 2 3 4 5 6 7

P
e
n
a
lt

y
 F

a
ct

o
r

TC queue limit (Gbps)

1 flow
10 flows

25 flows
50 flows

75 flows
100 flows

Figure 8: Performance penalty of victim with TCP
senders. Compare to Figure 3a.

increasingly outfitted with extra queues (e.g., Solarflare
SFN8500-series NICs have 2048 receive queues), in prac-
tice the number of queues may not equal the number of
containers. Iron can allocate a fixed number of queues per
core and then dynamically map problematic containers
onto their own queue. Containers without heavy traf-
fic can incur a software-based drop by augmenting the
netif receive skb function early in the softirq

call stack. This dynamic allocation scheme draws inspi-
ration from SENIC [61], which uses a similar approach
to scale NIC-based rate limiters. Alternatively, containers
can be mapped to queues based on prepurchased band-
width allocations.

4 Evaluation

This section evaluates the effectiveness of Iron. First, a
set of macrobenchmarks show Iron isolates controlled
and realistic workloads. Then, a set of microbenchmarks
investigates Iron’s overhead and design choices.

Methodology The tests are run on Super Micro 5039MS-
H8TRF servers with Intel Xeon E3-1271 CPUs. The
machines have four cores, with hyper-threading disabled
and CPU frequency fixed to 3.2 Ghz. The servers are
equipped with Broadcom BCM57304 NetXtreme-C 25
Gbps NICs (driver 1.2.3 and firmware 20.2.25/1.2.2). The
servers run Ubuntu 16.04 LTS with Linux kernel 4.4.17.
The NICs are set to 25 Gbps for UDP and 10 Gbps for
TCP (we noticed instability with TCP at 25 Gbps).

We use lxc to create containers and Open Virtual
Switch as the virtual switch. Simple UDP and TCP
sender and receiver programs create network traffic. The

1 3 5 7 10
Transmit rate of senders (Gbps)

0.94

0.96

0.98

1.00

1.02

1.04

1.06

P
e
n
a
lt

y
 F

a
ct

o
r

1 rcv 4 rcv 7 rcv

Figure 9: Performance penalty of victim when there are
8 containers on a core. i of the containers are UDP re-
ceivers.

sysbench’s CPU benchmark is used to measure the
computational overhead from competing network traffic.
Rate limiters are configured with default burst settings.

4.1 Macrobenchmarks

Sender-side experiments We run the same experiments
in Section 2 to evaluate how well Iron isolates sender
interference. Figure 7 shows the impact of UDP senders
on sysbench. Note this experimental setup is the same
as Figure 1. Iron obtains average penalty factors less
than 1.01 for 2, 3, and 6 containers, as compared penalty
factors as high as 1.11 without Iron. With 10 contain-
ers, Iron’s penalty factor remains below 1.04, a significant
decrease from the maximum of 1.18 without Iron.

Figure 8 shows the performance of Iron with TCP
senders, and can be compared to Figure 3a. The max-
imum penalty factor experienced by Iron is 1.04, whereas
the maximum penalty factor without Iron is 1.85. These
results show Iron can effectively curtail interference from
network-based processing associated with sending traffic.

Receiver-side experiments We rerun the experiments
in Section 2 to evaluate how well Iron isolates receiver
interference. Even though our NICs support more than
eight receive queues, we were unable to modify the driver
to expose more queues than cores. Therefore, different
from Section 2, a single core is allocated with 8 contain-
ers, instead of 10. In these experiments, the number of
receiver containers varies from 1, 4, or 7. Containers that
are not receivers run an interfering sysbench workload.
For the UDP experiments, the hardware-based enforcing
mechanism was employed, while the TCP experiments
utilize our software-based enforcing mechanism.

Figure 9 shows the impact of UDP receivers. The x-
axis shows aggregated traffic rate at the sender. This is
different from the graphs in Section 2 because Iron drops

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 321

wordcount pi grep
Jobs

1.0
1.1
1.2
1.3
1.4
1.5
1.6

P
e
n
a
lt

y
 F

a
ct

o
r without Iron with Iron

(a) with TeraSort

wordcount pi grep
Jobs

1.0
1.1
1.2
1.3
1.4
1.5
1.6

P
e
n
a
lt

y
 F

a
ct

o
r without Iron with Iron

(b) with data-mining workload

wordcount pi grep
Jobs

1.0
1.1
1.2
1.3
1.4
1.5
1.6

P
e
n
a
lt

y
 F

a
ct

o
r without Iron with Iron

(c) with web-search workload

Figure 10: Penalty factor when MapReduce jobs share resources with other workloads.

1 10 25 50 75 100
Number of flows

0.94

0.96

0.98

1.00

1.02

1.04

P
e
n
a
lt

y
 F

a
ct

o
r

1 rcv 4 rcv 7 rcv

Figure 11: Performance penalty of victim when there
are 8 containers on a core. i of the containers are TCP
receivers.

packets when container quotas are exceeded, causing re-
ceived rates to converge. Each number of receivers is
indicated by a different bar color. The error bars represent
the 5% and 95%. The height of the bars indicate the 25%
to 75% and the red horizontal line within each bar is the
median. In the previous results without Iron, penalty fac-
tors ranged from maximums of 2.45 to 4.45. With Iron,
the median penalty factor ranges between 0.98 and 1.02
and never exceeds 1.05. The penalty factor can be lower
than 1 when Iron overestimates hard interrupt overheads:
overheads, including those occurring after softirq process-
ing, are approximated by using measured values from
previous cycles.

Figure 11 shows when interfering containers receive
TCP traffic. Unlike UDP, TCP adapts its rate when packet
drops occur. Therefore, the software-based rate limiter
is effective in reducing interference. In Section 2, the
maximum penalty factor ranged from 2.2 to 6. However,
with Iron, penalty factors do not exceed 1.05.

Realistic applications Here we evaluate the impact of
interference on real applications. We run the experiment
on a cluster of 48 containers spread over 6 machines.
Each machine has 8 containers (2 per core). The cluster
is divided into two equal subclusters such that a container
in a subcluster does not share the core with a container

from the same subcluster. HTB evenly divides bandwidth
between all containers on a machine.

Three MapReduce applications serve as the victims: pi
computes the value of pi, wordcount counts word frequen-
cies in a large file, and grep searches for a given word
in a file. Three different trace-based interferers run on
the other subcluster: the shuffle phase of a TeraSort job
with a 115GB input file, a web-search workload [7] and a
data-mining workload [6]. For the latter two workloads,
applications maintain long-lived TCP connections to ev-
ery other container in the subcluster, sequentially sending
messages to a random destination with sizes distributed
from each trace. Figure 10 shows the impact of interfer-
ence on real applications. Iron obtains an average penalty
factor less than 1.04 over all workloads, whereas the av-
erage penalty factor ranges from 1.21-1.57 without Iron.
These results show Iron can effectively eliminate interfer-
ence that arises in realistic conditions.

4.2 Microbenchmarks

This subsection evaluates Iron’s overhead, the usefulness
of runtime packet cost calculation, and the benefits of
hardware-based packet dropping.

Performance overhead To measure how accurately
Iron limits CPU usage, we allocated 3 containers on a
core with each container having 30% of the core. One of
the containers ran sysbench, while the other two were
UDP senders. Figure 12a shows the total CPU used by
all containers over a 30 second window. On average, the
consumed CPU was around 90.02%. In an ideal case, no
more than 90% of the CPU should be utilized. This indi-
cates Iron does not have high overhead in limiting cgroup
CPU allocation to its respective limits. We also ran the
experiment with a UDP receiver, as shown in Figure 12b.
On average Iron ensures an idle CPU of 10.07%, which
again shows the effectiveness of our scheme.

Next we analyzed if Iron hurts a network-intensive
workload. We instrumented a container to receive traffic
and allowed it 100% of the core. Then, at the sender,
we generated UDP traffic at 2 Gbps. Using mpstat,
we measured the CPU consumed by the receiver. The

322 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 5 10 15 20 25

Time (sec)

0
20
40
60
80

100
T
o
ta

l
C

P
U

 (
%

)

per core usage

(a) CPU usage with senders

0 5 10 15 20 25

Time (sec)

0
20
40
60
80

100

T
o
ta

l
C

P
U

 (
%

)

per core usage

(b) CPU usage with receivers

Figure 12: CPU overhead benchmarks.

Packet type Average packet cost (usec)
UDP 0.706
TCP 1.670
GRE Tunnel 1.184

Table 1: Average packet processing cost at the receiver.

receiver consumed 35% of the core and received traffic
at 1.93 Gbps. Next, we ran the same experiment with
the receiver, but this time limited the container to 35% of
the core. With Iron limiting the CPU usage, the receiver
received traffic at 1.90 Gbps (and used no more than
35% of the CPU). This indicates the overhead of Iron on
network traffic is minimal. We ran a similar experiment
with the UDP sender and observed no degradation in
traffic rate. Unlike the receiver, if a sender is out of CPU
cycles it will be throttled, thus generating no extra traffic.

Packet cost variation A simple accounting scheme
may charge a fixed packet cost and is likely ineffective
because packet processing costs vary significantly at the
receiver. Table 1 shows the average packet cost for three
classes of traffic. TCP requires bookkeeping for flow
control and reliability and results in higher costs than
UDP. UDP packets encapsulated in GRE experience extra
cost because those packets traverse the stack twice.

Dropping mechanism We compared the impact of
software-based versus hardware-based dropping. The
UDP sending rate is varied to a receiver with 8 containers
on a core (7 are receivers). As shown in Figure 13, both
approaches mitigate interference when traffic rates are
low. However, when rates are high, the median penalty
factor of the software-based rate limiter increases to 1.19,
with the 95% approaching a penalty factor of 1.6. The
hardware rate-limiter maintains a near-constant penalty
factor, regardless of rate.

5 Related Work

Here we augment Section 2.2 to further detail prior art.

Isolation of kernel-level resources Many studies have
examined how colocated computation suffers from inter-

1 3 5 7 10
Transmit rate of senders (Gbps)

1.0

1.1

1.2

1.3

1.4

1.5

1.6

P
e
n
a
lt

y
 F

a
ct

o
r

hw drop sw drop

Figure 13: Impact of software and hardware-based packet
dropping mechanisms on penalty factor for 7 receivers.

ference [23, 49, 53, 64, 74]. As such, providing resource
isolation to underlying server hardware has been a rich
area of research. For example, researchers have inves-
tigated how to isolate CPU time [11, 15, 67], processor
caches [27, 44], memory bandwidth [40, 71], energy [26],
and storage [50, 54, 66, 70, 72]. These schemes address
problems orthogonal to our work, and none can be general-
ized to solve the problem Iron solves. While Iron focuses
on network-based interrupt processing, Iron’s high-level
principles of annotating and measuring container-based
interrupt overhead can be applied to other interrupts (e.g.,
timers, storage, etc). For example, tags designed for
scheduling I/O storage requests [32, 72] can help account
for per-container storage processing overheads. Like Iron,
these overheads can be integrated with the Linux CFS
scheduler. While developing specific, low-overhead en-
forcement schemes for other interrupts remains future
work, modifying the I/O block scheduler or utilizing
software-defined storage mechanisms [66] are promis-
ing starts for storage.

A large class of research allocates network band-
width [9, 33, 42, 56, 58, 59, 63, 65] or isolates congestion
control [19, 37] in shared datacenters. In short, these
schemes affect network performance but do nothing to
control network-based processing time, and thus are com-
plimentary to Iron. Last, some schemes isolate dataplane
and application processing on core granularity [12, 41],
but do not generalize to support many containers per core
nor explicitly study the interference problem.

Resource management and isolation in cloud Deter-
mining how to place computation within the cloud has
received significant attention. For example, Paragon [21]
schedules jobs in an interference-aware fashion to ensure
service-level objectives can be achieved. Several other
schemes, such as Borg [69], Quasar [22], Heracles [49],
and Retro [51] can provision, monitor, and control re-
source consumption in colocated environments to ensure
performance is not degraded due to interference. Iron
is largely complementary to these schemes. By provid-

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 323

1.0
1.2
1.4
1.6
1.8
2.0
2.2

P
e
n
a
lt

y
 F

a
ct

o
r

Linux

RT_Preempt_Full

Figure 14: Performance penalty with RT Linux.

ing hardened isolation, Iron allows resource managers to
make more informed decisions, so network-heavy jobs
cannot impact colocated processor-heavy jobs.

VM network-based accounting Gupta’s scheme ac-
counts for processing performed in device drivers for
an individual VM [34]. The scheme measures VM-based
resource consumption in the hypervisor, integrates with
the scheduler to charge for usage, and limits traffic when
necessary. Iron differs in many regards. Iron provides
performance isolation in container-based environments,
instead of VM-based environments. The difference is sig-
nificant because packets consume more processing time
with containers because the network stack lies within
the server’s kernel, and not the VM’s. Gupta relies on a
fixed cost to charge for packet reception and transmission,
but our results show packet costs vary significantly. Fur-
thermore, because container-based environments incur
more processing overhead for traffic, it is important that
received traffic is discarded efficiently when necessary.
Hence, Iron contains a novel hardware-based enforcement
scheme, whereas Gupta’s work relies on software.

Shared NFV infrastructure Many works study how
to allocate multiple NFVs and their resources on a
server [24, 29, 47, 52, 68]. Similar to library OSes, NFV
servers require kernel bypass for latency and control. As
discussed, kernel bypass approaches cannot easily gen-
eralize to solve the interference problem in multi-tenant
containerized clouds.

Real-time kernel Real-time (RT) kernels typically aren’t
used for multi-tenancy, but some RT OSes redesign in-
terrupt processing in a way that could mitigate the in-
terference problem. For example, RT Linux patches the
OS so the only type of softirq served in a process’s con-
text are those which originated within that process [17].
While this patch doesn’t help with receptions, it prevents
a container with no outgoing traffic from processing in-
terrupts from another container’s outgoing traffic. To
understand this solution, we ran an experiment with 2
Gbps rate limit and 6 equally-prioritized containers per
core: one sysbench victim and 5 interferers that flood
outgoing UDP traffic. Figure 14 shows the penalty factor
for normal Linux and RT Linux (RT Preempt Full). The

penalty factor of RT Linux is significantly higher than
Linux because in RT Linux the victim doesn’t process
interrupts in its context. Instead, interrupt processing is
moved to kernel threads. The processing time used by
the kernel threads reduces the time available to the victim.
Additionally, RT Linux tries to minimize softirq process-
ing latency and perf shows the victim experiences 270×
more involuntary context switches as compared to Linux.

Finally, Zhang [75] proposes a RT OS that increases
predictability by scheduling interrupts based on pro-
cess priority and accounting for time spent in interrupts.
Zhang’s accounting scheme has up to 20% error [75],
likely because it is coarse-grained in time and does not use
actual, per-packet costs. Overheads in Iron are less than
5% because its accounting mechanism is immediately
responsive to actual, per-packet costs. In addition, Iron
comprehensively studies the interference problem and
introduces enforcement schemes.

Microsoft Windows The scheduler in Windows does not
count time spent processing interrupts towards a thread’s
execution time [73]. This is not sufficient to totally mit-
igate the interference problem because time spent in in-
terrupt and deferred interrupt processing is not charged
to an appropriate thread. Therefore, the large number of
cycles consumed by kernel packet processing leave less
cycles available to colocated, CPU-heavy threads.

6 Conclusion

This paper presents Iron, a system providing hardened
isolation for network-based processing in containerized
environments. Network-based processing can have sig-
nificant overhead, and our case study shows a container
running a CPU-intensive task may suffer up to a 6× slow-
down when colocated with containers running network-
intensive tasks. Iron enforces isolation by accurately mea-
suring the time spent processing network traffic in softirq
context within the kernel. Then, Iron relies on an enforce-
ment algorithm that integrates with the Linux scheduler to
throttle containers when necessary. Throttling alone is in-
sufficient to provide isolation because a throttled container
may receive network traffic. Therefore, Iron contains a
hardware-based mechanism to drop packets with minimal
overhead. Our scheme seamlessly integrates with modern
Linux architectures. Finally, the evaluation shows Iron
reduces overheads from network-based processing to less
than 5% for realistic and adversarial workloads.

Acknowledgements We thank the reviewers and our
shepherd Boon Thau Loo. This work is supported by
the National Science Foundation (grants CNS-1302041,
CNS-1330308, CNS1345249, and CNS-1717039), and
Aditya Akella is also supported by gifts from VMWare,
Huawei, and the UW-Madison Vilas Associates.

324 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] Docker swarm.
https://github.com/docker/swarm.
Accessed: 2017-09-25.

[2] Linux advanced routing and traffic control howto.
http://lartc.org/lartc.html. Accessed:
2017-09-25.

[3] Linux control groups.
https://www.kernel.org/doc/
Documentation/cgroup-v1/cgroups.txt.
Accessed: 2017-09-21.

[4] Networking napi. https://wiki.
linuxfoundation.org/networking/napi.
Accessed: 2017-09-25.

[5] perf: Linux profiling with performance counters.
https://perf.wiki.kernel.org/index.
php/Main_Page. Accessed: 2017-09-21.

[6] ALIZADEH, M., EDSALL, T., DHARMAPURIKAR, S.,
VAIDYANATHAN, R., CHU, K., FINGERHUT, A.,
MATUS, F., PAN, R., YADAV, N., VARGHESE, G.,
ET AL. CONGA: Distributed Congestion-aware Load
Balancing for Datacenters. In SIGCOMM (2014).

[7] ALIZADEH, M., GREENBERG, A., MALTZ, D. A.,
PADHYE, J., PATEL, P., PRABHAKAR, B., SENGUPTA,
S., AND SRIDHARAN, M. Data Center TCP (DCTCP).
In SIGCOMM (2010).

[8] AMAZON WEB SERVIES, INC. AWS Lambda: Serverless
computing.
https://aws.amazon.com/lambda/.

[9] BALLANI, H., COSTA, P., KARAGIANNIS, T., AND

ROWSTRON, A. Towards predictable datacenter networks.
In ACM SIGCOMM Computer Communication Review
(2011), vol. 41, ACM, pp. 242–253.

[10] BANGA, G., DRUSCHEL, P., AND MOGUL, J. C.
Resource containers: A new facility for resource
management in server systems. In OSDI (1999), vol. 99,
pp. 45–58.

[11] BARTOLINI, D. B., SIRONI, F., SCIUTO, D., AND

SANTAMBROGIO, M. D. Automated fine-grained cpu
provisioning for virtual machines. ACM Trans. Archit.
Code Optim. 11, 3 (July 2014), 27:1–27:25.

[12] BELAY, A., PREKAS, G., KLIMOVIC, A., GROSSMAN,
S., KOZYRAKIS, C., AND BUGNION, E. IX: A protected
dataplane operating system for high throughput and low
latency. In 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 14) (CO,
2014), USENIX Association, pp. 49–65.

[13] BREWER, E. A. Kubernetes and the path to cloud native.
In Proceedings of the Sixth ACM Symposium on Cloud
Computing (New York, NY, USA, 2015), SoCC ’15,
ACM, pp. 167–167.

[14] BRUTLAG, J. Speed Matters for Google Web Search.
Tech. rep., 2009.
https://services.google.com/fh/files/
blogs/google_delayexp.pdf.

[15] CHERKASOVA, L., GUPTA, D., AND VAHDAT, A.
Comparison of the three cpu schedulers in xen.
SIGMETRICS Perform. Eval. Rev. 35, 2 (Sept. 2007),
42–51.

[16] CORBET, J. Jls2009: Generic receive offload. Linux
Weekly News (LWN) (Oct. 2009).
https://lwn.net/Articles/358910/.

[17] CORBET, J. Software interrupts and realtime. Linux
Weekly News (LWN) (Oct. 2012).
https://lwn.net/Articles/520076/.

[18] CORBET, J. Bulk network packet transmission. Linux
Weekly News (LWN) (Oct. 2014).
https://lwn.net/Articles/615238/.

[19] CRONKITE-RATCLIFF, B., BERGMAN, A., VARGAFTIK,
S., RAVI, M., MCKEOWN, N., ABRAHAM, I., AND

KESLASSY, I. Virtualized congestion control. In
Proceedings of the 2016 ACM SIGCOMM Conference
(New York, NY, USA, 2016), SIGCOMM ’16, ACM,
pp. 230–243.

[20] DEAN, J., AND BARROSO, L. A. The tail at scale.
Communications of the ACM 56 (2013), 74–80.

[21] DELIMITROU, C., AND KOZYRAKIS, C. Paragon:
Qos-aware scheduling for heterogeneous datacenters. In
Proceedings of the Eighteenth International Conference
on Architectural Support for Programming Languages
and Operating Systems (New York, NY, USA, 2013),
ASPLOS ’13, ACM, pp. 77–88.

[22] DELIMITROU, C., AND KOZYRAKIS, C. Quasar:
Resource-efficient and qos-aware cluster management. In
Proceedings of the 19th International Conference on
Architectural Support for Programming Languages and
Operating Systems (New York, NY, USA, 2014),
ASPLOS ’14, ACM, pp. 127–144.

[23] DELIMITROU, C., AND KOZYRAKIS, C. Bolt: I know
what you did last summer... in the cloud. SIGARCH
Comput. Archit. News 45, 1 (Apr. 2017), 599–613.

[24] DOBRESCU, M., ARGYRAKI, K., AND RATNASAMY, S.
Toward predictable performance in software
packet-processing platforms. In Presented as part of the
9th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 12) (San Jose, CA, 2012),
USENIX, pp. 141–154.

[25] DRUSCHEL, P., AND BANGA, G. Lazy receiver
processing (lrp): A network subsystem architecture for
server systems. In OSDI (1996), vol. 96, pp. 261–275.

[26] FONSECA, R., DUTTA, P., LEVIS, P., AND STOICA, I.
Quanto: Tracking energy in networked embedded
systems. In Proceedings of the 8th USENIX Conference
on Operating Systems Design and Implementation
(Berkeley, CA, USA, 2008), OSDI’08, USENIX
Association, pp. 323–338.

[27] FUNARO, L., BEN-YEHUDA, O. A., AND SCHUSTER,
A. Ginseng: Market-driven llc allocation. In 2016
USENIX Annual Technical Conference (USENIX ATC 16)
(Denver, CO, 2016), USENIX Association, pp. 295–308.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 325

https://github.com/docker/swarm
http://lartc.org/lartc.html
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://wiki.linuxfoundation.org/networking/napi
https://wiki.linuxfoundation.org/networking/napi
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://aws.amazon.com/lambda/
https://services.google.com/fh/files/blogs/google_delayexp.pdf
https://services.google.com/fh/files/blogs/google_delayexp.pdf
https://lwn.net/Articles/358910/
https://lwn.net/Articles/520076/
https://lwn.net/Articles/615238/

[28] GANGER, G. R., ENGLER, D. R., KAASHOEK, M. F.,
BRICEÑO, H. M., HUNT, R., AND PINCKNEY, T. Fast
and flexible application-level networking on exokernel
systems. ACM Trans. Comput. Syst. 20, 1 (Feb. 2002),
49–83.

[29] GHODSI, A., SEKAR, V., ZAHARIA, M., AND STOICA,
I. Multi-resource fair queueing for packet processing. In
Proceedings of the ACM SIGCOMM 2012 Conference on
Applications, Technologies, Architectures, and Protocols
for Computer Communication (New York, NY, USA,
2012), SIGCOMM ’12, ACM, pp. 1–12.

[30] GLEIXNER, T. [announce] 3.6.1-rt1. Linux Weekly News
(LWN) (Oct. 2012).
https://lwn.net/Articles/518993/.

[31] GOOGLE INC. Cloud functions.
https://cloud.google.com/functions/.

[32] GULATI, A., MERCHANT, A., AND VARMAN, P. J.
mclock: Handling throughput variability for hypervisor io
scheduling. In Proceedings of the 9th USENIX
Conference on Operating Systems Design and
Implementation (Berkeley, CA, USA, 2010), OSDI’10,
USENIX Association, pp. 437–450.

[33] GUO, C., LU, G., WANG, H. J., YANG, S., KONG, C.,
SUN, P., WU, W., AND ZHANG, Y. Secondnet: a data
center network virtualization architecture with bandwidth
guarantees. In Proceedings of the 6th International
Conference (2010), ACM, p. 15.

[34] GUPTA, D., CHERKASOVA, L., GARDNER, R., AND

VAHDAT, A. Enforcing performance isolation across
virtual machines in xen. In ACM/IFIP/USENIX
International Conference on Distributed Systems
Platforms and Open Distributed Processing (2006),
Springer, pp. 342–362.

[35] HAN, S., MARSHALL, S., CHUN, B.-G., AND

RATNASAMY, S. Megapipe: A new programming
interface for scalable network i/o. In Presented as part of
the 10th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 12) (Hollywood, CA,
2012), USENIX, pp. 135–148.

[36] HE, K., ROZNER, E., AGARWAL, K., FELTER, W.,
CARTER, J., AND AKELLA, A. Presto: Edge-based load
balancing for fast datacenter networks. In Proceedings of
the 2015 ACM Conference on Special Interest Group on
Data Communication (New York, NY, USA, 2015),
SIGCOMM ’15, ACM, pp. 465–478.

[37] HE, K., ROZNER, E., AGARWAL, K., GU, Y. J.,
FELTER, W., CARTER, J., AND AKELLA, A. Ac/dc tcp:
Virtual congestion control enforcement for datacenter
networks. In Proceedings of the 2016 ACM SIGCOMM
Conference (New York, NY, USA, 2016), SIGCOMM ’16,
ACM, pp. 244–257.

[38] HENDRICKSON, S., STURDEVANT, S., HARTER, T.,
VENKATARAMANI, V., ARPACI-DUSSEAU, A. C., AND

ARPACI-DUSSEAU, R. H. Serverless computation with
openlambda. In Proceedings of HotCloud (June 2016).

[39] HERBERT, T., AND DE BRUIJN, W. Scaling in the linux
networking stack, 2011.

https://www.kernel.org/doc/
Documentation/networking/scaling.txt.

[40] IYER, R., ZHAO, L., GUO, F., ILLIKKAL, R.,
MAKINENI, S., NEWELL, D., SOLIHIN, Y., HSU, L.,
AND REINHARDT, S. Qos policies and architecture for
cache/memory in cmp platforms. In Proceedings of the
2007 ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems (New
York, NY, USA, 2007), SIGMETRICS ’07, ACM,
pp. 25–36.

[41] JEONG, E., WOOD, S., JAMSHED, M., JEONG, H., IHM,
S., HAN, D., AND PARK, K. mtcp: a highly scalable
user-level tcp stack for multicore systems. In 11th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 14) (Seattle, WA, 2014), USENIX
Association, pp. 489–502.

[42] JEYAKUMAR, V., ALIZADEH, M., MAZIERES, D.,
PRABHAKAR, B., KIM, C., AND AZURE, W. Eyeq:
Practical network performance isolation for the
multi-tenant cloud. In HotCloud (2012).

[43] JEYAKUMAR, V., ALIZADEH, M., MAZIÈRES, D.,
PRABHAKAR, B., KIM, C., AND GREENBERG, A.
EyeQ: Practical Network Performance Isolation at the
Edge. In NSDI (2013).

[44] KASTURE, H., AND SANCHEZ, D. Ubik: Efficient cache
sharing with strict qos for latency-critical workloads. In
Proceedings of the 19th International Conference on
Architectural Support for Programming Languages and
Operating Systems (New York, NY, USA, 2014),
ASPLOS ’14, ACM, pp. 729–742.

[45] KAUFMANN, A., PETER, S., SHARMA, N. K.,
ANDERSON, T., AND KRISHNAMURTHY, A. High
performance packet processing with flexnic. In
Proceedings of the Twenty-First International Conference
on Architectural Support for Programming Languages
and Operating Systems (New York, NY, USA, 2016),
ASPLOS ’16, ACM, pp. 67–81.

[46] KOPYTOV, A. Sysbench manual. MySQL AB (2012).

[47] KULKARNI, S. G., ZHANG, W., HWANG, J.,
RAJAGOPALAN, S., RAMAKRISHNAN, K. K., WOOD,
T., ARUMAITHURAI, M., AND FU, X. Nfvnice:
Dynamic backpressure and scheduling for nfv service
chains. In Proceedings of the Conference of the ACM
Special Interest Group on Data Communication (New
York, NY, USA, 2017), SIGCOMM ’17, ACM, pp. 71–84.

[48] LESLIE, I. M., MCAULEY, D., BLACK, R., ROSCOE, T.,
BARHAM, P., EVERS, D., FAIRBAIRNS, R., AND

HYDEN, E. The design and implementation of an
operating system to support distributed multimedia
applications. IEEE J.Sel. A. Commun. 14, 7 (Sept. 2006),
1280–1297.

[49] LO, D., CHENG, L., GOVINDARAJU, R.,
RANGANATHAN, P., AND KOZYRAKIS, C. Improving
resource efficiency at scale with heracles. ACM Trans.
Comput. Syst. 34, 2 (May 2016), 6:1–6:33.

326 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://lwn.net/Articles/518993/
https://cloud.google.com/functions/
https://www.kernel.org/doc/Documentation/networking/scaling.txt
https://www.kernel.org/doc/Documentation/networking/scaling.txt

[50] LU, L., ZHANG, Y., DO, T., AL-KISWANY, S.,
ARPACI-DUSSEAU, A. C., AND ARPACI-DUSSEAU,
R. H. Physical Disentanglement in a Container-Based
File System. In Proceedings of the 11th Symposium on
Operating Systems Design and Implementation (OSDI
’14) (Broomfield, CO, October 2014).

[51] MACE, J., BODIK, P., FONSECA, R., AND MUSUVATHI,
M. Retro: Targeted resource management in multi-tenant
distributed systems. In NSDI (2015), pp. 589–603.

[52] MARTINS, J., AHMED, M., RAICIU, C., OLTEANU, V.,
HONDA, M., BIFULCO, R., AND HUICI, F. Clickos and
the art of network function virtualization. In 11th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 14) (Seattle, WA, 2014), USENIX
Association, pp. 459–473.

[53] MATTHEWS, J. N., HU, W., HAPUARACHCHI, M.,
DESHANE, T., DIMATOS, D., HAMILTON, G.,
MCCABE, M., AND OWENS, J. Quantifying the
performance isolation properties of virtualization systems.
In Proceedings of the 2007 Workshop on Experimental
Computer Science (New York, NY, USA, 2007), ExpCS
’07, ACM.

[54] MCCULLOUGH, J. C., DUNAGAN, J., WOLMAN, A.,
AND SNOEREN, A. C. Stout: An adaptive interface to
scalable cloud storage. In Proc. of the USENIX Annual
Technical Conference–ATC (2010), pp. 47–60.

[55] MICROSOFT CORP. Azure functions.
https://azure.microsoft.com/en-us/
services/functions/.

[56] MUNDADA, Y., RAMACHANDRAN, A., AND

FEAMSTER, N. Silverline: Data and network isolation for
cloud services. In HotCloud (2011).

[57] PETER, S., LI, J., ZHANG, I., PORTS, D. R. K., WOOS,
D., KRISHNAMURTHY, A., ANDERSON, T., AND

ROSCOE, T. Arrakis: The operating system is the control
plane. ACM Trans. Comput. Syst. 33, 4 (Nov. 2015),
11:1–11:30.

[58] POPA, L., KUMAR, G., CHOWDHURY, M.,
KRISHNAMURTHY, A., RATNASAMY, S., AND STOICA,
I. FairCloud: Sharing the Network in Cloud Computing.
In SIGCOMM (2012).

[59] POPA, L., YALAGANDULA, P., BANERJEE, S., MOGUL,
J. C., TURNER, Y., AND SANTOS, J. R. Elasticswitch:
Practical work-conserving bandwidth guarantees for
cloud computing. ACM SIGCOMM Computer
Communication Review 43, 4 (2013), 351–362.

[60] PORTER, D. E., BOYD-WICKIZER, S., HOWELL, J.,
OLINSKY, R., AND HUNT, G. Rethinking the library os
from the top down. In Proceedings of the 16th
International Conference on Architectural Support for
Programming Languages and Operating Systems
(ASPLOS) (March 2011), ACM.

[61] RADHAKRISHNAN, S., GENG, Y., JEYAKUMAR, V.,
KABBANI, A., PORTER, G., AND VAHDAT, A. SENIC:
Scalable NIC for End-host Rate Limiting. In NSDI
(2014).

[62] REISS, C., TUMANOV, A., GANGER, G. R., KATZ,
R. H., AND KOZUCH, M. A. Heterogeneity and
dynamicity of clouds at scale: Google trace analysis. In
Proceedings of the Third ACM Symposium on Cloud
Computing (New York, NY, USA, 2012), SoCC ’12,
ACM, pp. 7:1–7:13.

[63] RODRIGUES, H., SANTOS, J. R., TURNER, Y., SOARES,
P., AND GUEDES, D. O. Gatekeeper: Supporting
bandwidth guarantees for multi-tenant datacenter
networks. In WIOV (2011).

[64] SHARMA, P., CHAUFOURNIER, L., SHENOY, P., AND

TAY, Y. C. Containers and virtual machines at scale: A
comparative study. In Proceedings of the 17th
International Middleware Conference (New York, NY,
USA, 2016), Middleware ’16, ACM, pp. 1:1–1:13.

[65] SHIEH, A., KANDULA, S., GREENBERG, A. G., AND

KIM, C. Seawall: Performance isolation for cloud
datacenter networks. In HotCloud (2010).

[66] THERESKA, E., BALLANI, H., O’SHEA, G.,
KARAGIANNIS, T., ROWSTRON, A., TALPEY, T.,
BLACK, R., AND ZHU, T. Ioflow: A software-defined
storage architecture. In Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles (New
York, NY, USA, 2013), SOSP ’13, ACM, pp. 182–196.

[67] TURNER, P., RAO, B. B., AND RAO, N. Cpu bandwidth
control for cfs. In Proceedings of the Linux Symposium
(2010), pp. 245–254.

[68] VASILESCU, L., OLTEANU, V., AND RAICIU, C.
Sharing cpus via endpoint congestion control. In
Proceedings of the Workshop on Kernel-Bypass Networks
(New York, NY, USA, 2017), KBNets ’17, ACM,
pp. 31–36.

[69] VERMA, A., PEDROSA, L., KORUPOLU, M. R.,
OPPENHEIMER, D., TUNE, E., AND WILKES, J.
Large-scale cluster management at Google with Borg. In
Proceedings of the European Conference on Computer
Systems (EuroSys) (Bordeaux, France, 2015).

[70] WACHS, M., ABD-EL-MALEK, M., THERESKA, E.,
AND GANGER, G. R. Argon: Performance insulation for
shared storage servers. In Proceedings of the 5th USENIX
Conference on File and Storage Technologies (Berkeley,
CA, USA, 2007), FAST ’07, USENIX Association,
pp. 5–5.

[71] YANG, H., BRESLOW, A., MARS, J., AND TANG, L.
Bubble-flux: Precise online qos management for
increased utilization in warehouse scale computers. In
Proceedings of the 40th Annual International Symposium
on Computer Architecture (New York, NY, USA, 2013),
ISCA ’13, ACM, pp. 607–618.

[72] YANG, S., HARTER, T., AGRAWAL, N., KOWSALYA,
S. S., KRISHNAMURTHY, A., AL-KISWANY, S.,
KAUSHIK, R. T., ARPACI-DUSSEAU, A. C., AND

ARPACI-DUSSEAU, R. H. Split-level i/o scheduling. In
Proceedings of the 25th Symposium on Operating Systems
Principles (2015), ACM, pp. 474–489.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 327

https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/

[73] YOSIFOVICH, P., IONESCU, A., RUSSINOVICH, M. E.,
AND SOLOMON, D. A. Windows Internals, Part 1:
System architecture, processes, threads, memory
management, and more, 7th ed. Microsoft Press, 2017.

[74] ZHANG, W., RAJASEKARAN, S., DUAN, S., WOOD, T.,
AND ZHUY, M. Minimizing interference and maximizing
progress for hadoop virtual machines. SIGMETRICS
Perform. Eval. Rev. 42, 4 (June 2015), 62–71.

[75] ZHANG, Y., AND WEST, R. Process-aware interrupt
scheduling and accounting. In Proceedings of the 27th
IEEE International Real-Time Systems Symposium
(Washington, DC, USA, 2006), RTSS ’06, IEEE
Computer Society, pp. 191–201.

[76] ZILBERMAN, N., AUDZEVICH, Y., COVINGTON, G. A.,
AND MOORE, A. W. Netfpga sume: Toward 100 gbps as
research commodity. IEEE Micro 34, 5 (2014), 32–41.

328 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

	Introduction
	Background and Motivation
	Network traffic breaks isolation
	Putting Iron in context
	Impact of network traffic

	Design
	Accounting
	Enforcement

	Evaluation
	Macrobenchmarks
	Microbenchmarks

	Related Work
	Conclusion

