
Configuring the OS for Tomorrow’s Robots

Madhav Tummala, Daehyeok Kim, Joydeep Biswas and Aditya Akella
The University of Texas at Austin

I. INTRODUCTION

With the advent of autonomous mobile service robots
(AMSRs), there is a growing interest in the simultaneous
execution of diverse applications. However, configuring the
OS in such a scenario presents a few challenges: (1) the
optimal configuration for an application depends on the
environment it is running in, (2) some configuration knobs
are system-wide and cause conflicts, (3) configurations for
applications can have complex and counter-intuitive effects
on each other, and (4) the globally optimal configuration
requires a well-defined relationship between the performance
metrics of individual applications. In this paper, we elaborate
on the above challenges with empirical results showing
the interdependencies between configurations and discuss a
potential solution for automating the search.

II. EXPERIMENTAL SETUP

We choose two applications: (1) Navigation application
(NAV), which performs path planning and obstacle avoidance
based on lidar scans, and (2) YOLO application (YOLO)
[1], which does object detection from a raw image stream.
For ease of exploration, we run them each in their own
cgroups 1 to simulate our UT-Automata F1tenth Car [2]. To
supply inputs to the respective topics we playback stored
LIDAR recordings and video streams. We will particularly
discuss four configuration knobs: (1) CPU shares of YOLO’s
cgroups, (2) memory soft limit of YOLO’s cgroups, (3)
real-time scheduling (deadline policy) for NAV process, (4)
Transparent Huge Pages (THP) for the entire system.

For performance metrics, for NAV - we consider 99th

percentile of the processing time (collecting LIDAR scans +
running path planning) as it is a time-sensitive application.
For YOLO, we consider the mean frame processing time and
add up both of them for the global performance metric.

III. PRELIMINARY RESULTS

Table I shows some interesting configuration choices.
Running the applications in a challenging environment like a
hallway full of objects adversely affects performance metrics
compared to our chosen baseline, a general hallway. Thus,
different configurations may be required to maintain SLOs
depending on the environment. Shifting the NAV process to
the RT scheduler greatly improves its metric (distribution plot
in Fig 1). We find that setting a period (for deadline policy)
less than 50ms provides no additional improvement (as path
planning is programmed to run every 50ms). On the other

1A Linux kernel feature that helps control resources for a set of processes

TABLE I
NAV LOOP TIME AND YOLO FRAME TIME

Configuration 99th PCTL Loop (ms) YOLO Frame (ms)
Mean Std Dev Mean Std Dev

Dense environment 133.490 18.738 2.640 0.022
Baseline 111.751 9.987 2.535 0.013

+NAV rt sched 36.161 0.438 2.658 0.025
+YOLO cpushares 36.560 0.468 2.420 0.011
+YOLO memlimit 35.833 0.527 2.554 0.020

+THP enabled 35.856 0.453 2.441 0.018

 {

 } YOLO

baseline

OS
 {

 }

+ nav rt

cgroup

cgroup

NAV
b)

c)a) d)

ROS

Fig. 1. (a) Configurations being applied. (b) Applied at different levels:
process, cgroups, system-wide. (c) Collecting stats and traces for calculating
performance metrics. (d) Frequency(y-axis) dist of the NAV loop time (ms)

hand, reducing runtime and deadline parameters to 35ms and
increasing CPU shares for YOLO improves YOLO’s perfor-
mance without sacrificing NAV’s performance. Surprisingly,
setting a soft memlimit (row 5) on YOLO enhances NAV’s
performance, demonstrating complex interactions. Enabling
THP, a system-wide knob, slightly improves the performance
of YOLO, but doesn’t have much effect on NAV.

IV. FUTURE WORK

In future work, we plan to employ learning techniques to
systematically find optimal OS configurations. For example,
reinforcement learning appears well-suited for this purpose,
given easy drop-in replacements for state changes (config-
uration as the state) and rewards (changes in performance
metrics). Alternatively, the collected data from systematic
exploration in this paper can be utilized for supervised
learning. By capturing the concept of application signatures
and input signatures, this approach can be applied to any mix
of applications being deployed.

REFERENCES

[1] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” 2016.

[2] P. Atreya, H. Karnan, K. S. Sikand, X. Xiao, S. Rabiee, and J. Biswas,
“High-speed accurate robot control using learned forward kinodynamics
and non-linear least squares optimization,” in IROS 2022, Kyoto, Japan,
October 23-27, 2022. IEEE, 2022, pp. 11 789–11 795.

