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ABSTRACT

Users are often frustrated when they cannot view video links
shared via blogs, social networks, and shared bookmark sites
on their devices or suffer performance and usability problems
when doing so. While other versions of the same content
better suited to their device and network constraints may
be available on other third-party hosting sites, these remain
unusable because users cannot efficiently discover these and
verify that these variants match the content publisher’s orig-
inal intent. Our vision is to enable consumers to leverage
verifiable alternatives from different hosting sites that are
best suited to their constraints to deliver a high quality of
experience and enable content publishers to reach a wide au-
dience with diverse operating conditions with minimal up-
front costs. To this end, we make a case for information-
bound references or IBRs that bind references to video con-
tent to the underlying information that a publisher wants
to convey, decoupled from details such as protocols, hosts,
file names, or the underlying bits. This paper addresses key
challenges in the design and implementation of IBR genera-
tion and resolution mechanisms, and presents an evaluation
of the benefits IBRs offer.

Categories and Subject Descriptors

H.3.4 [Information storage and retrieval]: Systems and
software
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1. INTRODUCTION
A significant and growing fraction of Internet traffic today

consists of video content [3]. Many users discover and access
such content via links shared via traditional (e.g., email, IM)
and social media applications (e.g., online social networks,
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blogging services, and social bookmarking sites [33, 7]). Un-
fortunately, the URLs used to share videos are fragile as they
are inherently bound to a specific protocol, host, and file
name [29]. This tight coupling is especially problematic as
users want to access content from an increasingly heteroge-
neous set of device (e.g., smartphones, tablets) and network
(e.g., 3G, 4G, WiFi) conditions. As shown in §2, this results
in significant accessibility (e.g., content not playable) and
quality-of-experience (QoE) problems (e.g., high buffering
or start-up latencies for video [28]).

Fortunately, measurement studies show that there are al-
ternative versions of the same content with different reso-
lutions or formats available on different third-party hosting
sites [2, 32]. We could potentially alleviate accessibility and
QoE issues if we had a mechanism that enables users to find
the alternative best suited to their current software, device,
and network context. A variety of entities, including device
vendors, search engine providers, and social networking and
bookmarking sites would have strong incentives to deploy
such a mechanism (§2).

However, it is challenging to realize such a mechanism in
practice. To see why, consider two seemingly natural straw-
man approaches. To delay the binding to a specific video
file, one option for content publishers is to only provide key-
words. Content consumers can then use search engines to
find suitable alternatives. Unfortunately, search keywords
are notoriously contention prone and give users no confi-
dence that the result matches the publisher’s intent [29].
Alternatively, one could envision new data-centric architec-
tures as they decouple the data from the delivery mecha-
nisms [26, 38]. The hash-based naming schemes in these
proposals, however, operate at the byte-level. Thus, the
names for different encodings of the same content will be
different and preclude opportunities for leveraging the alter-
native versions.

The key here is choosing an appropriate granularity at
which we need to bind the intent of the publisher. Data-
centric names offer one extreme at the byte-level represen-
tation. Human-readable keywords offer another point with
loose bindings that are susceptible to abuse. What we ide-
ally need is a mechanism that delays the binding sufficiently
to provide the flexibility to choose alternatives, but at the
same time allows clients to be assured that the variant they
choose matches the publishers’ original intent. We call this
new type of link an Information-Bound Reference or IBR
since it references the information that a user wants rather
than its location, format, or file name. Using IBRs will



allow content publishers to reach a broader audience with-
out significant quality problems and without high upfront
infrastructure costs. IBRs will improve consumers’ quality
of experience and minimize frustrations due to poor perfor-
mance or content inaccessibility.

In this paper, we address key algorithmic and system de-
sign challenges in realizing an IBR-based content retrieval
framework. Our key contributions are:

• IBR Generation: IBRs must be encoding-invariant, re-
silient to contention (i.e., two unique pieces of informa-
tion map to different IBRs) and compact (i.e., be small
relative to the content they refer to). To this end, we en-
vision a novel use-case for multimedia fingerprinting algo-
rithms [35, 34, 19]. Our vision, however, raises new per-
formance, scalability, and verifiability requirements and
thus our specific contribution lies in practically synthe-
sizing these techniques to serve as IBRs (§4).

• Resolution: Users should be able to use IBRs to quickly
find the copy of content that is most appropriate for
their device and network conditions. What makes this
challenging is that video encodings are intrinsically lossy
which means that the IBR matching involves a “fuzzy”
match. To this end, we design a scalable lookup ser-
vice that can provide ≈ 1 million lookups/s on a 25-node
cluster leveraging algorithms for locality-sensitive hash-
ing [24] (§5).

• End-to-end realization: We demonstrate an end-to-
end realization of an IBR architecture: client-side ex-
tensions for desktop and mobile platforms, support for
legacy consumers and publishers, and additional mech-
anisms to enhance the intrinsic verifiability offered by
IBRs (§6,§7).

Using a combination of public video and image datasets
and end-to-end experiments, we show that IBRs are practi-
cal and offer significant benefits (§8). Specifically, we show
that IBRs can offer significant improvements in quality of
experience: reducing the video startup delay by 4–9 sec-
onds, increasing content accessibility, and avoiding rebuffer-
ing events (from 50% of time spent buffering to zero). We
also show that using IBRs are practical—web pages rewrit-
ten to use IBRs incur low load time overhead (≈0.5s), IBRs
incur close to zero false positives for content naturally occur-
ring in the wild, and IBRs can be resolved efficiently using
our system (≈1 million lookups/sec on a 25-node cluster).

2. MOTIVATION
We show empirical evidence of quality of experience is-

sues that users face today in accessing shared video links.
We also highlight the (unrealized) promise of leveraging al-
ternate versions of the same content from different sites.

Quality issues in shared video links: Recent analy-
sis shows that social media applications are the dominant
mode through which users discover mobile videos [7]. We
collected the top-500 most popular video links posted on
reddit.com and found that ≈10% of the videos are hosted
by small providers (i.e., not on YouTube, Vimeo, DailyMo-
tion).1 Such smaller hosting sites typically do not offer mul-

1In an earlier measurement, we found ≈ 30% of video links
were to smaller providers. Moreover, our analysis focuses
on the popular content; we suspect that links to smaller
providers may be even more prevalent in the “long-tail” of
less popular links.

Provider iPhone Android Laptop
comedycentral.com Doesn’t

play
Has play
button,
but no
video

OK

complex.com Buffering Doesn’t
play

Buffering

vine.co OK Excessive
buffering

OK

ctvnews.ca Additional click to mobile site OK

Table 1: Anecdotal evidence of user experience
issues on links shared through social media sites
through non-popular video hosting sites. Our goal is
not to pinpoint specific providers but show problems
symptomatic of the entire video+mobile ecosystem.
We use a controlled WiFi setting with the same
client-side access bandwidth. The reported prob-
lems are found during almost every browsing (total
of 10 runs) of the given video link on the given de-
vice.

Startup latency (seconds)
Device Video1 Video2 Video3

YT V DM YT V DM YT V DM
iPad2 4 6 10 2 6 15 n/a 4 4
Laptop 1 1 2 1 2 4 2 2 2
iPhone4 1 3 5 1 2 fail n/a 5 fail
Droid 5 fail 4 3 n/a 2 n/a 4 3

Table 2: Video startup latency across popular
video hosting providers; YT, V, and DM stand
for YouTube, Vimeo, and DailyMotion respectively.
The“n/a’ entries show cases where there was no mo-
bile version available. The “fail” entries represent
cases where there appeared to be a video but an er-
ror message appears after 30s. We use a controlled
WiFi setting with the same client-side access band-
width. The reported numbers are averaged over 10
runs.

tiple formats or bitrates. Table 1 summarizes anecdotal ev-
idence of user experience issues on a laptop, iPhone, and an
Android device for these video links. We see a diverse range
of problems: excessive buffering, video does not play, and
the user needs to manually navigate to mobile versions. In
some cases, we even see problems accessing videos on the
laptop, possibly because of server-side issues. Under low
bandwidth connections (512 Kbps or less), we see multiple
buffering events while viewing these video links as the video
content providers typically do not offer lower bitrates for
such conditions.

Even popular providers have QoE issues: The quality
problems are not just restricted to the lower end of the video
ecosystem—even well-provisioned sites such as YouTube, Dai-
lyMotion, and Vimeo suffer user QoE and accessibility is-
sues. We found three separate videos hosted on all providers
and attempted to access these from four different devices.
We focus on the startup delay (i.e., difference between the
time when user hits the play button to the time the video
starts to play) because it is an important measure of QoE
that impacts user retention rates [21, 27]. Table 2 shows
the startup delay across the combinations of device, video,
and hosting site. First, in many cases the video was not
available for mobile devices or failed to play. Second, no
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Figure 1: Using a public video dataset, we (man-
ually) verified that are indeed several alternatives
for the same video. We also see that data-centric
approaches miss many opportunities for leveraging
these alternatives as they are tightly bound to the
byte-level representations.

specific video hosting site is the best choice across all plat-
forms; e.g., YouTube is good for laptops but not for mobile
devices. Third, there is also some diversity across videos
w.r.t. accessibility and performance; e.g., Video1 seems to
be generally accessible on the iPhone but Video2/Video3
seem to have some issues (no mobile version available or
fail to play). We confirmed that these results can be re-
produced across multiple network locations and for several
other videos (not shown for brevity).

Alternatives exist, but cannot be exploited: While
the above results show evidence of QoE problems, they also
suggest some hope. For instance, even though Video2 fails
with YouTube and DailyMotion on the iPhone, we can po-
tentially stream the content from Vimeo. Measurements
have shown that this is indeed the case—there are alternate
versions of the same content in different resolutions and en-
coding formats available on third-party sites [2, 32]. Using a
public video dataset [2], we analyze the number of variants
of the same video (denoted by a unique video ID) in Fig-
ure 1 depicted as “Actual Match”. The challenge, however,
is that users do not have a way to automatically discover
these variants. Even if they do, they may have to manually
check that these alternatives meet the intent (e.g., it is not
“rickrolling” them) and that these are customized to meet
their device and network constraints.

There is a natural parallel here to the motivation for data-
centric architectures—users ultimately care about the data
and not who is serving it [36, 26, 38]. Thus, data-centric
schemes appear to be a seemingly natural strawman solu-
tion. Using the same video dataset [2], Figure 1 also shows
the inability of data-centric approaches to identify variants
of the same video. The reason is that the hashing algorithms
underlying data-centric schemes operate at the byte-level.
Because minor encoding differences can lead to drastically
different byte-level representations, data-centric approaches
cannot identify these variants as they only capture exact
byte-level copies.2

Summary: In summary, we observe that users face sig-
nificant accessibility and quality of experience issues in ac-
cessing video content as the specific links are not suitable
for their devices. While there are alternative versions of the
desired content on other hosting sites, users cannot reliably
discover and leverage these; even future data-centric archi-
tectures fail to adequately capture the available alternatives.

What we ideally need is a service that allows users to
flexibly leverage third-party alternatives to minimize QoE

2This is also true for more flexible chunking schemes based
on Rabin fingerprinting [32].

Figure 2: A high-level overview of how IBRs can be
used for sharing and retrieving multimedia content.

issues. In fact, many vendors in the mobile and social me-
dia ecosystem have immediate incentives and are also natu-
rally positioned to offer such a service. For example, device
vendors or service providers can spur adoption without re-
lying on support from content providers. Similarly, social
media sites like Reddit or Facebook would also be naturally
incentivized to enhance the user experience and thus max-
imize user retention; e.g., Reddit already runs some (beta)
image deduplication services such as karmadecay.com. Al-
ternatively, search engine operators like Google or Bing may
also offer such enhanced services specifically targeted to at-
tract mobile traffic; e.g., Google offers the Mobilizer service
to create mobile-friendly websites.

3. ARCHITECTURE OVERVIEW
Our overarching vision is to enable users to flexibly dis-

cover and leverage the alternative versions of the content
that can deliver the best delivery performance (e.g., accessi-
bility, bitrate, buffering, startup delay). In this section, we
begin with a high-level overview of our approach and high-
light the main challenges involved in realizing this vision.

Figure 2 shows an overview of our framework. Today,
publishers share multimedia content via URLs that link to
hosting sites. As we discussed earlier, this constrains the ac-
cessibility and usability of this content by restricting users
(e.g., their friends on social networks) to the particular host-
ing site. Rather than tightly couple references to particular
hosting sites, formats, and encodings, we envision publish-
ers who instead post an information-bound reference (IBR)
that satisfy two key properties:
(1) Encoding invariant: Different formats and resolutions
of the same content map to the same IBR; and
(2) Bound to the information: Unique contents should
have different IBRs.

This IBR will be posted via a resolution service (RS); e.g.,
available at www.myibr.info in Figure 2. The RS maintains
a mapping between an IBR and the locations or hosting sites
of different versions of content with this IBR. These map-
pings can be populated using a combination of two tech-
niques: (1) Each publisher generates an IBR for the content
she posts or references, and registers an (IBR, location) tu-
ple with the RS; and (2) The RS crawls the Web to identify
variants of the same content. For each such alternative,
the RS also registers attributes such as the format and bi-
trate. Note that our framework is general enough to support
multiple such resolution services. As we discussed earlier,



several players in the mobile/social media ecosystem (e.g.,
Facebook, reddit, Google, Apple) have natural incentives to
deploy such a service and also motivate their users to post
IBRs (rather than direct URLs) to enhance user retention
and attract more “eyeballs”.

Consumers query the RS (e.g., http://www.myibr.info?
ibr="xyz") to find potential alternatives of the multimedia
content that have the same IBR=xyz and can choose a ver-
sion that better matches their constraints; i.e., use a QoE-
aware selection strategy. They fetch this content from a suit-
able hosting site, and verify that this matches the IBR=xyz.
Our goal is to provide consumers a high degree of flexibility
to view an alternative encoding that is well-suited to their
device and current operating constraints. In the simple case,
this flexibility is static; e.g., based on what type of device a
consumer is using, what the screen size is, how long would
this content take to load, and so on. More generally, this
flexibility needs to be dynamic; e.g., switching bitrates or
streaming servers due to bandwidth changes, or reducing
the bitrate when the battery life becomes low.

While this vision builds on the idea of indirection to delay
the binding between the content reference and the actual
content served, there are two specific challenges that we need
to address in order to realize this vision:

1. Building on now familiar arguments for contention-freeness
and verifiability, IBRs must be algorithmically generated
from the underlying content, as opposed to, say, human-
input labels [29]. To this end, we identify and synthesize
algorithms from multimedia fingerprinting (e.g., [19, 34])
in §4. We also describe how we can augment the verifi-
cation guarantees in §6.

2. We need a scalable resolution infrastructure and efficient
mechanisms for enabling clients to exploit the flexibility
that IBRs offer. Specifically, the multimedia techniques
to identify similar content inherently require“fuzzy”matches
(i.e., they are not exact string matches) and, thus, we
cannot leverage traditional techniques for building scal-
able key-value stores (e.g., [20]). Thus, we design a scal-
able resolution service building on locality sensitive hash-
ing in §5 and describe practical client-side capabilities for
QoE-aware delivery in §7.

4. GENERATING AND SHARING IBRs
In this section, we focus on the first high-level challenge:

generating and posting references that are algorithmically
bound to the underlying information and invariant across
encodings, bitrates etc. We focus primarily on video content
as it represents a dominant fraction of Internet traffic [3].

Our key insight here is that we can leverage a rich liter-
ature of techniques for multimedia fingerprinting to design
IBRs [19, 18]. Multimedia fingerprinting is used in a variety
of applications today: duplicate detection [34] and detect-
ing copyright violations [11]. At a high level, this notion
of identifying other multimedia content that is “close” to
a given object suggests that such fingerprinting algorithms
can serve as a useful starting point. However, our IBR vi-
sion raises new system-level challenges related to scalability,
performance, and verifiability that do not arise in the tradi-
tional multimedia applications. In this section, we show how
we synthesize these approaches to address these challenges.
We begin by describing how to derive IBRs for images which
form the basis for our video IBRs.

 Rescale 

Generate
YCbCr

Y

Cb

Cr

DCT

DCT

DCT

FY

FCb

FCr

crop(2,2)

crop(2,2)

crop(1-8,1-8)
Hash64

ChromBlue

ChromRed

LumLow

LumHigh

ImageIBR

8 bytes

36 bytes

36 bytes

Sum
12 bytes

Image

Share

Figure 3: Generating image IBRs. We scale the
image to a baseline resolution and convert into the
YCbCr representation [9]. For each component in
this representation, we generate summaries to create
the IBR.

4.1 Building Block: Image IBRs
There are three broad classes of techniques used in im-

age fingerprinting that are based on: (1) understanding spa-
tial structure (e.g., [31]), (2) capturing color distributions
(e.g., [30]), and (3) frequency domain analysis (e.g., [19, 6]).
The first class of techniques identifies spatial gradients to
mimic how the human eye recognizes objects. Color his-
togram techniques look at the distribution of R, G, B values
in an image. These two techniques are coarse-grained and
do not capture perceptual differences well. For instance,
the spatial techniques do not distinguish grayscale vs. color
versions. Similarly, color histograms will be identical for a
white-black strip vs. an image with black and white dots
scattered uniformly. Thus, we discard these approaches.

The main intuition behind the frequency domain tech-
niques is that the low-frequency components provide a high-
level sketch of the image, and the high-frequency compo-
nents provide more fine-grained distinctions [15]. Taken
together, the resulting fingerprint more closely reflects the
underlying information content, making these techniques a
good starting point for our system. We found that the exist-
ing scheme, pHash [6], was not robust enough to satisfy the
requirements of IBRs, so we adapted it as described below.

Figure 3 shows how we generate the IBR for an image us-
ing frequency domain techniques. We first scale the image
to a baseline resolution of 128 × 128. (128 × 128 is a good
baseline as it is lower than common image resolutions, but
high enough to discern detailed structures.) Then, we gen-
erate the YCbCr representation of this scaled image [9]. We
run the discrete cosine transform (DCT) on the Y, Cb, and
Cr matrices to get DCT coefficients.

The IBR consists of two parts: (1) We take the lower end
submatrix (rows 1-8, columns 1-8) of Y DCT matrix—which
capture more than 95% of the signal energy—and generate
a compact 64-bit summary, Hash64, by first finding the me-
dian of the coefficients and then quantizing each coefficient
to be 0 or 1 depending on whether it is higher or lower than
the median [19]. This compact summary reduces the cost of
checking if two IBRs are identical. The pHash scheme also
uses Hash64. (2) To capture more fine-grained differences,
we compute the sum of the high-frequency components of
Y, and capture the lower-end 3× 3 sub-matrices of Cb and
Cr DCT components where most of the signal energy lies.
The image IBR is the 92 byte concatenation of the Hash64
and other components. The pHash scheme does not capture
these fine-grained differences.



Figure 4: Generating video IBRs. We chunk the
video via keyframe detection and compute a per-chunk
IBR using the image IBRs of the first/last frames.
We apply a traditional data hash to the file containing
all the chunk IBRs, and use that hash as the video
IBR.

4.2 Video IBRs
Next, we discuss how to extend the image IBR to video

(Figure 4). One extreme solution is to just think of a video
as a sequence of images and simply concatenate the IBR
for each frame. However, this makes a video IBR large and
expensive to compute. On the other hand, we can use only
the image IBRs for the first and last frames. Unfortunately,
this allows arbitrary content to be injected between these
frames. To ensure tighter binding, it is clear that video
IBRs need to encode information about more frames. To
achieve this, an intuitive option is that we could sample
frames on time/byte boundaries; e.g., every 5th second or
every N-th frame. However, sampling-based alternatives are
not robust as they are sensitive to variations in timing and
encoding formats and can result in inconsistent chunking
across variants.

To ensure tighter binding and consistent chunking, we
leverage techniques for scene detection to derive the ap-
propriate chunk boundaries from the information itself [18].
These scene detection schemes identify keyframes when the
content changes significantly across frames. Intuitively, this
is analogous to value sampling in data chunking [25, 32].
To identify the scene changes, we need to select an image
feature that is easy to compute and consistent across mi-
nor variants. We applied various transformations (e.g.,
format and bitrate changes) to a sample set of 50 movie
trailers from Youtube and observed that using the varia-
tion in the amplitude of the zero-th frequency of the Y-
component yields consistent boundaries across these video
transforms. Thus, our chunking algorithm works as follows:
Given the zero-th frequency component Ai for each frame
i, we compute the distance between two successive frames

i and i + 1, Dist(i, i + 1) =
|Ai+1−Ai|

min(Ai+1,Ai)
, and check if this

crosses a threshold ChunkThresh .
Each chunk is described by a chunk IBR consisting of two

components. The first component is a two-tuple capturing
the image IBRs of the start and end frames 〈Istart , Iend〉. The
second component is a 424-byte audio IBR that we generate
using an existing audio fingerprinting algorithm [5].

A practical issue here is chunk size. Smaller chunks en-
able more fine-grained adaptation to device and network
constraints (e.g., switching to low resolution when battery
is low) and provide tighter verifiability (in the limit every
frame is a chunk), but also imply more lookup overhead. As
a tradeoff between these factors, we set ChunkThresh = 0.5
based on controlled experiments (not shown), which yields
an average chunk size of ≈ 5 seconds. We also impose a

minimum chunk size of 0.5 seconds so that the resolution
overhead is low compared to the data transfer time.

Sharing video IBRs: One concern is that an IBR for
a long video with many chunks may be too large. For
each chunk, the IBR is ≈ 0.6KB as each image IBR is
92 bytes and the audio IBR is 424 bytes. Thus, for a 20-
minute video clip using a 5-second chunk size, the video
IBR is roughly 150 KB. Thus, downloading the list of chunk
IBRs may increase the video startup delay. We design a
practical workaround for this. The IBR that a user posts
for a video is analogous to a “torrent” file containing the
list of chunk IBRs. (In fact, HTTP chunking based tech-
niques used in video players already do this.) That is, in
the IBR www.myibr.info?ibr=xyz for the video “xyz” is a
data-centric hash of a manifest file containing the list of
chunk IBRs. Note, however, that the data hash is used
only to get the per-chunk IBRs. All subsequent actions—
resolution/matching, download, and verification—use the
per-chunk IBRs which by design bind to the information.

Using this manifest file containing per-chunk IBRs has two
immediate advantages. First, it allows players (or client plu-
gins) to download each chunk IBR in parallel while stream-
ing the video, effectively hiding the latency of download-
ing the IBRs. Second, it also allows dynamic adaptation
on a chunk-level granularity similar to HTTP chunking and
DASH [12].

There are other practical benefits of using chunk-level IBR
resolution. It can help to find more variants of the video
chunks, since full video IBR need not match. In addition, it
can accommodate content insertions (e.g., advertisements)
in the video. Because of our keyframe detection, ads would
be considered as different chunks, and we could still find
variants for the chunks of the actual content.

5. IBR RESOLUTION
Having generated IBRs, the next step is to match IBRs in

order to resolve the references to the final content that the
consumer will view. We begin by discussing the algorithm
for matching two IBRs. Then, we describe the design of
a scalable resolution service for matching IBRs. We also
discuss how we support legacy users and publishers.

5.1 Matching IBRs
Matching video chunk IBRs largely boils down to match-

ing the constituent image IBRs. Thus, we begin by describ-
ing how to match two image IBRs. The Hash64 (Figure 3)
provides a quick check to distinguish two IBRs. However,
Hash64 values may differ slightly across different lossy en-
codings of the same image. To reduce the likelihood of false
negatives (i.e., the RS is unable to find alternatives even
though they exist), the matching process has to accommo-
date some fuzziness. To this end, we compute the Hamming
distance between the two 64-bit values and check if it is
within a threshold.

If the Hash64 fields match, we proceed to match the re-
maining image IBR attributes. Again, these matches are
fuzzy; if the differences are smaller than specific thresholds,
we classify the images as identical. The use of thresholds in
the matching process naturally implies choosing them care-
fully to control false positives and false negatives. We ex-
plain how we tune these thresholds and how they perform
on real-world datasets in §8.



Figure 5: Bit sampling for LSH with l=2 hash func-
tions and k=3 bits per hash. Here, the hash function
g1 chooses bits at positions 2,4 and 5, while g2 picks
bits at positions 1, 3, and 6.

5.2 Locality-Sensitive Hashing
Given the popularity of video content, we expect RSes to

process IBR resolution requests at a high rate. The key
issue that makes this challenging, as discussed above, is
that IBRs generated across different encodings might differ
slightly. This is not an artifact of our generation algorithms,
but inherent to video content and the lossy encodings and
transforms applied to them. Thus, the RS must support
fuzzy matches. A naive RS design can impose high resolu-
tion latencies that impact user experience. Our initial expe-
riences with a MySQL-based backend implementation with
user-defined functions could only support ≈150 queries per
second even on a high-end server.

Our first step toward scalable fuzzy matching is to use
Locality Sensitive Hashing (LSH) [13]. The high-level idea in
LSH is to treat the fingerprints as high-dimensional distance
vectors and project them to a smaller dimension. To find
the nearest neighbors, LSH only compares vectors in this
low-dimensional projection, which is significantly cheaper
than comparing them in their original representation. The
intuition is that similar vectors will (with high probability)
be similar in the low-dimensional projection.

Our IBR matching problem is similar at a high-level—
we want to find IBRs that are close to a given query. Thus,
LSH is a promising starting point. In our setting, we want to
compare the Hamming distance between the Hash64 fields.
In this case, an efficient way to implement LSH is via bit
sampling [13], which when applied to matching the Hash64
fields works as follows (Figure 5). We define l hash functions
gi, i = 1 . . . l, where each gi takes in as input a Hash64 H , se-
lects k random positions from H , and outputs a k-bit vector
which is the concatenation of the values at these locations.
Then, we map H to the logical buckets corresponding to the
values of g1(H ), . . . gl(H ). When a query for H ′ arrives, we
retrieve the entries in the buckets g1(H

′), . . . , gl(H
′). Then,

we compute the exact Hamming distance between H ′ and
each entry in these buckets to identify potential matches.
The intuition is that if H and H ′ are close enough in terms
of Hamming distance, they are likely to match when we con-
sider their bits in some k random positions. By choosing l
such hash functions, we increase the likelihood of finding
such matches.

Extending to video chunk IBRs, we obtain candidate chunk
IBRs using an LSH-based check for the first frame of the
queried chunk IBR, and directly compare the other IBR
fields of these candidates with the input IBR.

There is a tradeoff between two key metrics: the number
of entries that need to be processed per input query (and
thus the overall throughput) and the false negative rate (i.e.,

there are candidate IBRs close to a queried IBR, but none
of their l hash values match). This tradeoff depends on the
choice of l (the number of hash functions) and k (the number
of bits per hash function) [13]. Small l and large k can
increase throughput, but increase false negative rate. On
the other hand, large l and small k can decrease false rate,
but at the expense of decreasing throughput. In practice,
using a real world video dataset [2], we find that l = 20 and
k = 20 is a reasonable point in the space of tradeoffs. With
this setting, we can find close to 90% of the alternatives at
a rate of throughput of 8K queries/second. Note that our
overall goal here is to find some candidate set of suitable
alternatives that meets the users’ constraints; we do not
need perfect recall.

5.3 Performance Improvements
Next, we explore opportunities to improve the through-

put, reduce false negative rates and scale the RS.

Heuristics: We use three heuristic improvements to im-
prove throughput and reduce false negatives.

• Pruning: The first optimization is to stop the search af-
ter a sufficient number of matches meeting the consumer-
specified constraints are found. This reduces the number
of comparisons, thereby improving latency. To avoid the
same matches for all queries and to be “fair” to differ-
ent hosting sites, we randomize the order of hashtable
lookups.

• Pre-clustering: We group nearby IBRs into clusters
in an offline pre-processing stage. This helps reduce false
negatives during lookup. When a matching IBR is found,
we retrieve the pre-computed cluster and directly com-
pare all the IBRs in this cluster. Thus, we identify all
potential IBR matches (no false negatives), if at least
one of the IBRs in a cluster has one of the l hash values
matching the query IBR. This optimization also improves
throughput because we stop the search after finding one
such cluster, avoiding further lookups. If the query IBR
is already present3 in the RS, this optimization results in
only one lookup.

• Bypassing LSH: The last optimization exploits typical
viewing patterns where users typically watch a video in
sequence. Further, in the common case we expect videos
to be whole matches of each other; i.e., if a chunk IBR
in a video matches the chunk IBR in another video, it is
likely that the subsequent chunk IBRs of the two videos
would also match. We exploit this structure to bypass
the LSH step. Here, for each chunk IBR, we maintain
metadata about its parent manifest file (which contains
the list of chunk IBRs) and its offset there. As before, we
use a LSH-based match for the first chunk. Having iden-
tified candidate IBRs for the first chunk, we retrieve their
corresponding manifest files. For a subsequent lookup to
the chunk at offset j, we fetch the chunks at offset j from
these matching chunk-list files, and directly match these
IBRs bypassing the LSH stage. If these don’t yield suf-
ficient matches (say, because the video is a mashup of
scenes from different videos), we fallback to LSH search.

§8.3 provides a breakdown and analysis of the scalability
improvements from each of these optimizations using real-

3In general, a query IBR may not be present. For example,
an IBR is registered to one RS by a content publisher, but it
is queried against another RS maintained by a device vendor



world datasets. With these in place, the throughput im-
proves to 30-45K queries per second on a single server.

Parallelization: To scale the RS further, we use a simple
parallelization strategy. We partition the address space of
LSH hashtables (i.e., the gi logical buckets ) across differ-
ent machines. Thus, different hashtable lookups would be
assigned to different machines. As discussed earlier, each
query involves lookups from up to l hashtables; we simply
randomize the (permutation) order in which we lookup the
hashtables for each query. For example, query1 may proceed
in the sequence 1-2-5-. . ., query2 may proceed in sequence
3-1-9-. . ., and so on. (This is implemented by a lightweight
front-end load balancer.) This ensures that the queries are
executed in parallel across machines as much as possible.

To put this in context, YouTube serves ≈ 2 billion videos
per day [10]. Assuming an average video length of 5 min
and 5 seconds/chunk, this translates to approximately 1
million chunk requests per second. Given that we achieve
45K queries/sec on a single machine, a cluster of 25 ma-
chines can support this YouTube-scale workload of 1 million
queries/sec.

5.4 Legacy users and publishers
To support legacy publishers, the RS maintains inverse

mappings between URLs and IBRs. It supports an ad-
ditional query interface, where user devices provide direct
URLs instead of IBRs. For such URL queries, the RS per-
forms an extra lookup to first find the IBR (a simple exact
match) and then identifies variants using this IBR.

Legacy users who want to access content from IBR-enabled
publishers direct their requests via an IBR-enabled proxy.
If they need simpler static customization, the RS runs some
implicit content negotiation (e.g., using UserAgent strings)
and also allows them to set preferences regarding bandwidth
and resolution which are sent as cookie values with subse-
quent HTTP requests. The RS issues a traditional HTTP
redirect to a suitable alternative. In order to access content
from legacy publishers, however, the requests from legacy
users need to go via our proxy. (Otherwise, it will fetch the
URL directly.)

In short, while our framework supports legacy users, we
get maximum benefits when users and publishers are IBR
enabled. Legacy users also need to trust additional entities
(e.g., proxy, RS) to achieve the same degree of verifiability.

6. VERIFIABILITY
Being bound to the underlying information helps IBRs

provide intrinsic verifiability. We discuss the verification
step and mechanisms to improve the verifiability further.

Client-side verification: As a video chunk is downloaded,
we generate its IBR and match it against the intended chunk
IBR. This occurs in parallel as the client is downloading
future video chunks. The verification step provides resilence
against attacks where an attacker tries to claim that some
bogus content matches a given IBR. The actual overhead
of verification is quite low beyond the cost of decoding the
content which the device will incur anyway.

One potential concern is that an attacker can exhaust the
client’s resources to download, decode, and verify fake con-
tent; i.e., the IBR claims to be video X but the actual IBRs
of the chunks within the video do not match the IBRs. While
this is a valid concern, we note that this attack’s power is

bounded. As soon as the client detects a bogus video chunk
from a URL, it can stop downloading chunks from that URL
and uses alternate sources for the remaining chunk IBRs.
Thus, the wasted bandwidth is only for the bogus chunk;
i.e., approximately 5 seconds worth of bytes. As a further
protection against such bandwidth-exhaustion attacks, users
can report verification failures to the RS. The RS can re-
voke these fake mapping, after further checks where it lo-
cally computes the IBRs, to avoid using these mappings for
future requests.

There are still two possible weaknesses: 1) a determined
attacker registers malformed content having the same IBR
as some genuine content, and 2) unintentional IBR collisions
between content from genuine providers. Next, we discuss
mechanisms to overcome these issues.

Access control via scopes: When the publisher registers
her IBR and content at the resolution service, she also anno-
tates it with a logical scope. These scope annotations allow
publishers to constrain the set of third-party providers who
can be candidates for serving the content. For example, the
publisher may only allow trusted third party providers for
high-priority content. (We assume that each provider can
be identified; e.g., via a email-id or an identifier in the social
network.) For low priority content, it may register a scope
with a wildcard to allow anyone to register. When a third-
party provider tries to register an IBR-to-URL mapping, the
RS checks whether this provider belongs in the given scope,
and can accordingly allow or drop this mapping. If the pub-
lisher detects misbehavior from some specific provider, she
can blacklist this third party and ask RS to remove it from
the scope.

Larger or multiple IBRs: In general, using larger IBRs
provides tighter binding to the information. For video IBRs,
we can add additional components to the per-chunk IBR
that capture the variation across frames within a chunk
to protect against frame addition or deletion attacks. In-
stead of choosing a fixed size IBR, publishers can provide
two IBRs: (1) a compact IBR used for publishing the refer-
ences on webpages, and tweets and (2) a larger IBR made
available out-of-band (e.g., along with the chunk list file for
the video). Consumers can use the larger IBRs for extra
verification.

We also envision using multiple complementary IBR algo-
rithms to improve verifiability as different fingerprints cap-
ture different characteristics (e.g., spatial gradients vs. col-
ors). In this case, the publisher provides multiple IBRs with
annotations to identify the specific algorithm in use, and the
consumers verify the IBR for each version. The likelihood of
IBR collisions on all versions should be low and thus improve
the verifiability guarantees.

7. IMPLEMENTATION

IBR Generation: We implement the generation algo-
rithms by extending the pHash library [6] involving roughly
2.5K lines of C++ code. We leverage off-the-shelf audio
fingerprinting algorithms [5].

Resolution Service: We built a functional resolution ser-
vice using a PHP-based web frontend running on top of
Apache integrated with our optimized LSH-based backend.
We use a C++ based LSH backend consisting of roughly 600
lines of code. Our current prototype optimizes three metrics
to improve user experience: load time for videos, buffering,



and number of “user clicks” required to play the video on
the device. Our goal in this paper is not to devise an op-
timal policy to balance these metrics; rather we provide a
mechanism for flexible adaptation. We support both mech-
anisms outlined in §3 to populate the RS; the RS verifies the
binding between content hosted at the URLs and the IBRs
before adding IBR-to-URL mappings.

Client-side extension for QoE-aware delivery: One
possibility for enabling content negotiation between con-
sumers and the RS is using conventional HTTP Accept:
headers. However, this option is not expressive enough; the
existing standard only allows the ability to specify prefer-
ences for certain encodings, e.g., Accept: video/mpg. Finer
grained controls, e.g,. a 3G user wanting bitrate ≤ 200kbps,
are not possible.

To provide such fine-grained controls, we need client-side
modifications. To this end, we developed a Firefox browser
extension using Greasemonkey [4], a popular page rewriting
tool. The extension processes IBR-ized links on the pub-
lisher’s site and contacts the RS. It analyzes the available
media codecs and plugins, and local conditions such as de-
vice type, the type of network interface in use, available
bandwidth and battery state, and provides this information
to the RS. It rewrites the HTML depending on the RS’s
response. When the browser loads the new HTML, it sim-
ply issues GETs to appropriate URLs. For pages with several
video references, we batch requests to the RS to avoid mul-
tiple round trip delays. Our prototype currently supports
three attributes for content negotiation: device type, for-
mat, and bitrate.

The plugin masks the latency of downloading the per-
chunk IBRs by fetching them in parallel along with the
video stream. When the RS reports multiple alternatives
for a chunk, the plugin prefers chunks on the same host-
ing server and in the same format, unless forced to switch
servers because of consistently poor performance. Similarly,
when network or device conditions necessitate a change in
bitrates, the plugin avoids drastic shifts, choosing instead
a feasible bitrate closest to the previously viewed bitrate.
The plugin also provides (anonymous) feedback to the RS
to track QoE issues specific to a video or hosting site on that
device.

Android implementation: We also implemented client-
side capabilities for Android (v4.0, Ice Cream Sandwich). In
order to provide the IBR functionality in an app-independent
fashion, we modify the MediaPlayer module, which is part
of the webkit middleware. We add the IBR logic to the set-
DataSource function in this module that selects the URL to
play. We interpose on this call, and receive an updated URL
from the IBR resolver. We use standard APIs to obtain cur-
rent operating conditions (e.g., Connectivity Manager to
identify WiFi vs. 3G, Window- ManagerDisplay to get reso-
lution, and BatteryManager to get the battery status) and
report them to the resolver. One concern is that modifying
webkit likely requires a device/OS upgrade; we envision this
is a feasible option for device vendors and wireless providers
who already customize devices.

Proxy: To support legacy clients (§5.4), we also imple-
mented a simple proxy in C++ that essentially replicates
the functions that the client-side browser extension performs
while communicating with the RS.

8. EVALUATION
We address the following questions in our evaluation:

(i) QoE Improvements: Can IBRs enhance user experience
(e.g., load time, buffering)? (§8.1)
(ii) Generation: How do we configure IBRs to ensure low
false positives and false negatives? How effective are IBRs
in identifying similar/dissimilar content in the wild? (§8.2)
(iii) Resolution: Can the RS resolve IBRs quickly and for a
large number of users simultaneously? (§8.3)
(iv) Overhead: Do users perceive delays in viewing pages
authored with IBRs? (§8.4)
(v) Verifiability: How fast can users check IBRs? How prac-
tical are the verification guarantees offered by IBRs? (§8.5)

8.1 QoE improvements using IBRs
We begin by showing the quantitative benefits that IBRs

provide consumers in realistic settings on actual devices.
In particular, we show how IBRs can enable network- and
device-specific adaptation to improve the user experience.

Bandwidth adaptation: We emulate a blog with an em-
bedded video object in mpg format with a bitrate of 1.2
Mbps. We assume that there is an alternative encoding at
620 Kbps, from alternate source. We use a browser with a
VLC plugin to play the video and a WAN emulator to vary
the download speed between 512Kbps to 2 Mbps.

As a baseline, we consider today’s publisher/consumer
setup with no IBR support. Here, the publisher uses a video
URL that supports single format and resolution (§2). At low
bandwidth (768Kbps), we observed 6-10 pauses while view-
ing the video and significant buffering (only 15s played over
a 30s period). Next, we test the case when the publisher
chooses to share the video using IBRs and the client uses our
updated browser extension. The video was played smoothly
without any buffering induced pauses in this case. At high
bandwidth (1.5 Mbps), the browser extension detects and
sends this bandwidth information to the RS, which redi-
rects it to the high quality variant. This preliminary result
under a controlled setting suggests that IBR-enabled clients
can have a better user experience by adapting to dynamic
network conditions.

Device adaptation: We emulate an experiment with users
sharing video links on social networking sites and consumers
viewing those posted links on different devices. For this
experiment, we use the same example videos from Table 2.
We post them on Facebook and use IBRs to share them. In
the case of mobile devices without our browser extension,
the RS uses implicit content negotiation to redirect clients
to the hosting site best suited for the device.

As before, we quantify the end-to-end user experience on
the devices w.r.t startup latency for the video to play. Be-
cause IBRs redirect users to videos which can play on these
devices, it significantly improves content availability; e.g.,
the third video URL from YouTube does not play on any of
the mobile devices, but using IBRs the content can be re-
trieved from one of the other locations. Furthermore, using
IBRs reduces the join time by up to 1 second for Droid on
YouTube, up to 4 seconds for Vimeo on iPad2 and up to 19
seconds for DailyMotion on iPhone4 (not shown).

These experiments suggest that using IBRs can improve
the viewing quality of experience by reducing join time,
buffering, and avoiding scenarios where videos were not view-
able.
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Figure 6: Threshold for Hamming distance. This
plot compares the Hamming distances of the Hash64
field across transformed versions of images and dis-
tinct images, and shows that we can set a threshold
of 11.

8.2 Configuring IBRs
Next, we study how to control the degree of false posi-

tives and false negatives introduced when matching differ-
ent video IBRs. Recall from §4.2 that a video IBR is essen-
tially a sequence of chunk IBRs, where each chunk IBR has
image IBRs of the start and end frames. Thus, we begin
by focusing on configuring image IBRs before proceeding to
video-specific configurations.

Configuring thresholds for image IBRs: Ideally, we
want IBRs that yield zero false positives (i.e., not mark dis-
tinct images as same) and zero false negatives (i.e., not mark
two identical images as different). We show that it is pos-
sible to choose IBR matching thresholds to get close to this
ideal. In this process, we are willing to tolerate a small in-
crease in false negatives in favor of completely avoiding false
positives. In other words, we are trading off a small decrease
in availability for guaranteeing correctness.

As our training set, we used the Univ. Washington im-
age dataset consisting of real-world scenes of nature, peo-
ple, events, and plants [8]. For each image, we apply the
following transforms: (1) change format (from JPEG to
BMP and PNG), (2) change resolution (scaled to one-third),
(3) change aspect ratio (converting to 1:1), and (4) increase
brightness. We chose these specific transforms because we
observe that these occur commonly in the wild [2].

Figure 6(a) shows that the Hamming distance between
Hash64 components across transformed variants is at most
15. Figure 6(b) shows that the minimum Hamming distance
across different images is at least 13; i.e., for all images, the
“nearest” distinct image is at least at a distance of 13. Based
on this, we set a threshold of 11 on the Hamming distance
between Hash64 to minimize the false negative rate while
maintaining a zero false positive rate. In similar fashion, we
use this dataset to select thresholds for other finer grained
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Figure 7: Controlled dataset study for videos.
This shows the distribution of match ratio (time/#
chunks) across two video formats. The results are
similar for variants that differ in the resolution.

components of the IBR (details omitted for brevity). With
these thresholds, we get a zero false positive rate and a false
negative rate of 0.4%. We validated these thresholds on a
different set of 250 images from the same dataset and 4223
images from a different dataset [1], and found 1.3% and zero
false negative rates respectively and no false positives.

Video IBRs: Having chosen the image IBR thresholds, we
move to video IBRs. First, we use a controlled dataset of 50
movie trailers from Youtube to analyze the effect of chunking
on the match rate across transformed variants of a video. We
apply two transforms: changing the format from flv to avi
and rescaling to 200×180. Figure 7 shows the distribution of
the match ratios across videos with the format change. The
result shows match ratio w.r.t. time (ratio of total time of
matched chunks and total video time length) and number of
chunks. We see that format changes have minimal impact;
the match rate is ≥ 95% for more than 95% of the videos,
both w.r.t. time and chunks. Most match misses occur from
a known corner case with blank screens where the Hamming
distances between similar frames becomes high; we handle
this corner case separately, by forcing the chunking algo-
rithm to choose non-blank frames for the first/last chunks,
to further reduce false negatives. The result for the reso-
lution change are similar; we do not show this for brevity.
To understand how chunking affects match rate, we disable
chunking and do a per-frame match and find that the differ-
ence between chunk- and frame-level match rates is < 0.5%
(not shown). This shows that our chunking algorithm yields
consistent chunks across video transforms.

Video IBRs in the wild: Moving beyond controlled tests,
we run the video IBR algorithms on two larger multimedia
datasets collected in the wild: (1) 13,123 videos fetched us-
ing 24 popular queries for a “seed video” (CC Web Video
dataset) [2].4 (2) 120 videos downloaded by querying for a
popular movie title across torrent sites (SET dataset) that
we manually labeled [32].

We identify two videos as similar only if all their chunk
IBRs match. Then, we verify this against manually labeled
ground truth. Figure 8 summarizes this result for the CC
Web video dataset; “Text-based” represents the total num-
ber of results obtained by the query and “Actual” represents
the number of videos that were manually labeled as similar.
The difference between “Actual” and “Text-based” indicates
the noisy results from text based queries. IBRs did not
identify any of the noisy results as similar (i.e., zero false
4This is the largest manually labeled video dataset we are
aware of.
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Figure 8: IBR effectiveness in the wild. This com-
pares matches found by IBR with the actual matches
on datasets collected in the wild. It also shows the
noisy results from text-based queries.

positives). Using the IBRs as-is identifies 72% of the sim-
ilar videos. Again, the misses were due to the previously
mentioned corner case of blank screens. Using the above
heuristic to handle this case reduces the false negative rate
to less than 5%. Our results for the SET dataset are similar
(not shown): zero false positives and roughly 5% false nega-
tives. These results show that IBRs are effective and robust
“in the wild”.

8.3 Resolution Performance

Scalability: We measure the query lookup performance of
our LSH-based RS (with and without the optimizations in
§5) using a single core on a Intel(R) Core2 Quad Q6700 2.6
GHz CPU. For this experiment, we use the IBRs for 80,000
chunks from the CC Web Video dataset to populate the RS.
For each chunk, we insert half the available alternatives into
the RS, and use the other half as query inputs. The entire
LSH data structure resides in main memory. We used l = 20
hash tables and k = 20 bits per hash function.

Using the basic LSH structure without any optimizations,
we obtain 8K chunk queries/sec. As discussed in §5, even
this is several orders of magnitude faster than a traditional
database backend. Pruning the number of query results to
stop after 50 matches are found, improves the throughput to
18.5K queries/sec. Pre-clustering (without pruning) reduces
hash table lookups as the LSH search can be stopped as soon
as a cluster is found. In particular, we find that the number
of hash table lookups reduces to 9 on average across queries
compared to 20 for the basic LSH where all hash tables need
to be looked up. For requests that had at least one match,
we need only 1.6 lookups on average. Thus, pre-clustering
improves throughput to 20K queries/sec. After combining
pre-clustering with the above pruning threshold of 50, the
throughput increased to 30K/sec.

We noted in §5 that we could bypass the LSH step for
lookups to subsequent chunks within the same video. The
SET dataset had larger clips (15 minutes on average) and
several of these were chunked by our algorithm resulting in
roughly 80,000 chunks across all video clips. As before, we
divide these equally into chunks stored in the mapping and
queries. The baseline LSH throughput was 8K/s that im-
proves to 20K/s with preclustering. Bypassing the LSH for
subsequent (sequential) lookups within the same video, im-
proved the throughput to 35K queries/sec. When we com-
bined pre-clustering on the first few chunks together with

Template # Objects Load time (s) Increase with IBR (s)
T1 1 0.2 0.1
T2 25 0.6 0.3
T3 50 0.8 0.5

Table 3: Overhead of using IBR-ized websites com-
pared to regular URL versions for three website tem-
plates.

this bypass optimization, the performance improved further
to 45K queries/sec.5

False negatives: As discussed in §5, the LSH approach
could result in false negatives. Using the basic LSH frame-
work on the CC Web Video dataset, we saw a miss rate of
14%. These misses fall in two classes: (1) a queried IBR
matches some variants but not others and (2) the query
yields no matches although similar variants exist. Fortu-
nately, 96% of all misses are of type (1), and can be ad-
dressed via the pre-clustering optimization. We can fur-
ther address misses of type (2) using one of two extensions:
smaller k to reduce the likelihood of misses and using multi-
ple parallel LSH data structures with different random seeds.

8.4 Increase in page load times
Next, we evaluate the overhead that a user may experience

in viewing pages (e.g., blogs) with IBR-ized links due to the
need for multiple IBR resolutions. We created three tem-
plate web pages from blogging and social networking sites,
varying in the number of links to multimedia objects. We
assume that there is only one version of each embedded ob-
ject and all objects are hosted at a single remote server. To
be conservative in estimating the overhead, all requests go
through the RS even though there are no IBR-induced bene-
fits from adaptation. We used a WAN emulator to simulate
an average latency of 60ms between client and the RS.

As Table 3 shows, while the IBR-ized version does marginally
increase the page load times (mostly because of the addi-
tional RTT to contact the RS), the worst case load time is
an order of magnitude lower than suggested user tolerance
(2 seconds) [22]. This overhead can be reduced even further
by optimizing the PHP-based RS or using other web page
optimization techniques. Finally, it is important to note
that this small overhead will be offset by the performance
benefits we saw in §8.1.

8.5 Verifiability
The previous sections showed the effectiveness and usabil-

ity of IBRs in normal operating conditions. The final issue
we consider is how consumers can verify if the content they
view matches the publisher’s intent and if they can detect
targeted content pollution attacks.

Overhead: The first concern is verification performance.
Here, the design of video IBRs facilitates rapid checking: On
an Intel Core2 2.66Ghz machine, it takes 0.02s to extract the
start/end frames of a chunk, 0.2s to compute the image IBR
for each, and 0.01s to compare against the original chunk
IBR. Thus, the total time for verification is 0.25s per-chunk;
this latency can be masked by running these checks in par-
allel with downloading future chunks. On mobile devices,
we expect that this step can be done in hardware as most

5The CC Web video dataset had small videos (<5 chunks);
thus we do not report numbers for this experiment.



Attack Description Verifiability?
Inset embed bogus con-

tent
LumLow

Quantization poor qual-
ity/large pixels

ChromBlue,ChromRed

Resize rescale image,
then magnify

LumHigh

Small text insert random text none
Replace faces replace small

faces with others
none

Table 4: Attacks against the image IBR

smartphones and tablets already use hardware-assisted de-
coding for video.

Resilience to pollution: IBRs can easily protect against
different content; e.g., against “rickroll”-style attacks in so-
cial media. While this eliminates obvious violations, IBRs
could be prone to subtle pollution attacks. Next, we study
the robustness of our IBRs against such attacks.

Table 4 summarizes different emulated “attacks”. Note
that these are subtle attacks; attacks that modify the con-
tent substantially will be detected as the Hash64 would dif-
fer. We see that some of these attacks are detected via the
fine-grained components of the IBR such as the ChromBlue,
ChromRed, or the LumLow values (Figure 3 in §4) even if
Hash64 fails.

In addition to approaches outlined in §6, one approach
to tackle such subtle pollution attempts is via a human-
assisted reputation service [40]. To analyze the viability of
such a service, we recruited 100 users and showed them a se-
ries of n two images. Users vote if these images are identical
or different. We pick a random frame from the original and
potentially polluted videos. To avoid biasing users, we ad-
vertised this as a generic study on “image perception” and
also randomly interspersed identical pairs of frames along
with modified pairs. We focus on the text/face scenarios
from Table 4 and found that the observed probability of de-
tecting these attacks is ≥ 0.8 (not shown). Furthermore,
users rarely voted identical frames as different. This pro-
vides preliminary but promising evidence to complement the
verifiability offered by IBRs.

Video IBRs naturally inherit the verifiability properties of
image IBRs. An additional concern with videos are frame in-
sertion (e.g., bogus frames for ads), frame replay, and frame
permutation attacks. To address these, we use larger chunk
IBRs and add a Hash64 for every frame in the chunk. To
compare chunk IBRs, we compute the pairwise Hamming
distances between pairs of corresponding frames, and check
if the maximum pairwise distance exceeds a threshold. Un-
der all intra-chunk attacks, this value was ≥ 21 confirming
the additional robustness offered by larger IBRs.

9. RELATED WORK

Use of multimedia techniques in networking: The
original vision of IBRs was outlined in an earlier position
paper [16]. This work presents a more careful synthesis of
the multimedia algorithms, a system for scalable IBR res-
olution, and an end-to-end implementation. Other recent
work has leveraged multimedia algorithms in the context of
disaster-recovery applications [41, 37]. These efforts focus
on images and largely use the algorithms as deduplication
tools. Furthermore, these do not address issues w.r.t. reso-
lution and do not present a full system realization.

Content-centric networking: Recent work argues that
we do not need significant network upgrades to achieve the
security and performance benefits of data-centric schemes [23].
Our vision is not in conflict with these arguments. First,
we do not make a case for ubiquitous caching; rather we
exploit alternatives at third-party sites that exist already.
Second, the benefits of IBRs can be achieved in a backwards-
compatible fashion without architectural upgrades.

Naming: Intentional Naming allows mobile users to spec-
ify their “intent” and an in-network resolution mechanism
matches it to available services [14]. LNA [17] and SFR [29]
advocate decoupling identifiers from location and routing.
IBRs share their core philosophy that binding protocols to
irrelevant details limits flexibility. Our specific focus is on
video sharing and decoupling it from content presentation.
quFiles provides context-aware encoding using specialized
file names and metadata [39]. Unfortunately, ensuring con-
sistent names and metadata across third-party hosting sites
and providers is challenging. Hence, we make a case for an
algorithmic basis for IBRs.

Search engines: While search engines try to identify simi-
lar/related content, it is important to note that IBRs address
an orthogonal problem. IBRs complement the discovery to
enable flexible and verifiable delivery. That said, search en-
gine providers could offer IBR-like services similar to our
proposal for supporting legacy publishers (§5.4); we are not
aware of products that currently offer such capabilities.

10. CONCLUSIONS
In this paper, we argued the case for IBRs to improve

the quality of experience and accessibility of video content,
given the growing heterogeneity of device and network op-
erating conditions. The key insight underlying our work is
to bind the content references to the underlying informa-
tion, ignoring the details of protocols, hosts, filenames, or
bits. Consumers can seamlessly choose variants from third-
party sites that are the most appropriate fit for their devices
and operating constraints, and also verify that the variants
match the publisher’s intent. IBRs thus allow content pub-
lishers to easily reach a wider audience without significant
infrastructure costs.

We developed practical algorithms for generating IBRs, a
scalable resolution backend, efficient backwards-compatible
mechanisms for users to benefit from the power of IBRs, and
approaches for providing additional verification. We believe
that our approach has broader potential to enable new ap-
plications. For instance, users who need content in their
own language or require a much larger resolution (e.g., due
to vision impairments) can request that the content meet
these requirements. Similarly, it can also help in challenged
networks with resource constraints [41]. We also envision
new IBR-enabled caches that identify alternative versions
of available locally which will be more effective at reduc-
ing redundant transfers compared to URL- or data-centric
caches.
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