
The Case for Fine-Grained Traffic Engineering in Data Centers

Theophilus Benson†, Ashok Anand†, Aditya Akella† and Ming Zhang⋆
† University of Wisconsin-Madison;⋆ Microsoft Research

Abstract

In recent years, several techniques have been suggested
for routing and traffic engineering in data centers. How-
ever, not much is known about how these techniques per-
form relative to each other under realistic data center traf-
fic patterns. Our preliminary study reveals that existing
techniques can only achieve 80% to 85% of the ideal so-
lution in terms of the number of bytes delivered. We find
that these techniques suffer due to their inability to utilize
global knowledge of the properties of traffic flows and
their inability to make coordinated decision for schedul-
ing flows at fine time-scales. Even recent traffic engi-
neering techniques such as COPE fail in data centers de-
spite their proven ability to adapt to dynamic variations,
because they are designed to operate at longer time scales
(on the order of hours, at least). In contrast, data centers,
due to the bursty nature inherent to their traffic, require
adaptation at much finer times scales. To this end, we de-
fine a set of requirements that a data center-oriented traf-
fic engineering technique must possess in order to suc-
cessfully mitigate congestion. In this paper, we present
the design for a strawman framework that fulfills these
requirements.

1 Introduction
Data centers are being heavily employed in enterprise,
consumer and university settings to run a variety of ap-
plications and cloud-based services. These range from
Internet-facing “sensitive” applications, such as, Web
services, instant messaging, stock updates, financial ap-
plications and gaming, to computationally intensive ap-
plications, such as, indexing Web content, data analysis,
archival and scientific computing.

The performance of these applications crucially de-
pends on the functioning of the data center’s network
infrastructure. For example, a congested data center
network, where internal traffic is routinely subjected to
losses and poor throughput, could lead search queries
to take longer to complete, IM message to get delayed,
gaming experience to deteriorate, and POP mail services
and Web transactions to hang. The dissatisfied end-users
and subscribers could choose alternate providers, result-
ing in a significant loss in revenues for the data center.

Central to the well-oiled functioning of a data center
is a robust network traffic engineering (TE) mechanism.
Unfortunately, anecdotal evidence suggests that data cen-
ter TE techniques are in a very primitive state. Today,

most operators try to tweak wide-area TE and routing
mechanisms (e.g., single path routing and ECMP) to
manage their data centers. This is a natural thing to do
because these mechanisms come bundled with current
switches and they are well-understood. However, this
naive approach is effective only if the traffic of data cen-
ter networks and wide area networks share basic similar-
ities.

The fact that “traditional” approaches are ineffective
is reinforced by recent work that shows that data cen-
ter networks experience congestion events each lasting
up to a few seconds, during which applications experi-
ence numerous failures [8]. Thus, there is a need for
data center-orientedTE mechanisms. However, design-
ing such mechanisms is difficult today, because very little
is known about the traffic patterns prevalent in data cen-
ter networks and how these patterns interact with existing
techniques.

We first seek to understand why existing common TE
mechanisms (most of which are ECMP based) and re-
cent proposals fail, what their fundamental flaws are, and
how much more room there is for improvement. In order
to answer these questions, we conduct simulations us-
ing real traces collected from a data center. We find that
existing mechanisms achieve only 80-85% of the perfor-
mance achieved by an optimal routing mechanism, in-
dicating that there is significant room for improvement.
The optimal routing mechanism uses perfect knowledge
about instantaneous demands to generate routes that suc-
cessfully support the current traffic with minimal con-
gestion. We find that existing techniques perform sub-
optimally due to the failure to utilize multipath diversity,
due to the failure to adapt to instantaneous load, or due to
the failure to use a global view to make routing decisions.

While centralized routing platforms [1] can be lever-
aged to address the latter shortcoming, it is less clear
how to design techniques that can accommodate dynamic
variations in network traffic. A candidate set of tech-
niques includes recent proposals for TE in ISPs [3, 14,
9, 13] that aim to compute routes offering robust perfor-
mance under a range of traffic matrices. However, these
techniques function at the granularity of hours. In con-
trast, measurement studies [5] of data center traffic have
shown that data center traffic is bursty in nature, and
unpredictable at long time-scales, making ISP-oriented
techniques inapplicable.

Prior work has shown that traffic that is bursty in na-
ture and follows a heavy-tailed distribution can be pre-

1



0.0 0.2 0.4 0.6 0.8 1.0
Maximum Link Utilization

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

ECMP
Optimal
SpanningTree

Figure 1: Distribution of the MLU for optimal, ECMP
and Spanning Tree on a canonical tree topology.

dictable at short time scales of 1-5s [11]. We find from
our traces that this observation is true for data center
ToR-to-ToR traffic as well. Motivated by this, we seek a
class offine-grainedtechniques that leverage this short-
term predictability of traffic. Thesefine-grainedtech-
niques must operate at the granularity of seconds. If
designed effectively to operate atop centralized routing
platforms, such techniques could potentially address the
key drawbacks of existing data center TE mechanisms
and offer close-to-optimal performance.

We identify key guidelines for designing such central-
ized fine-grained TE mechanisms. We then apply these
design guidelines to develop a strawman approach called
MicroTE. We present a preliminary evaluation of this ap-
proach and discuss various issues in scaling the frame-
work and in ensuring that it can be employed in a back-
ward compatible fashion in today’s data centers.

2 Comparative Study
In this section, we evaluate the effectiveness of vari-
ous traffic engineering (TE) techniques and data center
network architectures at accommodating various traffic
patterns. We perform an extensive study using simula-
tions with traces from a data center running Map-Reduce
style applications. This data center is comprised of 1500
servers and 75 ToR switches. We collected several days
worth of network events from all the servers. From these
network events, we extracted, using a mapping of servers
to ToR switches, the ToR-2-ToR traffic matrix (TM). In
our simulations of the various topologies and TE tech-
niques, we feed as input into our simulator a sequence of
per second ToR-2-ToR TM representing traffic over a 2
hour period. For simplicity, we do not consider the effect
of change in TCP behavior due to change in the routing
scheme.

Canonical tree topology: We first examine a canon-
ical 2-Tier trie topology with two cores, similar to that
used in the cloud data center from which the data was
gathered. On this topology, we first examine the per-
formance of single path static routing, and then study if
ECMP can perform better.

In Figure 1, we present the cumulative distribution of

the maximum link utilization (MLU) for every second
for the trie topology over the 2 hour periods, when em-
ploying Spanning Tree, ECMP and optimal routing. Op-
timal routing is computed assuming perfect knowledge
of the TM every second, where we formulate a linear
program with the objective of minimizing the MLU. We
observe that ECMP and Spanning Tree perform worse
than the optimal algorithm. In certain cases, we notice
MLU values that are greater than one for ECMP and
Spanning Tree indicating loss of packets. As expected,
ECMP achieves lower MLU than Spanning Tree, be-
cause ECMP leverages multiple network paths and thus a
larger network bandwidth. We find that the gap between
optimal routing and ECMP under heavy loads is 15-20%.
This gap appears to be due to a lack of a global view in
scheduling flows in ECMP.

In general, we find that ECMP is a better fit for data
center networks than Spanning Tree, however, ECMP is
not perfect as it still results in a substantial amount of
loss. ECMP is unable to significantly reduce losses as
it balances traffic across multiple paths leading to even
utilization, but it fails to take into account the instan-
taneous load on each path which is central to control-
ling network-wide load and hence losses. Consider two
source-destination pairs whose traffic is highly bursty,
but the average load due to either pair is low. Nothing
stops ECMP from assigning the two pairs of flows to
a common set of network links. Since ECMP does not
re-assign based on observed load, it cannot help to over-
come losses due to temporary over-subscription on the
path, which may happen when both pairs of flows expe-
rience bursty transmissions at similar times.

These analyses illuminate an interesting point, namely
that although TE techniques must exploit multiple-path
routing in existing data center topologies in order to ob-
tain better performance, simply striping traffic across
multiple paths is insufficient.

Fat-Tree: Next, we examine a recent proposal, the
Fat-Tree interconnect, that supports extremely high bi-
section bandwidth [2, 10]. In theory, routes can be con-
structed over this topology to support any traffic demand
matrix. However, this is true only as long as: (1) the traf-
fic demands do not overflow link capacities of servers,
(2) routes computed are optimal for the current TM. In
practice, condition #1 would likely always hold, but con-
dition #2 is harder to ensure as it requires constant re-
computation of routes matching the current TM demand.
In [2], the authors leverage a fixed number of shortest
path routes between each source-destination pair, and use
a local heuristic to balance load across the shortest paths
in order to approximate condition #2. In particular, at
regular intervals (say, every second), each switch in the
lower level of the topology measures the utilization of its
output ports and reassigns a minimal number of flows if

2



the utilizations of the output ports are mis-matched. Ide-
ally, the Fat-Tree topology should be able to ensurezero
losseson all links. In studying fat-tree we find that the
local heuristic prevents this goal from being achieved.
As observed by Al-Fares el al. [2], there is a 23% perfor-
mance gap between Fat-Tree and optimal due to conflicts
between locally optimal decisions and globally optimal
decisions.

VL2: Although we have not evaluated VL2’s archi-
tecture [5], we note the authors of VL2 perform a sim-
ilar evaluation to ours. In evaluating VL2, Maltz et al.
observed a performance gap of up to 20% with respect
to the optimal, they attributed this performance gap to
drawbacks in the underlying ECMP technique on which
VL2 is based, namely the inability of ECMP based VL2
to track and to instantaneous adapt to demand.

To summarize, using real traces from a cloud data cen-
ter, we have found that existing techniques fail to control
losses in the presence of bursty traffic in data centers for
one of the following reasons: (1) not using multipath
routing (2) not taking instantaneous load into account
and (3) not making decisions on the basis of a global
view of the network.

3 Design Requirements for TE Algorithms
In summary, our evaluations show a performance gap
of 15-20% between optimal routing and current routing
practices. Even on recently proposed data center topolo-
gies such as Fat-Tree, the gap is 23%. The primary
reason behind this gap is the lack of global knowledge.
An ideal TE mechanism should configure routes dynam-
ically by taking a global view of the future TM and com-
puting optimal routes for the future TM at hand. One
way to approximate the future TM is by extrapolating it
from a series of historical TMs generated from the global
view. However, this approach can only be used if the TM
shows some predictability.

Recent measurement studies [8, 4] have examined the
predictability of traffic in data centers; these studies show
that data center traffic is bursty and that the TM lacks
predictability at times scales of 150 seconds or longer.
Furthermore, Benson et al. [4], show that the arrival pro-
cesses for data center traffic follows an ON-OFF pattern
whose parameters can be explained by heavy tailed dis-
tributions, which provides further evidence that traffic is
bursty and unpredictable at long time-scales.

Given these results, initially it appears as though there
is no predictability. In what follows, we present prelim-
inary results to show that predictability exists at short
time-scales. Such observations have been used in recent
studies to augment data centers with “flyways” [7, 12].

We examine the change in traffic exchanged between
each pair of ToR switch and find that across different
time periods, approximately 35% or 0.35 of thetotal traf-

0.20 0.25 0.30 0.35 0.40 0.45 0.50
Stability (Fraction of Traffic)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Figure 2: Distribution of the fraction of total traffic de-
mand, contributed by ToR pairs who had insignificant
change in next second.

1.2 1.4 1.6 1.8 2.0 2.2
Mean Running Length of ToR Stability (in Secs)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Figure 3: Distribution of the mean run-length for top 100
ToR pairs, that contributed to 80% of total traffic within
a 1s interval

fic exchanged between pairs of ToR remains predictable.
This is shown more precisely in Figure 2, where we
present the distribution of the fraction of total traffic de-
mand contributed by those ToR pairs which had no sig-
nificant change in traffic over a 1 second time period; we
use> 20% change as a threshold for significant change.
From Figure 2, we observe that for 80% of the 1s inter-
vals, more than 35% of the total traffic demand in the 1s
interval remains predictable (i.e., does not change signif-
icantly) for at least 1 second into the future. This result
provides us the proof of a reasonable amount of short-
term stability in the traffic demands of data centers.

Next, we attempt to determine the duration of the ob-
served stability more accurately. To do this, we examine
the run-length of the sequence of seconds where change
in traffic for each ToR pair remains insignificant, i.e., less
than 20% compared to the demand at the beginning of the
sequence. In Figure 3, we present the distribution of the
mean run-lengths for each ToR-pair. From this figure, we
observe that 60% of the pairs remain predictable for be-
tween 1.6 and 2.2 seconds on average – this proves, that
for the predictable traffic, we should be able to use routes
based on historical TM for the last 1 second to effectively
route them.

3.1 Design Requirements
Pulling all of our observations from our study of TE
mechanisms in data centers and from our study on the
predictability of data center traffic, we have established a

3



set of three design principles that a TE mechanism must
adhere to in order to effectively alleviate loss in a data
center:

(1) Multipath Routing: An ideal approach must take
advantage of the path diversity available in the data cen-
ter’s topology. Failure to do this will limit the available
network capacity and increase the likelihood of conges-
tion.

(2) Coordinated Scheduling Using a Global View of
Traffic: An ideal approach must coordinate the schedul-
ing of traffic across the available network paths. This re-
quires using information from the global view of the net-
work. Failure to do this will lead to suboptimal schedul-
ing of flows by network elements - network devices may
choose locally optimal paths which could inadvertently
create globally sub-optimal paths that lead to conges-
tion.

(3) Exploiting Short-Term Predictability for Adap-
tation: An ideal approach must take advantage of short
term predictability where applicable but must also adapt
quickly to variations in the underlying traffic patterns,
while generating routes that closely approximate the per-
formance of the optimal TE. In the worst case, such
an algorithm should perform no worse than existing ap-
proaches. If the approach performs poorly, then it pro-
vides operators with no incentive to adopt it.

In addition to the above principles, for a traffic en-
gineering approach to be adopted today, it must meet
certain other requirements such as: (1) requiring mini-
mal changes to data center network, (2) scaling to large
topologies, and (3) performing in a manner that is ag-
nostic to the properties of the data center’s underlying
topology as data centers may differ in their network de-
sign.

Next, we discuss our TE proposal keeping these de-
sign goals in mind.

4 MicroTE: our design proposal
In this section, we present the design of a strawman
framework, called MicroTE, that satisfies the design re-
quirements laid out in Section 3.

4.1 MicroTE: Architecture
MicroTE is a TE mechanism with the ability to adapt to
variations in the underlying network traffic patterns at a
microscopic(per-second) level. We believe that this can
be implemented within the OpenFlow [1] framework,
thus allowing data centers to leverage our framework by
simply applying a firmware upgrade to the switches and
designating a (logically-central) server as the controller.

In Figure 4, we show the key components of our
framework and show how they would interact. We dis-
cuss each of these components in detail and examine the
trade-offs that can be made in implementing them below:

Figure 4: Architecture

Network Controller: This component retrieves the
traffic/flow statistics from the monitoring component and
uses this data to create a global view of the network, i.e.,
a view of the network topology together with the instan-
taneous traffic demands between different ToR switches.
It then passes this information to the routing component.
Also, the network controller relays routes received from
the routing component to the switches, i.e., it populates
the flow tables in individual switches using the Open-
Flow API.

Monitoring Component: The monitoring component
could reside on an OpenFlow-enabled ToR switch, or on
endhosts residing in the rack to which the switch is at-
tached. Its goal is to monitor demands, or flow statis-
tics, between the rack in question and other network lo-
cations. In terms of obtaining the flow statistics, there
are two design options we can adopt:

(1) The network controller polls switches at periodic
intervals ofδpoll seconds. The switches respond to the
network controller with byte counts for flow entries for
inter-ToR traffic, where the counts are aggregated over
the δpoll seconds between successive polls. The Open-
flow framework already provides a mechanism for the
controller to poll switches in this fashion. Since we
are interested in exploiting short-term predictability,δpoll

should be on the order of a few seconds (1 to 5s).
(2) End-hosts in a rack can perform measurements of

their traffic sending patterns to other parts of the data
center, and inform the controller of the demands, either
at regular intervals or in a triggered fashion.

Choosing the appropriate option among the above two
involves understanding the trade off between scale and
implementation complexity. The first option is simple to
implement and fits perfectly within the OpenFlow frame-
work. However, it fails to scale for several reasons:
(1) If the network controller needs to constantly poll all
switches on nearly a per-second granularity then this cre-
ates a significant amount of control traffic on the net-
work, and (2) If all switches respond regardless of sig-
nificance of the change in traffic experienced then both
the network and the switch (in particular, the switch’s
CPU) may be overwhelmed by the transmission of flow
statistics. This particularly impacts switches that have a
multitude of flow entries. In the case of the second ap-

4



Figure 5: Flow chart of the logic within the routing com-
ponent.

proach, additional implementation complexity must be
introduced for modifying endhosts to perform monitor-
ing. However, the generation of flow statistics will no
longer be bottlenecked by the ToR switch’s processor,
and the network will not be overwhelmed by unneces-
sary polling control messages from the network con-
troller. Furthermore, there will be no need to report
flow statistics when there is no significant change in traf-
fic patterns. This is because an end-host based frame-
work allows triggered updates of traffic demands to the
controller (when traffic demands change significantly),
while a purely switch based approach, at least in the cur-
rent implementation of OpenFlow, only supports polling
by the controller, which is far less flexible.

Thus, we adopt an end-host based approach for moni-
toring. One server per rack is designated to collect traf-
fic demands for the entire rack and report to the con-
troller everyδpoll seconds by default. A full report can be
avoided if no significant change is observed. To control
the overhead, reports can be compressed. Also, the des-
ignated server may generate a triggered update before the
δpoll interval lapses to report sudden changes in traffic.
This would require servers to constantly monitor their
traffic and report to the designated server at timescales
smaller thanδpoll.

Routing Component: This component would com-
pute the network paths using the global view provided
by the network controller.

Figure 5 shows a flowchart of the actions performed by
the routing component. The routing component will be
invoked by the network controller once it has assembled
a new global view of traffic within the network. Routes
are computed using a routing algorithm that can take ad-
vantage of the path diversity available in the data cen-
ter topologies. Thus, by taking into account the global
view of traffic for generating routes that utilize all net-
work paths, our first and second design requirements are
fulfilled.

Furthermore, the routing component tracks the pre-
dictable and unpredictable ToR-to-ToR entries in the TM

based on the available historical measurements of the en-
tries. For the unpredictable ToR-to-ToR demands, the
component assigns routes based on ECMP. By doing
this, the routing component avoids the risk of performing
worse than the existing ECMP based approaches, thus
satisfying the third design requirements. For predictable
ToR-to-ToR demands, the routing component uses a spe-
cific routing algorithm that optimizes routes for these
entries, given that the rest of the entries are routed us-
ing ECMP. The routing component returns these paths
to the network controller only if the routing component
finds that the newly created paths are different than the
paths currently being used. The routing component is
tasked with performing this check as opposed to relegat-
ing this functionality to ToR switches or end-hosts, be-
cause while individual switches and end host can check
for variations within their portion of the network’s TM,
they are unable to determine if these variations require a
significant change in the network paths.

In choosing the routing algorithm to implement, we
must examine several alternatives ranging from LP-
based formulations to heuristics, such as greedy routing
algorithms. Ideally, the algorithm chosen will provide
the best trade off between speed and accuracy.

For now we ignore the tussle between speed and accu-
racy, and we implement an LP-based solution and use it
to examine the data center traces. In formulating our LP,
we set the objective function to minimize the maximum
link utilization and we set flow conservation constraints
as usual (details omitted for brevity). We consider ToR-
to-ToR demands as predictable if demands change by
less than 20% across a 1 second interval. In doing this
preliminary evaluation, we are able to determine if we
can leverage such short-term predictable ToR-to-ToR de-
mands for obtaining better routes that further reduce the
MLU compared to the techniques evaluated in Section 2
bringing it closer to optimal.

We present our results in Figure 6. We use a canoni-
cal tree topology for these experiments, the same as that
used for Figure 1. Our findings show that in 80% of the
1s intervals, the difference between the MLU for the op-
timal approach and the MLU for MicroTE is small (less
than 6% difference) and the difference is significantly
smaller than that between the optimal and ECMP (Fig-
ure 1), indicating leveraging short-term predictability in
some part of TM can indeed result in more adaptive rout-
ing that is able to contain congestion better. We do note
that there are situations (<3%) where the MLU is greater
than 1. This arises because the traffic is not perfectly pre-
dictable for the ToR pairs in question. In future work,
we plan to address this issue by monitoring traffic pat-
terns from each rack to examine if there are exceptions
to the assumption regarding predictability, and changing
the route computation to simply using ECMP whenever

5



0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3
Maximum Link Utilization

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Ecmp
MicroTE
Optimal

Figure 6: Comparison of MicroTE, Optimal and ECMP

the assumption fails.

5 Other Related Work
Traffic Engineering. Traditional TE techniques, e.g.,
those applied to WAN traffic in ISP networks, work with
predicted TMs and operate on coarse time-scales of sev-
eral hours [3, 14, 9]. These are inapplicable to data cen-
ters because a data center’s traffic patterns are predictable
at much finer time scales. Other more responsive TE pro-
posals for ISP, such as TEXCP [6], rely on local load bal-
ancing decisions which our work shows to be suboptimal
in the context of data centers.

New Architectures. Contrary to our approach of re-
ducing congestion by reconfiguring the routing within
the network, others [5, 2] have argued for a forklift up-
grade of the data center’s network. They argue for the re-
placement of existing networks with a new network sub-
strate that can support a larger bisection bandwidth. We
argue that such techniques will face slow adoption for
two reasons: (1) a forklift upgrade will require signifi-
cant capital investment thus delaying deployment and (2)
these techniques use ECMP style TE which we showed
to be sub-optimal in section 2.

Augmenting Data Center Networks. Complemen-
tary to our approach, is the use of techniques such as
flyways([7, 12]) that argue for adding extra links as a
means of tackling hot spots. These extra links provide
additional capacities, where and whenever needed. Like
us, they also find the predictability of traffic demands at
short time scales, allowing flyways to keep up with the
changing demand. In contrast, our approach argues for
fine grained traffic engineering with existing links while
leveraging short term predictability of traffic demands.
Our approach is more general and applicable to any data
center topology, including data center topologies with
flyways.

6 Conclusion and Future Work
In this paper, we studied the effectiveness of various TE
techniques and found that many of these techniques are
inadequate for today’s data centers for at least one of
these three reasons; (1) lack of multipath routing, (2) lack
of load-sensitivity and (3) lack of a global view in mak-

ing TE decisions. Given the drawbacks of existing tech-
niques, we set off to determine the requirements for an
ideal TE mechanism for data centers by examining the
traffic patterns within a cloud data center. In studying
the traffic patterns, we observe that data centers contain
short-term predictability that last on order of several sec-
onds. Pulling together our observations, we developed a
set of design requirements for an ideal TE mechanism;
(1) must utilize multi-path routing, (2) must coordinate
scheduling of traffic, and (3) must adapt to short term
predictability.

To this end, we developed MicroTE, a strawman
framework, that satisfies our design goals. We propose
the use of the OpenFlow framework as a means of aggre-
gating and creating a global view of the network. Also,
the use of the OpenFlow framework allows MicroTE
to coordinate scheduling of traffic within the network.
We discuss various options for routing and polling algo-
rithms that allow MicroTE to adapt to short term pre-
dictability as well as to perform multipath routing.

Acknowledgements. This work is supported in part
by an NSF FIND grant (CNS-0626889), an NSF CA-
REER Award (CNS-0746531), an NSF NetSE grant
(CNS-0905134), and by grants from the UW-Madison
Graduate School. Theophilus Benson is supported by an
IBM PhD Fellowship.

References
[1] The OpenFlow Switch Consortium.http://www.openflowswitch.org/.
[2] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity data

center network architecture. InSIGCOMM, pages 63–74, 2008.
[3] B. Fortz and M. Thorup. Internet Traffic Engineering by Optimizing OSPF

Weights. InInfocom, 2000.
[4] T. Benson, A. Anand, A. Akella, and M. Zhang. Understanding Data Center

Traffic Characteristics. InProceedings of Sigcomm Workshop: Research on
Enterprise Networks, 2009.

[5] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim,P. Lahiri, D. A.
Maltz, P. Patel, and S. Sengupta. Vl2: a scalable and flexibledata center
network. InSIGCOMM, 2009.

[6] S. Kandula, D. Katabi, B. Davie, and A. Charny. Walking the tightrope:
responsive yet stable traffic engineering. InSIGCOMM, 2005.

[7] S. Kandula, J. Padhye, and P. Bahl. Flyways to de-congestdata center
networks. InProc. ACM Hotnets-VIII, New York City, NY. USA., Oct.
2009.

[8] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken. The
Nature of Data Center Traffic: Measurements and Analysis. InIMC, 2009.

[9] A. Medina, N. Taft, K. Salamatian, S. Bhattacharyya, andC. Diot. Traffic
matrix estimation: existing techniques and new directions. In SIGCOMM
’02, 2002.

[10] R. Niranjan Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri, S. Rad-
hakrishnan, V. Subramanya, and A. Vahdat. Portland: a scalable fault-
tolerant layer 2 data center network fabric. InSIGCOMM, 2009.

[11] K. Park and T. Tuan. Performance evaluation of multipletime scale tcp
under self-similar traffic conditions.ACM Trans. Model. Comput. Simul.,
10(2):152–177, 2000.

[12] G. Wang, D. G. Andersen, M. Kaminsky, M. Kozuch, T. S. E. Ng, K. Papa-
giannaki, M. Glick, and L. Mummert. Your data center is a router: The case
for reconfigurable optical circuit switched paths. InProc. ACM Hotnets-
VIII , New York City, NY. USA., Oct. 2009.

[13] H. Wang, H. Xie, L. Qiu, Y. R. Yang, Y. Zhang, and A. Greenberg. Cope:
traffic engineering in dynamic networks.SIGCOMM Comput. Commun.
Rev., 36(4):99–110, 2006.

[14] Y. Zhang, L. Breslau, V. Paxson, and S. Shenker. Traffic Engineering with
Estimated Traffic Matrices. Miami, FL, Oct. 2003.

6

http://www.openflowswitch.org/

	Introduction
	Comparative Study
	Design Requirements for TE Algorithms
	Design Requirements

	MicroTE: our design proposal
	MicroTE: Architecture

	Other Related Work
	Conclusion and Future Work

